siRNA干扰Notch1对神经元样PC12细胞缺血损伤作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺血性脑血管病是神经内科临床最常见的神经系统疾病,缺血性脑损伤是其重要的病理及病理生理过程。近年来,细胞信号转导通路参与缺血性脑损伤与修复的机制研究已受到广泛关注,越来越多的信号通路被发现可参与脑缺血损伤过程。
     Notch1信号通路是一个在进化过程中高度保守的信号转导通路。有研究表明,Notch1信号可调控动脉生成、参与缺血脑损伤后神经元新生过程[1]。但Notch1信号通路在缺血性脑损伤过程中的变化及其作用机制尚不清楚。本研究在体外建立脑缺血损伤模型,探讨Notch1信号通路在脑缺血损伤中作用及机制,为进一步揭示Notch1信号转导通路与脑缺血损伤的联系和内在机制研究奠定实验基础,为脑缺血损伤的治疗提供理论依据和可能的治疗靶点。
     1. PC12细胞转化为神经元样细胞的培养、鉴定及其氧糖剥夺模型的制备
     目的:体外培养PC12细胞,诱导其转化为神经元样细胞,行氧糖剥夺(OGD),建立体外脑缺血损伤模型。
     方法:体外培养PC12细胞,NGF(终浓度150ng/ml)刺激诱导其分化为神经元样细胞,应用无糖培养基及缺氧培养箱行OGD;应用MTT、流式细胞术及免疫荧光染色法行模型评价。
     结果:终浓度150ng/ml NGF的DMEM完全培养基培养PC12细胞6d,细胞呈典型的神经元形态,MAP2免疫荧光细胞化学染色呈强阳。OGD后神经元出现不同程度的损伤、坏死及凋亡。随OGD时间延长,存活率逐渐降低、凋亡率升高。
     结论:(1)NGF诱导的神经元样PC12细胞,具有神经元特性,可应用于建立神经元缺血损伤模型;(2)成功建立神经元样PC12细胞氧糖剥夺模型,该模型可稳定模拟体内的神经元缺血损伤,可重复性高。
     2. Notch1-siRNA靶向沉默Notch1基因及沉默效果检测
     目的:对神经元样PC12细胞靶向沉默Notch1,检测沉默效果,筛选最有效干扰序列、最佳转染浓度和最佳转染时间。
     方法:以Notch1基因为靶目标,设计合成三条Notch1-siRNA序列,合成基因片段,lipofecamine~(TM)2000转染细胞,用Realtime-PCR和Western blot技术检测不同沉默序列、浓度及时间对Notch1mRNA及蛋白表达的影响。
     结果:(1)Notch1-siRNA2组序列片段经lipofecamine~(TM)2000转染神经元样PC12细胞后,Notch1mRNA及蛋白表达较对照组明显降低(P<0.05);(2)Notch1-siRNA2干扰序列组,转染浓度2μg/ml、转染时间48h Notch1mRNA及蛋白表达较对其他(序列/浓度/时间)组别明显降低(P<0.05)。
     结论:Lipofecamine~(TM)2000可成功将Notch1-siRNA基因序列片段转染至神经元样PC12细胞,应用Notch1-siRNA2干扰序列、2μg/mL浓度行48h转染可最有效沉默Notch1。
     3. Notch1信号通路在神经元样PC12细胞OGD损伤后表达变化及Notch1-siRNA对其影响
     目的:检测Notch1信号通路在神经元样PC12细胞OGD损伤及Notch1-siRNA后表达变化,探讨Notch1信号转导通路在脑缺血损伤中的信号转导模式及机制。
     方法:在体外神经元样PC12细胞OGD12h模型基础上,对其行Notch1-siRNA,Realtime-PCR技术检测Notch1mRNA表达变化,Western-blot技术检测Notch1及Notch1胞内段(NICD)的蛋白表达变化。
     结果:(1)氧糖剥夺(OGD12h)组Notch1mRNA表达较正常对照组显著升高,氧糖剥夺+Notch1-siRNA组Notch1mRNA较氧糖剥夺组显著降低(P<0.05);(2)氧糖剥夺组Notch1及NICD蛋白表达较正常对照组均显著升高,氧糖剥夺+Notch1-siRNA组较氧糖剥夺组显著降低(P<0.05)。
     结论:脑缺血损伤可诱导内源性Notch1信号转导通路激活,脑缺血损伤诱导Notch1高表达可能为Notch1信号通路激活的始动因素。
     4. Notch1-siRNA对神经元样PC12细胞缺血性损伤的影响及机制
     目的:检测Notch1-siRNA对缺血神经元样细胞凋亡率及凋亡相关基因IAP-1、Caspase-3表达的影响,探讨神经细胞缺血性损伤诱导Notch1信号转导通路活性变化的内源性作用及可能机制。
     方法:在体外神经元样PC12细胞OGD12h模型基础上,流式细胞术检测Notch1-siRNA对神经元样细胞缺血损伤细胞凋亡率的变化的影响,Realtime-PCR及Western-blot方法检测凋亡相关基因IAP-1、Caspase-3的表达变化。
     结果:(1)氧糖剥夺+Notch1-siRNA组细胞凋亡率较单纯氧糖剥夺组显著升高(P<0.05);(2)氧糖剥夺组较正常对照组IAP-1表达显著降低,Caspase-3显著升高(P<0.05);(3)氧糖剥夺+Notch1-siRNA组较氧糖剥夺组IAP-1表达显著降低,Caspase-3显著升高(P<0.05)。
     结论:缺血损伤诱导的内源性Notch1信号通路激活,可能在脑缺血的特定时程通过上调IAP-1、抑制Caspase-3的表达发挥抗凋亡脑保护作用。
Ischemic cerebrovascular disease is the most common clinical neurologicaldisease, and ischemic cerebral injury is its important pathological and pathophysiolo-gical processes. In recent years, studies on the mechanism of cell signal transductionpathways involving in ischemic brain damage and repair have received extensiveattentions, and more and more signal pathways were found to be involved in theprocess of cerebral ischemia injury.
     The Notch1signal is a highly conserved signal transduction pathway in theevolution process. Research has shown that Notch1signal can regulate the generationof arteries and involve in the neonatal process of neurons after ischemic cerebralinjury[1], but it is still not clear as to the changes of Notch1signaling pathway and itsmechanism in the process of cerebral ischemic injury. This study established themodel of cerebral ischemia injury in vitro, explored the early effects and mechanismof Notch1signal pathway in cerebral ischemic injury, which lays a foundation for theresearch on the mechanism of Notch1signaling pathway in cerebral ischemic injury.Furthermore, the research revealed the relationship and internal mechanism betweenNotch1signal transduction pathway and cerebral ischemic injury, which may providetheoretical basis and therapeutic target for the therapy of cerebral ischemic injury.
     1.Model of neuron-like PC12cells subjected to oxygen-glucose deprivation invitro
     Objective: To induce and cultivate neuron-like PC12cells by NGF(150ng/ml)stimulation, perform oxygen and glucose deprivation (OGD), and build cerebralischemic injury model in vitro.
     Methods: Sugar-free culture medium and hypoxia box were used to OGD; theOGD model was evaluated by MTT and immunofluorescence staining method.
     Results: PC12cells were cultured6d by NGF with the final concentration of150 ng/ml, which manifested a typical neuronal morphology. MAP2immunofluorescencestaining showed strong positive. After OGD neurons manifested injury, necrosis andapoptosis in different degree. With the extension of OGD, the survival rate decreased,and apoptosis rate increased.
     Conclusions:(1) Neuron-like PC12cells induced by NGF has the properties ofneurons, and can be applied to establish a model of neuron ischemia injury;(2)Successfully established the neuron-like PC12cells model of oxygen glucosedeprivation(OGD) model, the OGD model can be stable analogy ischemic neuronaldamage in vivo, and has high repeatability.
     2. Notch1-siRNA silenced Notch1mRNA and detected silence effects
     Objective: To silence targeting Notch1to neuron-like PC12cells, detect silenceeffects, and select the most efficient interfere sequence, the best transfectionconcentration and the best transfection time.
     Methods: We took the Notch1gene as a target, designed and synthesized threesiRNA sequences, transfected cells by lipofecamine~(TM)2000, and detected the effectsof different silence sequences, different concentration and time on the expression ofNotch1mRNA and protein by Realtime-PCR and Western blot technology.
     Results:(1) After Notch1-siRNA were transfected into neuron-like PC12cellsby lipofecamine~(TM)2000, the expression of Notch1mRNA and protein weresignificantly decreased than those in the control group (P<0.05);(2) The expression ofNotch1mRNA and protein decreased significantly (sequence/time/concentration) inNotch1-siRNA2group, transfection concentration2μg/ml group, transfection time48h group compared with other groups(P<0.05).
     Conclusion: Lipofecamine~(TM)2000can successfully transfect Notch1-siRNA intoneuron-like PC12cells, and the Notch1gene was most effectively silenced throughNotch1-siRNA2interference sequence and2μg/ml concentration and48h transfectiontime.
     3. The expression changes of Notch1signaling pathway in neuron-like PC12cellssubjected to OGD damage and the impact of Notch1-siRNA
     Objective: To detect the expression changes of Notch1signaling pathway inneuron-like PC12cells subjected to OGD and Notch1-siRNA injury, and explore themode and mechanism of Notch1signal transduction pathway in cerebral ischemic injury.
     Methods: On the basis of neuron-like PC12cells subjected to OGD12h model invitro, We treated it with Notch1siRNA, detected the expression of Notch1mRNA byRealtime-PCR technology, and detected the expression of Notch1and Notch1intracellular domain (NICD) protein by Western-blot technology.
     Results:(1) The expression of Notch1mRNA was significantly increased inOGD group when compared with the control group, and was dramatically decreasedin OGD+Notch1-siRNA group when compared with OGD group(P<0.05);(2) Theexpression of Notch1and NICD protein was significantly increased in OGD groupwhen compared with the control group, and was dramatically decreased inOGD+Notch1-siRNA group when compared with OGD group(P<0.05).
     Conclusion: Cerebral ischemic injury can induce the activation of endogenousNotch1signaling pathway, and the high expression of Notch1induced by cerebralischemic injury may be initiating factors for the activation of Notch1signalingpathway.
     4. Effects and mechanism of Notch1-siRNA on neuron-like PC12cells subjectedto ischemic injury
     Objective: To detect the effects of Notch1-siRNA on ischemia-induced nervecells apoptosis and apoptosis-related gene IAP-1and Caspase-3expression, and toexplore endogenous effects and possible mechanism of Notch1signal pathwayliveness induced by the nerve cells subjected to ischemic injury.
     Methods: FCM was used to identify apoptosis rate. Realtime-PCR and Westernblot were used to detect the expression changes of the apoptosis related genes IAP-1and Caspase-3.
     Results:(1)The apoptosis rate was significantly increased in Notch1-siRNA+OGDgroup when compared with OGD group (P<0.05);(2) The expression of IAP-1mRNAand protein was significantly decreased and Caspase-3was significantly increased inOGD group when compared with the control group(P<0.05);(3) The expression ofIAP-1mRNA and protein was significantly decreased and Caspase-3was significantlyincreased in OGD+Notch1-siRNA group when compared with OGD group(P<0.05).
     Conclusions: The activation of endogenous Notch1signaling pathway induced byischemia may be exert anti-apoptotic neuron-protective effects in the specific process of the cerebral ischemia through the up-regulation of IAP-1and inhibition ofCaspase-3expression.
引文
[1] Doi H, Iso T, Shiba Y, Sato H, Yamazaki M, Oyama Y, et al. Notch signalingregulates the differentiation of bone marrow-derived cells into smoothmuscle-like cells during arterial lesion formation. Biochem Biophys ResCommun.2009,381:654-659.
    [2] Grimwade BG, Muskavitch MA, Welshons WJ, et al. The molecular genetics ofthe Notch locus in drosophila melanogaster. Dev Biol.1985,107:503-519.
    [3] Iso T,Kedes L, Hamamori Y. HES and HERP families:multiple effectors of theNotch signaling pathway. Cell Physiol.2003,194(3):237-255.
    [4] Lai EC. Keeping a good pathway down:transcriptional repression of Notchpathway target genes by CSL proteins. EMBO reports.2002,3(9):840-845.
    [5] Carlson ME, O’Connor MS, Hsu M, et a1. Notch signaling pathway and tissueengineering. Front Biosci.2007,1(12):5143-5156.
    [6] Lasky JL, Wu H. Notch signing, brain development, and human disease. PediatrRes.2005,57(5Pt2):104R-109R.
    [7] Mason HA, Rakowiecki SM, Gridley T, et a1. Loss of notch activity in thedeveloping central nervous system leads to increased cell death. Dev Neurosci.2006,28(1-2):49-57.
    [8] Arumugam TV, Chan SL, Jo DG, et al. Gamma secretase-mediated Notchsignaling worsens brain damage and functional outcome in ischemic stroke. NatMed.2006,12(6):621-623.
    [9] Greenberg DA, Jin K. Turning neurogenesis up a Notch. Nat Med.2006,12(8):884-885.
    [10]Ge W, Martinowich K, Wu X, et a1. Notch signaling promotes astrogliogenesisvia direct CSL-mediated glial gene activation. J Neurosci Res.2002,69(6):848-860.
    [11]Irving EA, Barone FC, Reith AD, Hadingham SJ, Parsons AA. Differentialactivation of MAPK/ERK and p38/SAPK in neurones and glia following focalcerebral ischaemia in the rat. Brain Res Mol Brain Res.2000,771:65-75.
    [12]Zarubin T, Han J. Activation and signaling of the p38MAP kinase pathway. CellRes.2005,15(1):11-18.
    [13]Maddahi A, Edvinsson L. Cerebral ischemia induces microvascularpro-inflammatory cytokine expression via the MEK/ERK pathway. JNeuroinflammation.2010,7:14.
    [14]Carvalho H, Evelson P, Sigaud S, et al. Mitogen-activated protein kinasesmodulate H2O2-induced apoptosis in primary rat alveolar epithelial cells. J CellBiochem.2004,92(3):502-513.
    [15]Barone FC, Irving EA, Ray AM, Lee JC, Kassis S, et al. Inhibition of p38mitogen-activated protein kinase provides neuroprotection in cerebral focalischemia. Med Res Rev.2001,212:129-145.
    [16]Guo RB, Wang GF, Zhao AP, Gu J, Sun XL, Hu G, et al. Paeoniflorin protectsagainst ischemia-induced brain damages in rats via inhibiting MAPKs/NF-κB-mediated inflammatory responses. PLoS One.2012,7(11): e49701.
    [17]Wang X,Wang H,Xu L,et a1. Significant neuroprotection against isehemic braininjury by inhibition of the MEKl protein kinase in mice:exploration of potentialmechanism associated with apoptosis. J Pharmacol Exp Ther.2003,304(1):172-178.
    [18]Borsello T, Clarke PG, Hirt L, et al. A peptide inhibitor of c-JunN-terminalkinase protects against excitotoxicity and cerebral ischemia. Nat Med.2003;9(9):1180-1186.
    [19]Piao CS, Kim JB, Han PL, Lee JK. Administration of the p38MAPK inhibitorSB203580affords brain protection with a wide therapeutic window against focalischemic insult. J Neurosci Res.2003,734:537-544.
    [20]Yamaoka K, Saharinen P, Pesu M, Holt VE3rd, et al. The Janus kinases (Jaks).Genome Biol.2004,5:253.
    [21]Frank GD, Saito S, Motley ED, Sasaki T, OhbaM, Kuroki T, Inagami T, Eguchi S.Requirement of Ca(2+) and PKCdelta for Janus kinase2activation byangiotensin II: involvement of PYK2. Mol Endocrinol.2002,16:367-377.
    [22]Lee SK, Lee JO, Kim JH, Jung JH, You GY, Park SH, Kim HS. C-peptidestimulates nitrites generation via the calcium-JAK2/STAT1pathway in murinemacrophage Raw264.7cells. Life Sci.2010,86:863-868.
    [23]Aaronson DS, Horvath CM. A road map for those who don't know JAK-STAT.Science.2002,296:1653-1655.
    [24]Levy DE, Darnell JE Jr. Stats:transcriptional control and biological impact. NatRev Mol Cell Biol.2002,3:651-662.
    [25]Li WX. Canonical and non-canonical JAK-STAT signaling. Trends Cell Biol.2008,18:545-551.
    [26]Bjorbaek C, Kahn BB. Leptin signaling in the central nervous system and theperiphery. Recent Prog Horm Res.2004,59:305-331.
    [27]Tups A. Physiological models of leptin resistance. J Neuroendocrinol.2009,21:961-971.
    [28]Takagi Y, Harada J, Chiarugi A, et al. STAT1is activated in neurons afterischemia and contributes to ischemic brain injury. J Cereb Blood Flow Metab.2002,22(11):1311-1318.
    [29]Jo D, Liu D, Yao S, et al. Intracellular protein therapy with SOCS3inhibitsinflammation and apoptosis. Nat Med.2005,11(8):892-898.
    [30]Kinjyo I, Inoue H, Hamano S, et al. Loss of SOCS3in T helper cells resulted inreduced immune responses and hyperproduction of interleukin10andtransforming growth factor-beta1. J Exp Med.2006,203(4):1021-1031.
    [31]Yamashita T, Sawamoto K, Suzuki S, et al. Blockade of interleukin-6singalingaggravate ischemic cerebral damage in mice:possible involvement of STAT3activation in protection of neurons. J Neurochem.2005,94(2):459-468.
    [32]Djordjevic S, Driscoll PC. Structural insight into substrate specificity andregulatory mechanisms of phosphoinositide3-kimses. Trends Biochem Sci.2002,27:426-432.
    [33]Li BS, Ma W, Zhang L, et al. Activation of phosphatidylinositol-3kinase (PI-3K)and extracellular regulated kinases (Erk1/2) is involved in muscarinicreceptor-mediated DNA synthesis in neural progenitor cells. J Neurosci.2001,21(5):1569-1579.
    [34]Jin K, Mao XO, Del Rio Guerra G, et al. Heparin-binding epidermal growthfactor-like growth factor stimulates cell proliferation in cerebral cortical culturesthrough phosphatidylinositol3'-kinase and mitogen-activated protein kinase. JNeurosci Res.2005,81(4):497-505.
    [35]Sung SM, Jung DS, C. H. Kwon DS, et al. Hypoxia/reoxygenation stimulatesproliferation through PKC-dependent activation of ERK and Akt in mouse neuralprogenitor cells. Neurochem Res.2007,32(11):1932-1939.
    [36]Ostman A and Bohmer FD. Regulation of receptor tyrosine kinase signaling byprotein tyrosine phosphatases. Trends Cell Biol.2001,11(6):258-266.
    [37]Wu DN, Pei DS, Wang Q, et al. Down-regulation of PTEN by sodiumorthovandate inhibits ASK1activation via PI3-K/Akt during cerebral ischemia inrat hippocampal. Neurosci Lett.2006,404:98-102.
    [38]Kitagawa H, Warita H, Sasaki C, et a1. Immnoreactive Akt, PI3K and ERKprotein kinase expression in ischemic rat brain. Neurosci Lett.1999,274(1):45-48.
    [39]Ouyang YB, Tan Y, Comb M. Survival-and death-promoting events after transentcerebral ischemia:phosphorylation of Akt, release of cytochmme C andActivation of caspase-like proteases. J Cereb Blood Flow Metab.1999,19:1126-1135.
    [40]Sasaki CY, Barberi TJ, Ghosh P, Longo DL. Phosphorylation of RelA/p65onserine536defines an IκBα-independent NF-κB pathway. J Biol Chem.2005,280:34538-34547.
    [41]Kunz A, Abe T, Hochrainer K, Shimamura M, Anrather J, et al. Nuclear factor κBactivation and postischemic inflammation are suppressed in CD36-null mice aftermiddle cerebral artery occlusion. J Neurosci.2008,28:1649-1658.
    [42]Widera D, Mikenberg I, Kaltschmidt B, et al. Potential role of NF-kappaB inadult neural stem cells: the underrated steersman. Int J Dev Neurosci.2006,24(2-3):91-102.
    [43]Tounai H, Hayakawa N, Kato H, Araki T. Immunohistochemical study ondistribution of NF-kappaB and p53in gerbil hippocampus after transient cerebralischemia: Effect of pitavastatin. Metab Brain Dis.2007,22(1):89-104.
    [44]Ridder DA, Schwaninger M. NF-κB signaling in cerebral ischemia. Neuroscience.2009,158(3):995-1006.
    [45]Cui Rui. NF-κB and injury of brain ischemia/ischemia-reperfusion. Foreign MedSci (AnesthesiolResuscitation).2002,23(5):264-266.
    [46]Clemens JA, Stephenson DT, Dixon EP, et al. Global cerebral ischemia activatesnuclear factor-κB prior to evidence of DNA fragmentation. Brain ResMol BrainRes.1997,48(2):187-196.
    [47]Culmsee C, Mattson M P. P53in neuronal apoptosis. Biochem Biophys ResCommun.2005,331(3):761-770.
    [48]Lu Yu, Chu Chen, Liang-Fen Wang, Jun-Rong Du, et al. Neuroprotective Effectof Kaempferol Glycosides against Brain Injury and Neuroinflammation byInhibiting the Activation of NF-κB and STAT3in Transient Focal Stroke. PLoSOne.2013;8(2): e55839.
    [49]Nurmi A, Lindsberg PJ, Koistinaho M, Zhang W, Juettler E, Weih F, Frank N, etal. Nuclear factor-κB contributes to infarction after permanent focal ischemia.Stroke.2004,35:987-991.
    [50]Nurmi A, Vartiainen N, Pihlaja R. Pyrrolidine dithiocarbamate inhibitstranslocation of nuclear factor kappa-B in neurons and protects against brainischemia with a wide therapeutic time window. Neurochem.2004,91:755-765.
    [51]Sironi L, Banfi C, Brioschi M, Gelosa P, Guerrini U, Nobili E, Gianella A,Paoletti R, Tremoli E, Cimino M. Activation of NF-κB and ERK1/2afterpermanent focal ischemia is abolished by simvastatin treatment. Neurobiol Dis.2006,22:445-451.
    [52]Zingarelli B, Hake PW, Mangeshkar P, et al. Diverse cardioprotective signalingmechanisms of peroxisome proliferator-activated receptor-gamma ligands,15-deoxy-Delta12,14-prostaglandin J2and ciglitazone,in reperfusion injury:roleof nuclear factor-kappaB, heat shock factor1, and Akt. Shock.2007,28(5):554-563.
    [53]Gutierrez H, Hale VA, Dolcet X, et al. NF-kappaB signalling regulates thegrowth of neural processes in the developing PNS and CNS. Development.2005,132(7):1713-1726.
    [54]Bilis A, Corbetta S, Cioce A, et a1. Differential distribution of Racl and Rac3GTPases in the developing mouse brain:implications for a role of Rac3inPurkinje cell differentiation. Eur J Neuresci.2003,18:2417.
    [55]Phee H, Abraham RT, Weiss A. Dynamic recruitment of PSK1to theimmunological synapse is mediated by PIX in dependently of SLP-76and Vav1.Nat Immunol.2005,6:608.
    [56]Doran JD, Liu X, Taslimi P, et al. New insights into the structure-functionrelation ships of Rho-associated kinase: a thermodynamic and hydrodynamicstudy of the dimertom on omer t ran sit ion and it s kineti c im plicat ions.Biochem J.2004,384(Pt2):255-262.
    [57]Shibuya M, Hirai S, Seto M, et al. Effects of fasudilinacute ischemic stroke:results of a prospective placebo-controlled double-blind trial. J Neurol Sci.2005,15(1/2):31-39.
    [58]Yagita Y, Kitagawa K, Sasaki T, et al. Rho-kinase activation in endothelial cellscontribute to expansion of infarction after focal cerebral ischemia. J Neurosci Res.200,85:2460.
    [59]Feske SK, Sorond FA,Henderson GV, et al. Rho-kinase activity is elevated inpatients after acute ischemic stroke. Stroke.2005,36:474。
    [60]Satoh S, Toshima Y, Ikegaki I, et al. Wide therapeutic time widow for fasudilneuroprotection against ischemia-induced delayed neuronal death in gerbils.Brain Res.1128(1):175-180.
    [61]Rikitake Y, Kim HH, huang Z, et al. Inhibition of Rho-kinase (RCOK) leads toincreased cerebral blood flow and stroke protection. Stroke.2005,36:2251.
    [62]Ageta H, Tsuchida K. Multifunctional roles of activins in the brain. Vitam Horm.2011,85:185-206.
    [63]Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane tothe nucleus. Cell.2003,113(6):685-700.
    [64]Green DR. Apoptotic pathways: ten minutes to dead. Cell.2005,121(5):671-674.
    [65]Tsuchida K, Nakatani M, Uezumi A, et al. Signal transduction pathway throughactivin receptors as a therapeutic target of musculoskeletal diseases and cancer.Endocr J.2008,55(1):11-21.
    [66]Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-beta signaltransduction. J Cell Sci.2001,114(Pt24):4359-4369.
    [67]Harrison CA, Gray PC, Vale WW, et al. Antagonists of activin signaling:mechanisms and potential biological applications. Trends Endocrinol Metab.2005,16(2):73-78.
    [68]Tong JL, Nie F, Ran ZH, et al. Epigallocatechin gallate induces apoptosis inhuman hepatocellular carcinoma HepG2cells via TGF/Smad signaling pathway.Zhonghua Zhong Liu Za Zhi.2009,31(9):646-650.
    [69]Lonn P, Moren A, Raja E, et al. Regulating the stability of TGFβ receptors andSmads. Cell Res.2009,19(1):21-35.
    [70]Mukerji SS, Rainey RN, Rhodes JL, et al. Delayed activin A administrationattenuates tissue death after transient focal cerebral ischemia and is associatedwith decreased stress-responsive kinase activation. J Neurochem.2009.111(5):1138-1148.
    [71]Shoji-Kasai Y, Ageta H, Hasegawa Y, et al. Activin increases the number ofsynaptic contacts and the length of dendritic spine necks by modulating spinalactin dynamics. J Cell Sci.2007,120(21):3830-3837.
    [72]Chen W, Woodruff TK, Mayo KE. Activin A-induced HepG2liver cell apoptosis:involvement of activin receptors and smad proteins. Endocrinology.2000,141(3):1263-1272.
    [73]He JT, Mang J, Mei CL, Yang L, Xu ZH, et al. Neuroprotective effects ofexokgenous Activin A on oxygen-glucose deprivation in PC12cells. Molecules.2001,17:315-327.
    [74]Siu YT, Jin DY. CREB-a real culprit in oncogenesis. FEBS J.2007,274(13):3224-3232.
    [75]Hao Y, Creson T, Zhang L, et al. Mood stabilizer valproate promotes ERKpathway-dependent cortical neuronal growth and neurogenesis. J Neurosci.2004,24(29):6590-6599.
    [76]Zhu DY, Lau L, Liu SH, et al. Activation of cAMP-response-element-bindingprotein(CREB) after focal cerebral ischemia stimulates neurogenesis inthe adult dentate yrus. Proc Natl Acad Sci USA.2004,101:9453-9457.
    [77]Jin K, Mao XO, Simon RP, et al. Cyclic AMP responseelement bondingProtein(CREB)and CREB binding Protein(CBP) in global cerebralischemia in ratbrain. Mol Neurosci.2001,16(1):49-56.
    [78]Kopan R, Ilagan MX. Gamma-secretase: proteasome of the membrane?. Nat RevMol Cell Biol.2004,5:499-504.
    [79]Takeo S, Niimura M. A possible mechanism for improvement by acognition-enhancer nefiracetam of spatial memory function andc AMP-mediatedsignal transduction system insustained cerebral ischemiain rats. Br J Pharmacol.2003,138:642-654.
    [80]Watanabe T, Zhang N, Liu M, et al. Cilostazol protects against brain white matterdamage and cognitive impairment in a rat model of chronic cerebralhypoperfusion. Stroke.2006;37(6):1539-1545.
    [81]Gangloff M, Weber AN, Gibbard RJ, et al. Evolutionary relationships, butfunctional differences,between the Drosophila and human Toll-like receptorfamilies. Biochem Soc Trans,2003,31:659-663.
    [82]Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors. Nat Immunol.2010,11:373-384.
    [83]Cao CX, Yang QW, Lv FL, Cui J, Fu HB, Wang JZ. Reduced cerebralischemia-reperfusion injury in Toll-like receptor4deficient mice. BiochemBiophys Res Commun.2007,353:509-514.
    [84]Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I. Toll-likereceptor4is involved in brain damage and inflammation after experimentalstroke.Circulation.2007,115:1599-1608.
    [85]Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, Jensen FE,Rosenberg PA, Volpe JJ, Vartanian T. The toll-like receptor TLR4is necessaryfor lipopolysaccharide-induced oligodendrocyte injury in the CNS. JNeurosci.2002,22:2478-2486.
    [86]Yang QW, Li JC, Lu FL, Wen AQ, Xiang J, Zhang LL, Huang ZY, Wang JZ.Upregulated expression of toll-like receptor4in monocytes correlates withseverity of acute cerebral infarction. J Cereb Blood Flow Metab.2008,28:1588-1596.
    [87]Tang SC, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, Lathia JD,Siler DA, Chigurupati S, Ouyang X, Magnus T, Camandola S, Mattson MP.Pivotal role for neuronal Toll-like receptors in ischemic brain injury andfunctional deficits. Proc Natl Acad Sci USA.2007,104:13798-13803.
    [88]Le TT, Conley KW, Brown NL. Jagged1is necessary for normal mouse lensformation. Dev Biol.2009,328:118-126.
    [89]Li H, Yu B, Zhang Y, Pan Z, Xu W, Li H. Jagged1protein enhances thedifferentiation of mesenchymal stem cells into cardiomyocytes. Biochem BiophysRes Commun.2006,341:320-325.
    [90]Zong Y, Panikkar A, Xu J, Antoniou A, Raynaud P, Lemaigre F, et al. Notchsignaling controls liver development by regulating biliary differentiation.Development.2009,136:1727-1739.
    [91]MartinezArias A, Zecchini V. Brennan K. CSL-indepandent Notch signaling:acheckpoint in cell fate decisions during development?. Curr Opin Genet Dev.2002,12(5):524-533.
    [92]LBray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev MolCell Biol.2006,7:678-689.
    [93]Logeat F, Bessia C, Brou C, Lebail O, Jarriault S, Seidah NG, Isra l A. TheNotch1receptor is cleaved constitutively by a furin-like convertase. Proc NatlAcad Sci USA.1998,95:8108-8112.
    [94]D’Souza B, Meloty-Kapella L, Weinmaster G. Canonical and non-canonicalNotch ligands. Curr Top Dev Biol.2010,92:73-129.
    [95]Ladi E, Nichols J, Ge W, Miyamoto A, Yao C, Yang LT, Boulter J, Sun Y,Kintner C, Weinmaster G. The divergent DSL ligand Dll3does not activateNotch signaling but cell autonomously attenuates signaling induced by other DSLligands. J. Cell Biol.2005,170,983-992.
    [96]Pitsouli C, Delidakis C. The interplay between DSL proteins and ubiquitin ligasesin Notch signaling. Development.2005,132(18):4041-4450.
    [97]Wang L, Zhang Z, Wang Y, Zhang R, Chopp M. Treatment of stroke witherythropoietin enhances neurogenesis and angiogenesis and improvesneurological function in rats. Stroke.2004,35:1732-1737.
    [98]Stump G, Durrer A, Klein AL, et al. Notch1and its ligands Delta-like and Jaggedare expressed and active in distinct cell populations in the postnatal mouse brain.Mech Dev.2002,114(1-2):153-159.
    [99]Chunli Mei, Jinting He, JingMang, Guihua Xu, et al. NGF combined with OGDinduces neural ischemia tolerance in PC12cells. AJBR.2011,5(10):315-320.
    [100] Kumar MR, Bhat, Nityanand Maddodi. Transcriptional regulation of humanMAP2gene in melanoma: role of neuronal bHLH factors and Notch1signaling.Nucleic acids research.2006,34(13):3819–3832.
    [101] Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral arteryocclusion without craniectomy in rats. Stroke.1989,20(1):84-91.
    [102] Tischler AS. Chromaffin cells as models of endocrine cells and neurons. AnnNY Acad Sci.2002,971:366-370
    [103] Damian C, Genetos, Whitney K. Oxygen tension modulates neurite outgrowthin PC12cells through a mechanism involving HIF and VEGF. J Mol Neurosci.2010,40:360-366.
    [104] Shafer TJ, Atchison WD. Transmitter, ion channel and receptor properties ofpheochromocytoma (PC12) cells: a model for neurotoxicological studies.Neurotoxicology.1991,12:473-492.
    [105] Abu RS, Trembovler V, Shohami E. A tissue culture ischemic device to studyeicosanoid release by pheochromocytoma PC12cultures. J Neurosci Methods.1993,50:197-203.
    [106] Hillion JA, Takahashi K, Maric D, Ruetzler CA. Development of an ischemictolerance model in a PC12cell line. J Cereb Blood Flow Metab.2005,25:154-162.
    [107] Briones TL, Wadowska M, et al. Amelioration of cognitive impairment andchanges in microtubule-associated protein2after transient global cerebralischemic are influenced by complex environment experience. Behav Brain Res,2006,168(2):261-271.
    [108] Kitagawa K, Mastsumoto M, Niinobe M, et al. Microtubuleassociated protein2as a sensit ive marker f or cerebral isch emia damage: immunohist ochemical invest igat ion of dendritic damage.Neurosci.1989,31:401.
    [109] Mayer U, Jürgens G. Microtubule cytoskeleton: a track record. Curr Opin PlantBiol.2002,5:494-501.
    [110] Dehmelt L, Halpain S. The MAP2/Tau family of microtubule-associatedproteins. Genome Biol.2005,6(1):204.
    [111] Kaushal V, Schlichter LC. Mechanisms of microglia-mediated neurotoxicity ina new model of the stroke penumbra. J Neurosci.2008,28(9):2221-30.
    [112] Li Y, Chopp M, Jiang M, et al. Induction of DNA fragment at ion after10to120minutes of focal cerebral ischemia in rats. Stroke.1995,26:1252-1257.
    [113] Dennis C. Small RNAs: the genome’s guiding hand. Nature.2002,420(6917):732.
    [114] Silva JM, Hammond SM, Hannon GJ. RNA interference: a promising approachto antiviral therapy. Trends Mol Med.2002,8(11):505-508.
    [115] Bikkavilli RK, Feigin ME, Malbon CC. p38mitogen-activated protein kinaseregulates canonical Wnt-β-caten in signaling by inactivation of GSK3. J cell sci,2008,121(21):3598-3607.
    [116] Khwaja FS, Quann EJ, Pattabiraman N, et al. Carprofen induction of p75NTR-dependent apoptosis via the p38mitogen-activated protein kinase pathway inprostate cancer cells. Mol Cancer Ther.2008,7(11):3539-3545.
    [117] Ma L, Wang HY. Mitogen-activated protein kinase p38regulates the Wnt/cyclicGMP/Ca2+non-canonical pathway. J Biol Chem.2007,282(39):28980-28990.
    [118] Brummelkamp TR, Bernards R, Agami R. A system for stable expression ofshort interfering RNAs in mammalian cells. Science.2002,296(5567):550-553.
    [119] Hall IM, Shankaranaravana GD, Noma K, et al. Establishment and maintenanceof a heterochromatin domain. Science.2002,297(5590):2232-2237.
    [120] Heinonen JE, Smith CI, Nore BF. Silencing of Bruton's tyrosine kinase (Btk)using short interfering RNA duplexes (siRNA). FEBS Lett.2002,527(1-3):274-278.
    [121] Halder SK, Rachakonda G, deane NG, Datta PK. Smad7induces hepaticmetastasis in colorectal cancer. Br J Cancer.2008,99:957-965.
    [122] Huang M, Page C, Reynolds, et al. Constitutive activation of Med19oncogeneproduct in human ovarian cancinoma cells. Cynecol Oncol.2000,79(1):67-73.
    [123] Wilda M, Page C, Reynolds RK, et al. Killing of leukemic cells with aBCR/ABL fusion gen by RNA interference. Oncogene.2002,21(37):5716-5724.
    [124] Walker L, Carlson A, Tan-Pertel HT, et al. The notch receptor and its ligandsare selectively expressed during hematopoietic development in the mouse. StemCells.2001,19(6):543-552.
    [125] Seifert T, Bauer J, Weissert R, et al. Notch1and its ligand Jagged1are presentin remyelination in a T-cell-and antibody-mediated model of inflammatorydemyelination. Acta Neuropathol.2007,113(2):195-203.
    [126] Tanigaki K, Nogaki F, Takahashi J, et al. Notch1and Notch3instructivelyrestrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate.Neuron.2001,29(1):45-55.
    [127] John GR, Shankar SL, Shafit-Zagardo B, et al. Multiple sclerosis:re-expressionof a developmental pathway that restricts oligodendrocyte maturation. Nat Med.2002,8(10):1115-1121.
    [128] Mclalughlink A, Ronesm S, Mercolam, et al. Notch regulates cell fate indeveloping pronephros. Dev Bio.20l2,227:567-580.
    [129] Oya S, Yoshikawa G, Takai K, et al. Attenuation of Notch signaling promotesthe differentiation of neural progenitors into neurons in hippocampal CA1region after ischemic injury. Neuroscience.2009,158(2):683-692.
    [130] Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, PoserSW, Rueger MA, Bae SK, Kittappa R, McKay RD. Notch signalling regulatesstem cell numbers in vitro and in vivo. Nature.2006,442(7104):823-826.
    [131] Trindade A, Kumar S R, Scehnet J S, et al. Overexpression of delta-like4induces arterialization and attenuates vessel formation in developing mouseembryos. Blood.2008,112(5):1720-1729.
    [132] Oya S, Yoshikawa G, Takai K, Tanaka J, Higashiyama S, Saito N,Kirino T,Kawahara N. Region-specific proliferative response of neural progenitors toexogenous stimulation by growth factors following ischemia. Neuroreport.2008,19:805-809.
    [133] Selkoe D, Kopan R. Notch and presenilin: regulated intramembrane proteolysislinks development and degeneration. Annu Rev Neurosci.2003,26:565-597.
    [134] Bray SJ. Notch signaling:A simple pathway becomes complex. Nat Rev MolCell Biol.2006,7(9):678-689
    [135] Arumungam TV, Chan SL, Jo DG, et al. Gamma-secretase-mediated Notchsignaling worsens brain damage and functional outcome in ischemic stroke. NatMed,2006,12(6):621-623.
    [136] Kawai T, Takagi N, Nakahara M, et al. Changes in the expression of Hes5andMashl mRNA in the adult rat dentate gyus after transient forebrain ischemia.Neurosci Lett,2005,380(1-2):17-20.
    [137] Androutsellis-Theotokis A, Leker RR, Soldner F, et al. Notch signalingregulates stem cell numbers in vitro and in vivo. Nature,2006,442(7104):823-826.
    [138] Yan B, Raben N, Plotz P. The human acid-glucosidase gene is a novel target ofthe notch-1/hes-1signaling pathway. J Biol Chem.2002.277:29760-29764.
    [139] Huang G, Cao X, Zhang X, Chang H, Yang Y, Du W, Wilson JX. Effects ofsoybean isoflavone on the notch signal pathway of the brain in rats withcerebral ischemia. Neuroscience.1996,70(4):1013-1024
    [140] De Strooper B, Annaert W, Cupers P, et al. A presenilin-1-dependentgamma-secretase-like protease mediates release of Notch intracellular domain.Nature.1999,398(6727):518-522.
    [141] Mason HA, Rakowiecki SM, Gridley T, et a1. Loss of notch activity in thedeveloping central nervous system leads to increased cell death. Dev Neurosci.2006,28(1-2):49-57.
    [142] Liu X, Wang CA, Chen YZ. Nongenomic effect of glucocorticoid on the releaseof arginine vasopressin from hypothalamic slices in rats. Neuroendocrinology.1995,62(6):628-633.
    [143] Ferrer I, Planas AM. Signaling of cell death and cell survival following focalcerebral ischemia:life and death struggle in the penumbral. J NeuroPathol ExpNeurol.2003,62(4):329-339.
    [144] Jingting He. The mechanisms and effects of Notch signalling pathway onischemic brain injury[D]. China-Japan Union Hospital, Jilin University,2012.
    [145] Bratton SB, MacFarlane M, Cain K, et al. Protein complexes activatedistinctcaspase cascades in death receptorand stresss-induced apoptosis. ExpCell Res.2000,256(1):27-33.
    [146] Fan TJ, Han LH, Cong RS, et al. Caspase Family Proteases and Apoptosis. ActaBiochim Biophys Sin.2005,37(11):719-727.
    [147] Boatright KM, Salvesen GS. Caspase activation. Biochem Sex Symp.2003,70(3):233-242.
    [148] Reed JC. Apoptosis-based therapies. Nat Rev Drug Discov.2002,1(2):111-121.
    [149] Birnbaum MJ, Clem RJ, Miller LK. An apoptosis inhibiting gene from anuclear polyhedrosis virus encoding a polypeptide with Cys/His sequencemotifs. J Virol.1994,68:2521-2528.
    [150] Deveraux QL, Reed JC. IAP family proteins-suppressors of apoptosis. GeneDevelop.1999,13(3):239-252.
    [151] Hui Peng, Yunlong Huang, Zhiyuan Duan, Nathan Erdmann, Dongsheng Xu, etal. Cellular IAP1regulates TRAIL-induced apoptosis in human fetal corticalneural progenitor cells. Neuroscience Research.2005,82(3):295-305.