膜生物反应器在污水处理中的非线性动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在污水处理中,膜生物反应器的优势日益明显,但膜污染问题已经成为阻碍该工艺进一步推广的瓶颈。在三大类影响因素中,污泥混合液的特性对膜污染起到了主要的作用,因此对污泥混合液特性的研究已成为当前国内外研究膜污染问题的主要方向。本文从非线性动力学的角度出发,对活性污泥的稳定性以及膜生物反应器中胞外聚合物EPS和可溶性微生物产物SMP的形成机理进行了研究。在实验数据的基础上,通过数值模拟,证明了所建数学模型的正确性,并利用非线性动力学理论,对模型进行了稳定性分析。
     在分析污泥稳定性中,通过简化传统的ASM1污泥模型提取出污泥和污水中底物的非线性动力学作用关系,建立了一个适用由于膜生物反应器的简化二维数学模型。通过修正原模型参数,该模型能够和实验数据吻合良好,证明了该模型的有效性。在此基础上从非线性动力学的角度对数学模型进行了有界性的验证和分析,从理论的角度给出了模型参数的选取范围。
     在研究EPS和SMP生成机理中,根据质量守恒原理提出了一个新的解释EPS和SMP生成机理的数学模型,此模型结构简单,仅有底物、活性污泥、EPS和SMP四个组分,且参数确定工作量小,通过实验验证可知该模型能正确的模拟出膜生物反应器中的污泥生长和SMP形成的生物反应过程。
Advantages of membrane bioreactor (MBR) are increasingly in evidence in sewage treatment. But the problem of membrane pollution has become a bottleneck blocking the development of the technics. In the three kinds of impact, the characteristic of sludge has played an important role in membrane pollution and has been the main aspect of research in membrane pollution.
     In this paper, A two dimension mathematical model which is applicable for membrane bioreactor (MBR) was proposed by simplifying the dynamical relations in ASM1 active sludge model. With some new parameter combinations, the simulation results fit the testing data well, so the accuracy of this model was proved. Then the boundedness and the stability of this model was analyzed in the view of nonlinear dynamics, and the choice region of the parameters was gained theoretically.
     In the research of theory of the building of EPS and SMP, One new mathematical model was proposed to explain the relationships among between soluble microbial product and extra cellular polymeric substances in MBR. This model has a simple structure with only four variables:Original substrate,active biomass, soluble microbial product and extra cellular polymeric substances. With a set of parameters model outputs capture all trends observed in the experiment.
引文
[1]孟凡生,王业耀.膜生物反应器在我国的研究发展展望.水资源保护,2005,21(4):1~4
    [2]V L Pillay, C A Buckley. Cake formation in cross-flow microfiltration systems. Water Science and Technology, l992,25(1): 149~162
    [3]G Jonsson, P Prádanos, A Hernández. Fouling phenomena in microporous membranes.Flux decline kinetics and structural modifications. Journal of Membrane Science, 1996, 112(2): 17l~l83
    [4] H Nagaoka, S Ueda, A Miya. Influence of bacterial extracellular polymers on the membrane separation activated sludge process. Water Science and Technology, l996, 34(9): 165~l72
    [5] K H Choo, C H Lee. Membrane fouling mechanisms in the membrane-coupled anaerobic bioreactor. Water Research, 1996,30(8): 1771~1780
    [6]J A1tmann, S Ripperger. Particle deposition and layer formation at the crossflow microfiltration. Journal of Membrane Science, l997, l24(1): 119~l28
    [7]T Knoell, J Safarik, T Cormack, et al. Biofouling potentials of microporous polysulfone membranes containing a sulfonated polyether-ethersulfone. Journal of Membrane Science, 1999, 157(1): 117~138.
    [8]H Nagaoka, S Kono, S Yamanishi, et al. Influence of organic loading rate on membrane fouling in membrane separation activated sludge process. Water Science and Technology, 2000, 4l(10-11): 355~362
    [9]Y H Lee, J W Cho, Y W Sea, et al. Modeling of submerged membrane bioreactor process for wastewater treatment. Desalination, 2002,146(1~3): 45l~457
    [10]Blatt W F et al. Feasibility of the membrane bio-reactor process for Purification Technology. Science, 1965, 150: 24 4~245
    [11]Vipneswaran S, Vigneswaran B and Roger B A. The application of membrane bioreactor for the treatment of wastewater. Environmental Sanitation Reviews, 1991, 31(2): 104~129
    [12]C.V.Smith. The Use of Ultrafiltration Membrane for Activated Sludge Separation. Proceedings of the 24th Annual Purdue Industrial Waste Conference. West Lafayete, Indiana, 1969: 1300~1310
    [13]Budd W E and Okey R W. Biological Treatment of Waste Water and Industrial Wastes. Was Res, 2000, 34(3), 902~908
    [14]H E Crethlein. Anaerobic Digestion and Membrane Separation of Domestic. Wastewater. Wat Poll Control Fed, 1978, (50): 754~763
    [15]T V Tran. Advanced Membrane Filtration Process Treats Industrial Wastewater Eff iciently. Chem.Engng.Prog. 1985, (3): 29~33
    [16]A M Bindoff. The Application of Cross-Flow Microfiltration Technology to the Concentration of Sewage Words Sludge Streams. Int. Wat. Envir. Mgmt. 1988, (2) :513~522
    [17]K H Krauth, K F Staab. Substitution of the Final Clarifier60 by Membrane Filtration with the Activated Sludge Process. Deselination. 1988, 68: 179~189
    [18]C Chiemchaisri0, K Yamamoto, S Vigneswaran. Household Membrane Bioreactor in Domestic Wastewater Treatment. Wat.Sci.Tech.1993, 27: 171~178
    [19]P R Brooks, A G Livingston. Biological Detoxification of 3-Chloronitrobenzene Manufacture Wastewater in an Exfractive Membrane Bioreactor. Wat.Res. 1994, 28 (6): 1347~1354
    [20]Z Ronald. Membrane Bioreactor Treatment of Oily Wastes from a Metal Transformation Mill. Wat.Sci.Tech. 1994, 30(9): 21~27
    [21]V Urbain. Membrane Bioreactor: A New Treatment Tool. Journal/American Water Works Association. 1996, 88(5): 75~86
    [22]顾国维,何义亮.膜生物反应器在污水处理中的研究和应用.北京:化学工业出版社,2002,37~38
    [23]泰霄雯,张波,胡文容等.膜分离生物反应器处理污水的优势和局限性.工业水处理,2004,24(2):4~7
    [24]高孔荣,黄惠华,梁兆为.食品分离技术.广州:华南理工顾社,1998,62
    [25]Vignesaeran S, Vigneswaran B, Ben A R. Application of Microfiltration for Water and Wastewater Treatment. Environmental Sanitation Reviews, 1991, 31:17~21
    [26]Flemming H C, et al. Biofouling on membranes- a microbiological approach. Desalination, 1998, 70: 95~119
    [27]Yamamoto K, Hissa M, Mahmood T, et al. Direct solid liquid separation using hollow fiber membrane in an active sludge aeration tank. Water Science and Technology, 1989, 21(4): 43~54
    [28]Brindle K, Stepheenson T. The application of membrane biological reactors forthe treatment of the treatment of waste waters. Biotech Bioeng, 1996, 49(6): 601~610
    [29]Ueda T, Hata K, Kikuoka Y. Treatment of domestic sewage from rural settlements by a membrane bioreactor. Water Science and Technology, 1996, 34 (9):189~196
    [30]McDonogh R, Schaule G, Flemming H C. The permeability of biofoulinglayers on membranes. Journal of Membrane Science, 1994, 87: 199~217
    [31]Nagaoka H, Yamanishi S, Miya A. Modeling of bio-fouling by extracellular polymers in a membrane separation activated sludge system. Water Science and Technology, 1998, 38(45): 497~504
    [32]Choi Jung-Goo, et al. The behavior of membrane fouling initiation on the crossflow membrane bioreactor system. Journal of Membrane Science, 2002, 203(1-2): 103~113
    [33]Ishiguro K, Imai K, Sawada S. Effects of biological treatment conditions on permeate flux of UF membrane in a membrane/activated sludge wastewater treatment system. Desalination, 1994, 98 (1-3): 119~126
    [34]Wisniewski C and Grasmick A. Floc size distribution in amembrane bioreactor and consequences for membrane fouling. Colloids and Surfaces, 1998, 138:403~411
    [35]Sato T and Ishil Y. Effects of activated sludge properties on water flux of ultrafiltration membrane used for human excrement treatment. Water Science and Technology, 1991, 23(8): 1601~160
    [36]Xia H, Rui L and Yi Q. Behaviour of soluble microbial products in a membrane bioreactor. Process Biochemistry, 2000, 36(5): 401~406
    [37]刘锐,一体式膜生物反应器中的微生物代谢特性及膜污染控制,[博土学位论文],北京:清华大学环境工程系,2000
    [38]国家环保局.水和废水监侧分析方法.第四版,北京:中国环境科学出版社,2002
    [39]康春莉等. EDTA萃取法分离自然水体中生物膜胞外聚合物.东北师大学报自然科学版,2003,35(2):120~122
    [40]顾夏声,废水与生物处理数学模式,北京:清华大学出版社,1993.
    [41]Monod J. The growth of bacterial cultures. Annual Review of Microbiology,1949, 3(3): 371~374
    [42]Eckenfelder W W, Conor D, Biological Waste Treatment. New York:PergamonPress, 1961
    [43]McKinney R E, San J. Mathematics of complete mixing activated sludge. Journal of the Sanitary Engineering Division, 1962, 116(3):87~113
    [44]Lawrence A W,McCarty P L.A unified basis for biological treat.ment design and operation[J].ASCE Journal of the Sanitary En.gineering Division,ASCE,1970,96(3):733~736
    [45]Henze M,Grady C P L Jr,Guier W,et a1.Activated Sludge Model No.1,IAWPRC Scientific and Technical Report No.l .London:IAWPRC,1987
    [46]Henze M,Gujer W,Mino T,et a1.Activated Sludge Model NO.2,IAWPRC Scientific and Technical Report No.1.London:IAWPRC,1995
    [47]Gujer W,Henze M,Mino T,et a1.Activated Sludge Model No.3.Water Science and Technology,1999,39(1):183~193
    [48]Andrews J F.Control strategies for the anaerobic digestion process.Water & Sewage Works,1975,122(3):62~65
    [49]张自杰,周帆.活性污泥生物学与反应动力学,北京:中国环境科学出版社,1989
    [50]国际水协废水生物处理设计与运行数学模型课题组,活性污泥数学模型. 1986
    [51]刘芳,城市污水厂活性污泥数学模型的参数测定及模拟研究:[博士学位论文],上海;同济大学,2004
    [52]Birkhof, Garrett and Rota. Ordinary Differential Equations. Boston; 1982
    [53]Laspidou CS, Rittmann BE. A unified theory for extra cellular polymeric substances, soluble microbial products,and active and inert biomass. Water Research. 2002, 36: 2712~2730
    [54]Laspidou CS, Rittmann BE. A. Non-steady state modeling of extra cellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research, 2002, 36: 1983~1992
    [55]Hsieh KM, Murgel GA, Lion LW, Schuller ML. Interactions of microbial biofilms with toxic trace metals 1. Observation and modeling of cell growth, attachment, and production of extra cellular polymer. Biotechnology and Bioengineering, 1994, 44: 219~311
    [56]国际水协废水生物处理设计与运行数学模型课题组.活性污泥数学模型. 1986
    [57]王洪礼,葛根,许佳,向建平.变参数赤潮藻类生长模型的非线性动力学分析研究.海洋通报,2007,26(3):48~52
    [58]冯剑丰,李会民,王洪礼.浮游生态系统非线性动力学研究.海洋技术,2007,26(3):67~68