中国汉族人群SLC6A11和APOE基因多态性与耐药性癫痫的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:癫痫是最常见而且严重的慢性神经系统疾病之一,目前主要的治疗手段是服用抗癫痫药物。尽管近年来新的抗癫痫药物在癫痫治疗方面已取得长足的进步,但迄今仍有大约30%的癫痫患者对抗癫痫药物耐药。耐药性癫痫已经成为危害公共健康的一个主要疾病,研究表明耐药性癫痫的死亡率比一般的癫痫患者高4-7倍。
     GABA是中枢神经系统中最主要的抑制性神经递质,在神经网络的兴奋性调节中起关键作用,与癫痫的发生发展密切相关。GABA转运体(GAT)是一种主要存在于神经元和神经胶质细胞膜上的糖蛋白,参与GABA在中枢神经系统的转运与释放过程。一项在韩国人群中的研究发现,编码GAT3的SLC6A11基因与癫痫耐药性之间存在关联性。而在中国汉族人群中SLC6A11基因与癫痫耐药性之间的关系尚无相关研究报道。载脂蛋白E(APOE)是中枢神经系统中重要的脂质转运分子,在神经组织的损伤修复、轴索生长和突触形成中起重要作用。有研究表明APOE基因多态性与颞叶耐药癫痫有关,而APOE基因多态性是否与所有不同类型的耐药性癫痫相关尚不明确。因此针对中国汉族人群SLC6A11和APOE基因多态性与耐药性癫痫相关性的研究十分有必要。
     研究目的:分析编码GAT3的SLC6A11基因和编码载脂蛋白E的APOE基因的tagSNP的分型数据,探索中国汉族人群SLC6A11和APOE基因多态性与耐药性癫痫的相关性。
     研究方法:本研究采用基于人群的病例——对照研究设计。
     1、根据入选标准和排除标准收集2010年8月至2012年10月期间在湘雅医院门诊的480例癫痫患者(207例耐药组,273例敏感组)。
     2、酚氯仿法提取全血DNA。
     3、从国际人类基因组单体型图计划数据库在SLC6A11基因和APOE基因相应区段选取16个tagSNP。对研究对象应用Illumina Golden Gate定制芯片(X48-384)对所选的tagSNP进行基因型鉴定。
     4、拟和优度X2检验(Goodness-of-fit Chi-square test)分析对照组基因型频率的分布是否符合H-W平衡。
     5、分析单位点基因型频率的关联,评估单位点与耐药性癫痫的相关性。
     6、分析单体型的关联,评估单体型与耐药性癫痫发生风险的相关性。
     研究结果:本研究共检测了SLC6A11基因的14个tagSNP位点和APOE基因的2个tagSNP位点,其中SLC6A11基因的1个位点因染色体结构性变异导致聚类不好不适于本基因芯片检测方法。
     1、我们所研究的15个位点多态分布在癫痫患者人群中均符合Hardy-Weinberg平衡。
     2、敏感组与耐药组之间SLC6A11基因13个SNP位点的基因型频率无显著性差异(P>0.05),SLC6A11基因rs2304725和rsl881354之间存在强连锁,未发现具有统计学意义的单倍型。
     3、敏感组与耐药组之间APOE基因2个SNP位点的基因型频率无显著性差异(P>0.05)。
     结论:
     1、SLC6A11基因的13个候选SNP多态性可能与中国汉族人群的癫痫耐药性无关。
     2、APOE基因的2个候选SNP多态性可能与中国汉族人群的癫痫耐药性无关。
     3、SLC6A11基因rs2304725和rs1881354之间存在强连锁。
Background:Epilepsy is one of the most common and serious chronic neurological diseases in human. Antiepileptic drugs (AEDs) is the main approach to the control of epileptic seizures. Although great progress has been made in drug treatment of epilepsy, but there are still about30%of epilepsy patients resistant to antiepileptic drugs. Drug-resistant epilepsy has become a big problem of public health, the mortality rate of drug-resistant epilepsy is4to7times higher than common epilepsy.
     GABA is one of the main inhibitory neurotransmitters in the central nervous system, plays a key role in mediation of the neural network excitatory and is closely related to epilepsy development. GABA transporter is a glycoprotein mainly located in neurons and glial cell membrane, participate in the transportation and release process of GABA in the central nervous system. A study in Korean found positive correlations between the SLC6A11rs2272400and drug resistant epilepsy. But there is no relevant reports about the correlations between the SLC6Alland drug resistant epilepsy in Chinese Han population. Apo lipoprotein E (APOE) is an important lipid transport molecules in central nervous system, plays a key role in axonal growth, synapse formation, impaired nerve tissue repair. Studies showed that APOE polymorphism was probably associated with drug resistant temporal lobe epilepsy. However, whether APOE polymorphism is associated with all types of drug resistant epilepsy is still unknown. So it is necessary to study the relationship between SLC6A11and APOE gene polymorphism and drug-resistant epilepsy in Chinese Han population.
     Objective:To investigate the association between the SLC6A11and APOE polymorphism and drug resistant epilepsy.
     Material and Methods:A population-based case-control design was applied in our study.
     1. The study consisted of480outpatients diagnosed with epilepsy who visited the Xiangya hospital central-south university from August2010to October2012.273patients were recruited in drug-responsive group and207patients were recruited in drug-resistant group.
     2. Genomic DNA was extracted from peripheral blood leukocytes of each subject by Phenol Chloroform Method.
     3.16Tag single nucleotide polymorphisms (tagSNP) in SLC6A11and APOE gene were selected through hapmap and National Center for Biotechnology Information (NCBI) databases. All the tagSNP were genotyped by VeraCode GoldenGate Genotyping Assay system and the data were analyzed by SPSS21.
     4. To analysis the genotype frequency distribution of the control group whether meets Hardy-Weinberg equilibrium by Goodness-of-fit Chi-square test.
     5. All the data of15tagSNP were analyzed by the association study.
     Results:
     1. We detected16tagSNPs of SLC6A11and APOE genes, one SNPs which belongs to SLC6A11are not suitable for the gene chip detection for clusting caused by chromosome structural variation.
     2. The total15SNPs distribution in the population of patients with epilepsy accord with Hardy-Weinberg equilibrium
     3. Genotypes and alleles distributions in the13SNPs of SLC6A11showed no statistically difference between the drug-responsive and drug-resistant groups (P>0.05). Strong linkage was found between rs2304725and rs1881354. There is no statistically significant difference haplotype between the drug-responsive and drug-resistant groups (P>0.05).
     4. Genotypes and alleles distributions in the2SNPs of APOE showed no statistically difference between the drug-responsive and drug-resistant groups(P>0.05).
     Conclusion:
     1. The13SNPs of SLC6A11gene may not be related to drug-resistant epilepsy in Chinese Han population.
     2. The2SNPs of APOE gene may not be related to drug-resistant epilepsy in Chinese Han population.
     3. Strong linkage was found between rs2304725and rs1881354in SLC6A11gene.
引文
[1]Duncan JS,Sander JW, Sisodiya SM, Walker MC. Adult epilepsy. Lancet 2006;367:1087-100.
    [2]Czapinski P, Jedrzejczak J, Kozik A, Sobaniec W, Wendorff J, Grygolec P. [Open multicenter study of the effectiveness and safety of gabitril in epileptic patients with partial seizures]. Neurol Neurochir Pol 2000;34 Suppl 7:35-53.
    [3]pKwan P, Brodie MJ. Early identification of refactory epilepsy. N Engl J Med 2000; 342,314-319.
    [4][Kwan P, Schachter S C, Brodie M J. Drug-resistant epilepsy [J]. New England Journal of Medicine,2011,365(10):919-926.
    [5]Noebels J L, Avoli M, Rogawski M A, et al. Drug Resistance[J].2012.
    [6]唐治华,刘国卿.γ-氨基丁酸转运体与癫痫[J].生理科学进展,2005,36(2):148-151.
    [7]Durkin M M, Smith K E, Borden L A, et al. Localization of messenger RNAs encoding three GAB A transporters in rat brain:an in situ hybridization study [J]. Molecular brain research,1995,33(1):7-21.
    [8]During M J, Ryder K M, Spencer D D. Hippocampal GABA transporter function in temporal-lobe epilepsy[J].1995.
    [9]Kim D U, Kim M K, Cho Y W, et al. Association of a synonymous GAT3 polymorphism with antiepileptic drug pharmacoresistance[J]. Journal of human genetics,2011,56(9):640-646.
    [10]Rogawski M A, Johnson M R. Intrinsic severity as a determinant of antiepileptic drug refractoriness[J]. Epilepsy Currents,2008,8(5):127-130.
    [11]张岱威.载脂蛋白E与癫痫的关系[J].医学分子生物学杂志,2010,7(6).
    [12]吕瑞娟.ApoE, CALHM1基因多态性与颞叶癫痫的关联研究中文版儿童癫痫影响量表的信度与效度分析[D].中国协和医科大学,2010.
    [13]王佳.ApoE∈4等位基因与难治性颞叶癫痫患者记忆表现的关系[J].中国医疗前沿,2007,9:046.
    [14]Westmark C J, Westmark P R, Beard A M, et al. Seizure susceptibility and mortality in mice that over-express amyloid precursor protein[J]. International journal of clinical and experimental pathology,2008,1(2):157.
    [15]Fu Y, Lv R, Jin L, et al. Association of apolipoprotein E polymorphisms with temporal lobe epilepsy in a Chinese Han population[J]. Epilepsy research,2010, 91(2):253-259.
    [16]Sports'D, Sertic J, Henigsberg N, et al. Association of refractory complex partial seizures with a polymorphism of ApoE genotype[J]. Journal of cellular and molecular medicine,2005,9(3):698-703.
    [17]Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res.2005 Feb; 15(2):97-98.
    [18]Li Z, Zhang Z, He Z, Tang W, Li T, Zeng Z, He L, Shi Y. A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers:update of the SHEsis (http://analysis. bio-x.cn). Cell Res. 2009 Apr; 19(4):519-23."
    [19]Kwan P, Arzimanoglou A, Berg A T, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies [J]. Epilepsia,2010,51(6):1069-1077.
    [20]Meldrum B S, Rogawski M A. Molecular targets for antiepileptic drug development J]. Neurotherapeutics,2007,4(1):18-61.
    [21]Beck H. Plasticity of antiepileptic drug targets[J]. Epilepsia,2007,48(sl): 14-18.
    [22]Ellerkmann R K, Remy S, Chen J, et al. Molecular and functional changes in voltage-dependent na+channels following pilocarpine-induced status epilepticus in rat dentate granule cells[J]. Neuroscience,2003,119(2):323-333.
    [23]Isom L L. β subunits:players in neuronal hyperexcitability?[J]. Sodium Channels and Neuronal Hyperexcitability,2002:124.
    [24]Bethmann K, Fritschy JM, Brandt C, Loscher W. Antiepileptic drug resistant rats differ from drug responsive rats in GAB AA receptor subunit expression in a model of temporal lobe epilepsy. Neurobiol Dis.2008; 31:169-187.
    [25]Van Vliet E A, Aronica E, Redeker S, et al. Decreased expression of synaptic vesicle protein 2A, the binding site for levetiracetam, during epileptogenesis and chronic epilepsy[J]. Epilepsia,2009,50(3):422-433.
    [26]Kwan P, Brodie M J. Potential role of drug transporters in the pathogenesis of medically intractable epilepsy[J]. Epilepsia,2005,46(2):224-235.
    [27]Aronica E, Gorter J A, Ramkema M, et al. Expression and cellular distribution of multidrug resistance-related proteins in the hippocampus of patients with mesial temporal lobe epilepsy [J]. Epilepsia,2004,45(5):441-451.
    [28]Sisodiya S M, Lin W R, Harding B N, et al. Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy [J]. Brain,2002,125(1):22-31.
    [29]Awasthi S, Hallene K L, Fazio V, et al. RLIP76, a non-ABC transporter, and drug resistance in epilepsy[J]. BMC neuroscience,2005,6(1):61.
    [30]Brandt C, Bethmann K, Gastens A M, et al. The multidrug transporter hypothesis of drug resistance in epilepsy:Proof-of-principle in a rat model of temporal lobe epilepsy[J]. Neurobiology of disease,2006,24(1):202.
    [31]Eisenblatter T, Huwel S, Galla H J. Characterisation of the brain multidrug resistance protein (BMDP/ABCG2/BCRP) expressed at the blood-brain barrier[J]. Brain research,2003,971(2):221-231.
    [32]Sillanpaa M, Schmidt D. Natural history of treated childhood-onset epilepsy: prospective, long-term population-based study[J]. Brain,2006,129(3):617-624.
    [33]Sillanpaa M, Schmidt D. Early seizure frequency and aetiology predict long-term medical outcome in childhood-onset epilepsy[J]. Brain,2009,132(4): 989-998.
    [34]Hitiris N, Mohanraj R, Norrie J, et al. Predictors of pharmacoresistant epilepsy[J]. Epilepsy research,2007,75(2):192-196.
    [35]Sillanpaa M, Schmidt D. Seizure clustering during drug treatment affects seizure outcome and mortality of childhood-onset epilepsy[J]. Brain,2008, 131(4):938-944.
    [36]Wang L, Weinshilboum RM. Pharmacogenomics:candidate gene identification, functional validation and mechanisms. Human Molecular Genetics,2008,17 (R2):R174-R179.
    [37]Dallas S, Miller DS, Bendayan R. Multidrug resistance-associated proteins: expression and function in the central nervous system. Pharmacol Rev 2006; 58,140-161.
    [38]Kwan P, Wong V, Ng PW, Lui CH, Sin NC, Poon WS, et al. Gene-wide tagging study of association between ABCB1 polymorphisms and multidrug resistance in epilepsy in Han Chinese. Pharmacogenomics 2009; 10,723-732.
    [39]Hung CC, Chen CC, Lin CJ, Liou HH. Functional evaluation of polymorphisms in the human ABCB1 gene and the impact on clinical responses of antiepileptic drugs. Pharmacogenet Genomics 2008; 18,390-402.
    [40]Seo T, Ishitsu T, Ueda N, Nakada N, Yurube K, Ueda K, et al. ABCB1 polymorphisms influence the response to antiepileptic drugs in Japanese epilepsy patients. Pharmacogenomics 2006; 7,551-561.
    [41]Leschziner GD, Andrew T, Leach JP, Chadwick D, Coffey AJ, Balding DJ, et al. Common ABCB1 polymorphisms are not associated with multidrug resistance in epilepsy using a gene-wide tagging approach. Pharmacogenet Genomics 2007; 17,217-220.
    [42]Bournissen F G, Moretti M E, Juurlink D N, et al. Polymorphism of the MDR1/ABCB1 C3435T drug-transporter and resistance to anticonvulsant drugs:A meta-analysis[J]. Epilepsia,2009,50(4):898-903.
    [43]Haerian B S, Lim K S, Tan C T, et al. Association of ABCB1 gene polymorphisms and their haplotypes with response to antiepileptic drugs:a systematic review and meta-analysis[J]. Pharmacogenomics,2011,12(5): 713-725.
    [44]Ufer M, Mosyagin I, Muhle H, Jacobsen T, Haenisch S, Hasler R, et al. Non-response to antiepileptic pharmacotherapy is associated with the ABCC2-24C>T polymorphism in young and adult. Pharmacogenet Genomics 2009; 19, 353-362.
    [45]Kim DW, Lee SK, Chu K, Jang IJ, Yu KS, Cho JY, Kim S J. Lack of association between ABCB1, ABCG2, and ABCC2 genetic polymorphisms and multidrug resistance in partial epilepsy. Epilepsy Res 2009; 84,86-90.
    [46]Kumari R, Lakhan R, Kalita J, Misra UK, Mittal B. Association of alpha subunit of GABAA receptor subtype gene polymorphisms with epilepsy susceptibility and drug resistance in north Indian population. Seizure 2010; 19:237-241.
    [47]Kumari R, Lakhan R, Kalita J, Garg RK, Misra UK, Mittal B.Potential role of GABAA receptor subunit; GABRA6, GABRB2 and GABRR2 gene polymor-phisms in epilepsy susceptibility and pharmacotherapy in North Indian popula-tion. Clin Chim Acta.2011,11;412(13-14):1244-1248.
    [48]Patrick K, Sang Poon W, Ho-Keung N. Multidrug resistance in epilepsy and polymorphisms in the voltage-gated sodium channel genes SCN1A, SCN2A, and SCN3A:correlation among phenotype, genotype,and mRNA expression. Pharmacogenetics and Genomics,2008,18:989-998.
    [49]Manna A, Gambardella A, Bianchi A, A functional polymorphism in the SCN1A gene does not influence antiepileptic drug responsiveness in Italian patients with focal epilepsy. Epilepsia,2011,52(5):e40-e44.
    [50]Blanca M, Herranz L,Carlos L,et al. Genetic factors associated with drug-resistance of epilepsy:Relevance of stratification by patient age and aetiology of epilepsy. Seizure,2010,19:93-101.
    [51]Schousboe A, Sarup A, Bak L K, et al. Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission[J]. Neurochemistry intern-ational,2004,45(4):521-527.
    [52]Waagepetersen H S, Sonnewald U, Schousboe A. Compartmentation of glutamine, glutamate, and GABA metabolism in neurons and astrocytes:functi-onal implications[J]. The neuroscientist,2003,9(5):398-403.
    [53]Wu Y, Wang W, Richerson G B. Vigabatrin induces tonic inhibition via GABA transporter reversal without increasing vesicular GABA release [J]. Journal of neurophysiology,2003,89(4):2021-2034.
    [54]Kinney G A. GAT-3 transporters regulate inhibition in the neocortex[J]. Journal of neurophysiology,2005,94(6):4533-4537.
    [55]Raiteri L, Stigliani S, Zedda L, et al. Multiple mechanisms of transmitter release evoked by'pathologically'elevated extracellular [K+]:involvement of transporter reversal and mitochondrial calcium[J]. Journal of neurochemistry, 2002,80(4):706-714.
    [56]Richerson G B, Wu Y. Role of the GABA transporter in epilepsy[M]//Recent Advances in Epilepsy Research. Springer US,2004:76-91.
    [57]Komar, A. A. Silent SNPs:impact on gene function and phenotype. Pharm-acogenomics 2007 8,1075-1080.
    [58]Shastry, B. S. SNPs:impact on gene function and phenotype. Methods Mol. Biol.2009 578,3-22.
    [59]Raber J, Huang Y, Ashford JW:ApoE genotype accounts for the vast majority of AD risk and AD pathology. Neurobiol Aging 2004; 25:641-650.
    [60]D.M. Holtzman, A.M. Fagan, B. Mackey, et al. Hyman Apolipoprotein e facilitates neuritic and cerebrovascular plaque formation in an Alzheimer's disease model. Ann. Neurol.47 (2000), pp.739-747
    [61]Houlden and Greenwood, H. Houlden, R. Greenwood. Apolipoprotein e4 and traumatic brain injury. J. Neurol. Neurosurg. Psychiatry,77 (2006), pp. 1106-1107
    [62]J.S. Chapin, R.M. Busch, D. Janigro,et al. Apoe epsilon4 is associated with postictal confusion in patients with medically refractory temporal lobe epilepsy. Epilepsy Res.,81 (2008), pp.220-224
    [63]R. Diaz-Arrastia, Y. Gong, S. Fair, K.D. Scott,el al. Increased risk of late posttraumatic seizures associated with inheritance of apoe epsilon4 allele Arch. Neurol.(2003), pp.818-822
    [64]Bliimcke I, Brockhaus A, Scheiwe C, et al. The apolipoprotein E [epsilon] 4 allele is not associated with early onset temporal lobe epilepsy[J]. Neuroreport, 1997,8(5):1235-1237.
    [65]Cavalleri G L, Lynch J M, Depondt C, et al. Failure to replicate previously reported genetic associations with sporadic temporal lobe epilepsy:where to from here?[J]. Brain,2005,128(8):1832-1840.
    [66]Gambardella A, Aguglia U, Cittadella R, et al. Apolipoprotein E polymorphisms and the risk of nonlesional temporal lobe epilepsy [J]. Epilepsia, 1999,40(12):1804-1807.
    [67]Kauffman M A, Pereira-de-Silva N, Consalvo D, et al. ApoE ε4 is not asso-ciated with posictal confusion in patients with mesial temporal lobe epilepsy with hippocampal sclerosis[J]. Epilepsy research,2009,85(2):311-313.
    [68]Kumar A, Tripathi M, Pandey R M, et al. Apolipoprotein E in temporal lobe epilepsy:a case-control study[J]. Disease markers,2006,22(5):335-342.
    [69]Yeni S N, Ozkara C, Buyru N, et al. Association between APOE polymorp-hisms and mesial temporal lobe epilepsy with hippocampal sclerosis [J]. European journal of neurology,2005,12(2):103-107.
    [1]DL Tauck, JV Nadler. Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats[J]. The Journal of Neuroscie-nce,1985,5(4):1016-1022;
    [2]Steve C. Danzer,Xiaoping He,Andreas W. Loepke et al,Structural plasticity of dentate granule cell mossy fibers during the development of limbic epilepsy[J]. Hippocampus.2010,20(1):113-124.
    [3]Kron MM,Zhang H,Parent JM.The developmental stage of dentate granule cells dictates their contribution to seizure-induced plasticity[J]. The Journal of Neuroscience,2010,30(6):2051-2059
    [4]Nadler JV,Tu B,Timofeeva O.Neuropeptide Y in the recurrent mossy fiber pathway[J].Neuroscience.2006,143(4):1085-94.
    [5]Furtinger S,Pirker S,Czech T.Plasticity of Y1 and Y2 Receptors and Neuropeptide Y Fibers in Patients with Temporal Lobe Epilepsy [J]. The Journal of Neuroscience.2001,21(15):5804-5812
    [6]Jessberger S,Zhao C,Toni N,et al. Seizure-associated, aberrant neurogenesis in adult rats characterized with retrovirus-mediated cell labeling[J]. The Journal of Neuroscience.2007,27(35):9400-9407
    [7]Koyama R, Ikegaya Y.Mossy fiber sprouting as a potential therapeutic target for epilepsy [J]. Current Neurovascular Research,2004,1 (2):191
    [8]Gajda Z,Gyengesi E,Hermesz E, et al.Involvement of gap junctions in the manifestation and control of the duration of seizures in rats in vivo[J]. Epilepsia. 2003,44(12):1596-600
    [9]Li J,Shen H,Naus CC,et al.Upregulation of gap junction connexin 32 with epileptiform activity in the isolated mouse hippocampus [J].Neuroscience.2001; 105(3):589-98.
    [10]Gareri P, Condorelli D, Belluardo N,et al.Influence of carbenoxolone on the anticonvulsant efficacy of conventional antiepileptic drugs against audiogenic seizures in DBA/2 mice[J].European Journal of Clinical Pharmacology. 2004,484(1):49-56.
    [11]Bostanci MO, Baqirici F.Anticonvulsive effects of carbenoxolone on penicillin-induced epileptiform activity:an in vivo study[J].Neuropharmacology.2007,52 (2):362-7
    [12]Medina-Ceja L, Cordero-Romero A, Morales-Villagran A,et al.Antiepileptic effect of carbenoxolone on seizures induced by 4-aminopyridine:a study in the rat hippocampus and entorhinal cortex[J].Brain Research.2008,1187:74-81.
    [13]Larry S Benardo, M.D., Ph.D.Gap Junctions in Epileptogenesis:Chicken or Egg?[J].Epilepsy Curr.2004,4(2):80-81.
    [14]Wetherington J, Serrano G, Dingledine R.Astrocytes in the epileptic brain[J]. Neuron.2008,58(2):168-78
    [15]Pollen DA, Trachtenberg MC.Neuroglia:gliosis and focal epilepsy [J].Science. 1970,167(922):1252-3.
    [16]McKhann GM 2nd, Schoenfeld-McNeill J, Born DE,et al.Intraoperative hippocampal electrocorticography to predict the extent of hippocampal resection in temporal lobe epilepsy surgery[J].J Neurosurg.2000,93(1):44-52.
    [17]Guerreiro MM, Quesney LF, Salanova V,et al.Continuous electrocorticogram epileptiform discharges due to brain gliosis[J].J Clin Neurophysiol.2003, 20(4):239-42.
    [18]Oberheim NA, Tian GF, Han X, et al.Loss of astrocytic domain organization in the epileptic brain[J]. The Journal of Neuroscience,2008,28(13):3264-3276
    [19]Tanaka K, Watase K, Manabe T,et al.Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1[J].Science.1997,276(5319): 1699-702.
    [20]Martinez-Hernandez A, Bell KP, Norenberg MD.Glutamine synthetase, glial localization in brain[J].Science.1977,195(4284):1356-8
    [21]Eid T, Thomas MJ, Spencer DD.Loss of glutamine synthetase in the human epileptogenic hippocampus:possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy[J].Lancet.2004,363(9402):28-37
    [22]Otis TS, Jahr CE.Anion currents and predicted glutamate flux through a neuronal glutamate transporter[J].The Journal of Neuroscience.1998,18(18): 7099-110
    [23]Marsden KC, Beattie JB, Friedenthal J,et al.NMDA receptor activation potentiates inhibitory transmission through GABA receptor-associated protein-dependent exocytosis of GABA(A) receptors[J].The Journal of Neuroscience. 2007,27(52):14326-37.
    [24]Liang SL, Carlson GC, Coulter DA.Dynamic regulation of synaptic GABA release by the glutamate-glutamine cycle in hippocampal area CAl[J].The Journal of Neuroscience.2006,26(33):8537-48
    [25]Nielsen S, Nagelhus EA, Amiry-Moghaddam M,et al.Specialized membrane domains for water transport in glial cells:high-resolution immunogold cytoche-mistry of aquaporin-4 in rat brain[J].J Neurosci.1997,17(1):171-80
    [26]Eid T, Lee TS, Thomas MJ, et al.Loss of perivascular aquaporin 4 may underlie deficient water and K+homeostasis in the human epileptogenic hippocampus [J].Proc Natl Acad Sci U S A.2005,102(4):1193-8
    [27]A.E. King, E. Cherubinia,Y. Ben-Aria.N-Methyl-d-aspartate induces recurrent synchronized burst activity in immature hippocampal CA3 neurones in vitro[J].Brain Res Dev Brain Res.1989,46(1):1-8.
    [28]Gabriel Moddel,Berit Jacobson,Zhong Ying,et al.The NMDA receptor NR2B subunit contributes to epileptogenesis in human cortical dysplasia[J].Brain Res. 2005,1046(1-2):10-23
    [29]Angusti A, Durini E, Vertuani S,et al.Synthesis and biological evaluation of pro-drugs of GW196771, a potent glycine antagonist acting at the NMDA receptor[J].Farmaco.2005,60(5):393-7
    [30]Bo T, Jiang Y, Cao H,et al.Long-term effects of seizures in neonatal rats on spatial learning ability and N-methyl-D-aspartate receptor expression in the brain[J].Brain Res Dev Brain Res.2004,152(2):137-42
    [31]Jourdain P, Bergersen LH, Bhaukaurally K, et al.Glutamate exocytosis from astrocytes controls synaptic strength[J].Nature Neuroscience.2007,10(3):331-9.
    [32]Brasier DJ, Feldman DE.Synapse-Specific Expression of Functional Presynaptic NMDA Receptors in Rat Somatosensory Cortex[J].J Neurosci.2008,28(9): 2199-211
    [33]Corlew R, Wang Y, Ghermazien H,et al.Developmental switch in the contribu-tion of presynaptic and postsynaptic NMDA receptors to long-term depression [J]J Neurosci.2007,27(37):9835-45
    [34]Yang J, Woodhall GL, Jones RS.Tonic facilitation of glutamate release by presynaptic NR2B-containing NMDA receptors is increased in the entorhinal cortex of chronically epileptic rats[J].J Neurosci.2006,26(2):406-10
    [35]Suarez LM, Suarez F, Del Olmo N,et al.Presynaptic NMDA autoreceptors facilitate axon excitability:a new molecular target for the anticonvulsant gabapentin[J].Eur J Neurosci.2005,21(1):197-209
    [36]Yamashita H, Ohno K, Amada Y, et al.Effect of YM928, a novel AMPA receptor antagonist, on seizures in EL mice and kainate-induced seizures in rats[J]. Naunyn Schmiedebergs Arch Pharmacol.2004,370(2):99-105
    [37]Hollmann M, Heinemann S.Cloned glutamate receptors[J].Annu Rev Neurosci. 1994;17:31-108
    [38]Sommer C, Roth SU, Kiessling M.Kainate-induced epilepsy alters protein expression of AMPA receptor subunits GluR1, GluR2 and AMPA receptor binding protein in the rat hippocampus[J].Acta Neuropathol.2001,101(5):460-8
    [39]Friedman LK, Veliskova J, Kaur J,et al.GluR2(B) knockdown accelerates CA3 injury after kainate seizures[J].J Neuropathol Exp Neurol.2003,62(7):733-50
    [40]Verity A Letts, PhD.Stargazer-A Mouse to Seize![J].Epilepsy Curr.2005,5(5): 161-165
    [41]Menuz K, Nicoll RA.Loss of inhibitory neuron AMPA receptors contributes to ataxia and epilepsy in stargazer mice[J].J Neurosci.2008,28(42):10599-603.
    [42]Tomita S.Regulation of ionotropic glutamate receptors by their auxiliary subunits[J].Physiology(Bethesda).2010,25(1):41-9
    [43]Porter BE, Cui XN, Brooks-Kayal AR.Status epilepticus differentially alters AMPA and kainate receptor subunit expression in mature and immature dentate granule neurons[J].Eur J Neurosci.2006,23(11):2857-63.
    [44]Mulle C, Sailer A, Perez-Otano I,et al.Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice[J].Nature. 1998,392(6676):601-5
    [45]Mathern GW, Pretorius JK, Kornblum HI,et al.Altered hippocampal kainate-receptor mRNA levels in temporal lobe epilepsy patients[J].Neurobiol Dis.1998, 5(3):151-76
    [46]Khalilov I, Hirsch J, Cossart R,et al.Paradoxical anti-epileptic effects of a GluR5 agonist of kainate receptors[J].J Neurophysiol.2002,88(l):523-7
    [47]Fisahn A, Heinemann SF, McBain CJ.The kainate receptor subunit GluR6 mediates metabotropic regulation of the slow and medium AHP currents in mouse hippocampal neurones[J].J Physiol.2005,1;562:199-203
    [48]Smolders I, Bortolotto ZA, Clarke VR,et al.Antagonists of GLU(K5)-containing kainate receptors prevent pilocarpine-induced limbic seizures[J].Nat Neurosci. 2002,5(8):796-804.
    [49]Epsztein J, Represa A, Jorquera I,et al.Recurrent mossy fibers establish aberrant kainate receptor-operated synapses on granule cells from epileptic rats[J].J Neurosci.2005,25(36):8229-39.
    [50]Kang JQ, Shen W, Lee M,et al.Slow degradation and aggregation in vitro of mutant GABAA receptor gamma2(Q351X) subunits associated with epilepsy [J].J Neurosci.2010 Oct 13;30(41):13895-905.
    [51]Zhang N, Wei W, Mody I,et al.Altered localization of GABA(A) receptor subunits on dentate granule cell dendrites influences tonic and phasic inhibition in a mouse model of epilepsy[J].J Neurosci.2007,27(28):7520-31.
    [52]Houser CR, Esclapez M.Downregulation of the alpha5 subunit of the GABA(A) receptor in the pilocarpine model of temporal lobe epilepsy [J]. Hippocampus. 2003,13(5):633-45.
    [53]Li H, Kraus A, Wu J,et al.Selective changes in thalamic and cortical GABAA receptor subunits in a model of acquired absence epilepsy in the rat[J]. Neuropharmacology.2006,51(1):121-8.
    [54]Loup F, Wieser HG, Yonekawa Y,et al.Selective alterations in GABAA receptor subtypes in human temporal lobe epilepsy[J].J Neurosci.2000,20(14):5401-19.
    [55]Herring D, Huang R, Singh M,et al.Constitutive GABAA receptor endocytosis is dynamin-mediated and dependent on a dileucine AP2 adaptin-binding motif within the beta 2 subunit of the receptor[J].J Biol Chem.2003,278(26):24046-52
    [56]Yu W, Jiang M, Miralles CP,et al.Gephyrin clustering is required for the stability of GABAergic synapses[J].Mol Cell Neurosci.2007,36(4):484-500.
    [57]Kittler JT, Moss SJ.Modulation of GABAA receptor activity by phosphorylation and receptor trafficking:implications for the efficacy of synaptic inhibition [J].Curr Opin Neurobiol.2003,13(3):341-7
    [58]Keller CA, Yuan X, Panzanelli P,et al.The gamma2 subunit of GABA(A) receptors is a substrate for palmitoylation by GODZ[J].J Neurosci.2004,24(26): 5881-91.
    [59]Goodkin HP, Yeh JL, Kapur J. Status epilepticus increases the intracellular accumulation of GABAA receptors[J].J Neurosci.2005,25(23):5511-20.
    [60]Jacob TC, Moss SJ, Jurd R.GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition[J].Nat Rev Neurosci.2008,9(5): 331-43.
    [61]Knuesel I, Zuellig RA, Schaub MC,et al.Alterations in dystrophin and utrophin expression parallel the reorganization of GABAergic synapses in a mouse model of temporal lobe epilepsy[J].Eur J Neurosci.2001,13(6):1113-24.
    [62]Coulter DA.Epilepsy-associated plasticity in gamma-aminobutyric acid receptor expression, function, and inhibitory synaptic properties[J].Int Rev Neurobiol. 2001,45:237-52.
    [63]Ben-Ari Y, Gho M.Long-lasting modification of the synaptic properties of rat CA3 hippocampal neurones induced by kainic acid[J].J Physiol.1988,404: 365-84.
    [64]Zhang Y, Cai GE, Yang Q,et al.Time-dependent changes in learning ability and induction of long-term potentiation in the lithium-pilocarpine-induced epileptic mouse model[J].Epilepsy Behav.2010,17(4):448-54.
    [65]Montgomery JM, Madison DV.Discrete synaptic states define a major mechani- sm of synapse plasticity[J].Trends Neurosci.2004,27(12):744-50.
    [66]Bastrikova N, Gardner GA, Reece JM,et al.Synapse elimination accompanies functional plasticity in hippocampal neurons[J].Proc Natl Acad Sci U S A.2008, 105(8):3123-7.
    [67]Lisman JE.Three Ca2+ levels affect plasticity differently:the LTP zone, the LTD zone and no man's land[J].J Physiol.2001,15;532:285.
    [68]Cummings JA, Mulkey RM, Nicoll RA,et al.Ca2+ signaling requirements for long-term depression in the hippocampus[J].Neuron.1996,16(4):825-33.
    [69]Hellier JL, Grosshans DR, Coultrap SJ,et al.NMDA receptor trafficking at recurrent synapses stabilizes the state of the CA3 network[J].J Neurophysiol. 2007,98(5):2818-26.
    [70]Bains JS, Longacher JM, Staley KJ.Reciprocal interactions between CA3 network activity and strength of recurrent collateral synapses [J].Nat Neurosci. 1999,2(8):720-6.
    [71]Galvan CD, Wenzel JH, Dineley KT,et al.Postsynaptic contributions to hippoca-mpal network hyperexcitability induced by chronic activity blockade in vivo[J]. Eur J Neurosci.2003,18(7):1861-72.
    [72]Chen Q, He S, Hu XL,et al.Differential roles of NR2A-and NR2B-containing NMDA receptors in activity-dependent brain-derived neurotrophic factor gene regulation and limbic epileptogenesis[J].J Neurosci.2007,27(3):542-52.