PVDF膜的亲水改性及抗污染性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚偏氟乙烯(PVDF)是一种有着极好机械强度、化学稳定性和成膜性的聚合物,是制备超滤或微滤分离膜的优良原料。但是,PVDF的强疏水性使这种膜用于处理水溶液时,存在以下两个问题:一是膜对水的渗透阻力大,因此操作时需较高的工作压力;一是膜在使用过程中,容易受到蛋白质的吸附污染导致渗透通量的急剧下降。对PVDF膜进行亲水改性是解决上述弊端,提高膜的通量,降低膜的污染、延长膜的使用寿命的主要方法,使其更适应于生化、医药、净水等领域的使用。
     本论文研究了通过表面接枝改性提高PVDF膜亲水性的方法。由于PVDF分子的化学键能高,表面接枝需要很高的能量。为此,我们采用了一种先共混再接枝的方法。首先选用少量光活性聚合物PES与PVDF共混制膜。然后通过表面紫外辐照接枝反应,在PVDF/PES共混膜表面接枝亲水性强的单体。如N-乙烯基-2-吡咯烷酮(NVP)和2-丙烯酰胺基-2甲基丙基磺酸(AMPS)。论文采用DMA、ATR-FTIR、表面接触角测定仪、EDS、SEM等方法系统研究了用上述方法对PVDF膜进行改性的效果,及表面性能和形态的变化。论文通过测定改性前后膜对BSA的静态吸附以及膜对水和BSA溶液的超滤性能系统的研究了接枝反应对膜的抗污性能的影响。研究结果表明,当PES的含量在铸膜液中低于0.5%时,制得的膜的机械性能没有发生变化。通过在PVDF膜中共混少量PES的方法制成的膜容易在能量较低紫外光源辐照下在表面发生接枝反应。亲水性单体的接枝率随着接枝时间的增加而增加,膜的接触角也同步下降,表明改性后膜表面的亲水性有显著改善。膜对BSA静态吸附的结果表明,通过接枝改性后的膜对蛋白质的吸附量明显减小,说明改性膜对蛋白质的抗污染能力有明显提高。超滤的结果表明,接枝改性的PVDF膜的性能相对比较稳定,其纯水通量只需通过简单清洗即能大部恢复。改性膜显示出更强的抗污染能力。例如,用光强为3.44 mW/cm~2的紫外光源,在5%NVP溶液中接枝改性7分钟的PVDF/PES膜,其水接触角从74°下降到37°,膜对BSA的吸附量从159±2μg/cm~2下降为19±2μg/cm~2。与未改性PVDF膜相比,PES/PVDF接枝改性膜在相同的测试条件下,其受蛋白质污染的程度减少了66%,经过化学清洗之后水通量恢复率提高了32%。
     本论文还研究了通过紫外辐照接枝改性的方法制备荷正电纳滤膜的方法。提出该课题的主要思路是由于荷负电纳滤膜在处理高价阳离子盐溶液时会出现截留率下降的现象。荷正电纳滤膜的制备是通过紫外辐照接枝的方法将一定量的对氯甲基苯乙烯单体接枝到膜表面使形成纳滤膜,然后通过季铵化反应,和盐酸处理使形成荷正电的季铵离子。研究结果表明,用上述方法制成的膜显示荷正电纳滤膜的性能。通过延长接枝时间和增加辐照强度可以使膜的接枝率得到提高。同时随着接枝率的提高和季铵化程度的增加,膜的表面接触角也有了显著的下降。对膜的纳滤性能测试表明,此方法制备的膜在处理高价阳离子时表现出了优异的纳滤性能。例如,当光强度为3.44 mW/cm~2时,接枝10min的膜对MgCl_2的截留率达到70%,对NaCl的截留率为39%。
Poly (vinylidene fluoride) (PVDF) membranes are widely used in microfiltration (MF) and ultrafiltration (UF) due to their excellent chemical resistance, well-controlled porosity, and good thermal and mechanical properties. However, the higher hydrophobicity of the membrane limited its application in the fields of biotechnology and pharmacy, where the fluid phases to be treated are generally complex and heavily loaded with colloidal matters and hydrophilic membranes with better fouling resistances are required.
     In this article, a novel method was used to prepare hydrophilic PVDF ultrafiltration membrane. As for PVDF, C-H and C-F bond with high bond energy was difficult to cleave only by UV irradiation. To make graft polymerization easier, we incorporated a small amount of photoactive polymer PES into PVDF in the asymmetric membrane casting, then grafted hydrophilic monomers (N-vinyl-2-pyrrolidinone and 2-acrylamido-2-1-propanesulfonic acid) on the dense layer of the blend membrane under UV irradiation. Firstly, PES/PVDF blend membrane was prepared for photo grafting surface modification. As the content of PES in the blend membrane was low, the modified PVDF was expected to keep well its mechanical properties. The characteristics of the modified membrane were studied by ATR-FTIR, energy dispersive spectrometry (EDS) and contact angle. It was found that the mechanical property of the blend membrane did not change if the PES content in the blend membrane was lower then 0.5% and the contact angle of water on the membrane surface decreased with the grafting time. The modified membrane showed higher fouling resistance. First, the adsorption amount of bovine serum albumin (BSA) on the membranes decreased from 159±2μg/cm~2 to 13±2μg/cm~2 after 10 min of grafting. Secondly, the filtration of a 0.1% BSA solution showed that the modified membrane had lower BSA adsorption and better flux recovery. Compared with the non-modified PVDF membrane, the fouling degree of the blend membrane with 7 min grafting was reduced by 66% and the flux recovery after chemical cleaning increased about 32%.
     In our investigation of preparation of nanofiltration membrane by UV-graft polymerization on PEK-C ultrafiltration membrane, it was found that negatively charged nanofiltration membrane prepared by grafting acrylic acid (AA) performed lower retention of multi-valent cations. In this article, we firstly developed a method to prepare hydrophilic positively charged nanofiltration membrane by graft polymerization of chloromethylstyrene (CMS) onto surface of PEK-C ultrafiltration membrane and quaternary animation processes. ATR-FTIR spectra detected CMS grafted on the surface of PEK-C, and relative grafting ratio increased with irradiation time, while contact angle of water on the modified membrane surface decreased. The modified membranes showed a good retention of multi-valent cations that is a characteristic of nanofiltration. For example, the retentions to magnesium chloride and sodium chloride of the membrane grafted for 10 min under UV intensity of 3.44 mW/cm~2 was 70% and 39% at 0.4MPa, respectively.
引文
[1]时钧,袁权,高从堦.膜技术手册[M].北京:化学工业出版社,2001:2.
    [2]W.Juda,Mcrae,W.A..Coherent ion-exchange gels and membranes[J].J.Am.Chem.Soc..1950,72:1044.
    [3]Loeb,S.,Sourirajan,S..Sea water demineralization by means of an osmotic membrane[J].Adv.Chem.Ser..1962,38:117-132.
    [4]Matsuura,T.,Sourirajan,S..Interfacial parameters governing RO for different polymer material-solution systems through gas and liquid chromatography data[J].Ind.Eng.Chem.Process Des.Dev..1981,20:273-282.
    [5]Anderson J L,Quinn J A.Restricted transport in small pores:model for steric exclusion and hindered particle motion[J].Biophys..1974,14(2):130-150.
    [6]Ferry J D.Ultrafilter membranes and Ultrafiltration.Chem[J].Rev..1936,18:373-455.
    [7]Smith F G Ⅲ,Deen W.M..Electrostatic double layer interactions for spherical colloids in cylindrical pores[J].J.Colloid.Interface Sci.1980,78:44-52.
    [8]Glandt E D.Density distribution of hard spherical molecules inside small pores of various shapes.[J].J.Colloid Interface Sci..1980,77:512-524.
    [9]Mitchell B D,Deen W M.Effect of concentration on the rejection coefficients of rigid macromolecules in track-etch membranes[J].J.Colloid Interface Sci.1986,113:132-142.
    [10]时钧,袁权,高从堦.膜技术手册[M].北京:化学工业出版社,2001:225-230.
    [11]杜润红,赵家森.一种新的膜材料--聚苯硫醚[J].膜科学与技术,2002,22(3):56-59.
    [12]王国庆,张守海,杨大令,蹇锡高.新型聚芳醚腈酮超滤膜制备:非溶剂添加剂的影响[J].功能高分子学报,2005,18(1):105-110.
    [13]Meng Y.Z.,Hay A.S.,Jian X.G..Synthesis and properties of poly(aryl ether sulfone)s containing the phthalazinone moiety[J].J.Appl.Polym.Sci.1998,68(1):137-143.
    [14]吕晓龙,李新民,石君,等.聚偏氟乙烯中空纤维微孔膜的应用及清洗方法[J].膜科学与技术,2000,20(5):5-9.
    [15]尹秀丽,邓桦.PVDF中空纤维滤膜的形态结构[J].高分子材料科学与工程,1998,14(6):108-111.
    [16]王保国,刘茂林,蒋维钧.中空纤维聚偏氟乙烯微孔膜研究[J].膜科学与技术,1995,15(1):46-50.
    [17]孔瑛,吴庸烈,徐纪平,等.膜蒸馏用PVDF微孔膜的结构控制[J].水处理技术,1992,18(1):11-16.
    [18]王静荣.聚偏氟乙烯大孔超滤膜的研究[J].环境科学,1994,16(1):52-53.
    [19]O shina K H.The use of a micro porous polyvinylidence flouride(PVDF) membrane filter to separate contaminating viral particles from bio logically important proteins[J].Biologicals,1996,24(2):137-145.
    [20]Degen,Peter John.Polyvinylidene fluoride membrane and method for removing viruses from solution.[P].US P:5736051,1998-04-07.
    [21]Yang Z Y.Use of membrane in waste water treatment in China Experiments with hollow fiber membranes in a bioreactor[J].Stuttg Ber Siedlungsw asserw irtsch,1997,145:75-86.
    [22]Degen,Peter John.Poly(vinylidene fluoride) membranes[P].DE:4445973,1995206229.
    [23]Jarvinen,Gordon D.,Smith,Barbara F.,Robison,ThomasW..Removal and recovery of metal ions from process and waste streams using polymer filtration[J].Proceedings of the Engineering Foundation Conference,1999:131-138.
    [24]Nunes S P,Peinemann K V.Ultrafiltration membranes from PVDF/PMMA blends[J].J Membr Sci,1992,73:25-35.
    [25]俞三传,高从堦.小孔径PVDF超滤膜的研制[J].水处理技术,1999,25(2)83-86.
    [26]Petrus J C C.Preparation and characterization of micro porous membranes obtained from PVDF/PMMA blends[J].Cienciae Tecnologia,1998,8(1):67-74.
    [27]Fernandez S.Polymer blends for pyroelectric and piezoelectric applications(Ⅰ) Compatibility and microstructure of binary and ternary systems based on PVDF,PVC and PMMA[J].Revista de Plasticos Midernos,1996,71(478):379-385.
    [28]Uragami T,Naito Y,Suginara M.Studies on synthesis and permeability of special polymer membranes(39) Permeation characteristics and structure of polymer blend membranes from PVDF and PEG[J].Polym Bull,1981,4:617-620.
    [29]Uragami T,Fujimoto M,Sugihara M.Studies on syntheses and permeabilities of special polymer membranes(28) Permeation characteristics and structure of interpolymer membranes from poly(vinylidene fluoride) and poly(styrene sulfonic acid)[J].Desalination,1980,34:311-323.
    [30]孙漓清,钱英,刘淑秀,等.聚偏氟乙烯/磺化聚砜共混相容性及超滤膜研究[J].膜科学与技术,2001,21(2):1-5.
    [31]Mascia L,Hsahim K.Compatibilization of PVDF/nylon 6 blends by carboxylic acid functionalization and metal salts formation[J].J Appl Polym Sci,1997,66(10):1911-1923.
    [32]于志辉,钱英,付丽,等.聚偏氟乙烯/聚丙烯腈共混超滤膜的研究[J].膜科学与技术,2000,20(5):10-16.
    [33]程洪斌,尹秀丽.聚偏氟乙烯/聚丙烯腈共混膜的研究[J].天津纺织工学院学报,1998,17(1):54-60.
    [34]Yin Xiuli,Cheng Hongbin,Wang Xin.Morphology and properties of hollow - fiber membrane made by PAN mixing with small amount of PVDF[J].J Membr Sci,1998,149:179-184.
    [35]尹秀丽,邓桦,杨溥臣.PVDF/PS共混超滤膜的研究[J].水处理技术,1997,23(2):131-134.
    [36]杨少华,孙国庆.平极式共混超滤膜的研究[J].水处理技术,1994,20(6):365-369.
    [37]郝继华,陈翠仙,李琳等.抗污染超滤膜的研制[J].水处理技术,1996,22(2):319-322.
    [38]龚琦,杜邵龙,董声雄.小截留分子量共混超滤膜的研究(Ⅰ)PVDF与PVAc的混溶性[J].吉林化工学院学报,2001,18(1):18-23.
    [39]龚琦,杜邵龙,董声雄.小截留分子量共混超滤膜的研究(Ⅱ)PVDF与PVAc共混前后超滤膜性能的比较[J].吉林化工学院学报,2001,18(3):5-8.
    [40]李锁定,刘忠洲.共混超滤膜和复合超滤膜的研究现状与发展[A].北京膜学会成立三周年论文集[C].北京:北京膜学会,1994.17-23.
    [41]王湛,吕亚文,王淑梅,等.PVDF/CA共混超滤膜制备及其特性的研究[J].膜科学与技术,2002,22(6):4-8.
    [42]陆晓峰,卞晓锴.超滤膜的改性研究及应用[J].膜科学与技术,2003,23(4):97-102.
    [43]Mahendran,Mailvaganam,Goodboy,et al.Method of making a dope comprising hydrophilized PVDF and alpha-alumina membrane made there from[P].US Pat,6024872.2000202215.
    [44]Bottino A.,Capannelli G.,Comite A..Desalination[J],2002,146(5):35-40.
    [45]唐广军,孙本惠.聚偏氟乙烯膜的亲水性改性研究进展[J].化工进展,2004,23(5):480-485
    [46]包艳辉,朱宝库,陈炜,等.聚偏氟乙烯微孔膜的亲水化改性及功能化研究进展[J].功能高分子学,2003,16(2):269-276.
    [47]Bottino A,Capannelli G,Monticelli O,et al.Poly(vinylidene fluoride) with improved functionalization for membrane production[J].J Membr Sci,2000,166:23-29.
    [48]Hester J F,Baneree P,Won Y Y,et al.ATRP of amphiphilic graft copolymers based on PVDF and their use as membrane additives[J].Macromolecules,2002,35:7652-7661.
    [49]Ying L,Wang P,Kang E T,et al.Synthesis and characterization of poly(acrylicacid) graft poly(vinylidene fluoride) copolymers and pH-sensitive membranes[J].Macromolecules,2002,35:673-679.
    [50]Chen Y W,Ying L,Yu W H..Poly(vinylidene fluoride)with grafted poly(ethylene glycol)side chains via the RAFT mediated process and pore size control of the copolymer membranes[J].Macromolecules,2003,36:9451-9457.
    [51]杨亚楠,王鹏,郑庆柱.改性高分子超滤膜的研究进展[J].离子交换与吸附,2005,20(1):87-94.
    [52]董声雄,洪俊明.聚偏氟乙烯超滤膜的制备及亲水改性[J].福州大学学报(自然科学版),1998,26(6):119-122.
    [53]Akhtar S,et al.Coating reduce the fouling of microfiltration membranes[J].J Membr Sci,1995,107(3):209-218.
    [54]Akthakul A,Salinaro R F,Mayes A M..Antifouling polymer membranes with subnanometer size selectivity[J].Macromolecules,2004,37:7663-7668.
    [55]Bottino A,Capannelli G,Munari S..Effect of coagulation medium on properties of sulfonated polyvinylidene fluoride membranes[J].J Appl Polym Sci,1985,30:3009-3022.
    [56]Duputell D,Staude E..Heterogeneous modification of ultrafiltration membranes made from poly(vinylidene fluoride) and their characterization[J].J Membr Sci,1993,78:45-51.
    [57]Munari S,Bottino A,Capannelli G..Casting and performance of polyvinylidene fluoride based membranes[J].J Membr Sci,1983,16:181-193.
    [58]Vigo F,Uliana C..Mechanical,chemical and bacterial resistance of modified polyvinylidene fluoride membranes suitable for ultrafiltration of oily emulsions[J].J Membr Sci,1984,21:295-306.
    [59]陈炜,朱宝库,徐又一等.聚偏氟乙烯微孔膜的改性和应用研究进展[J].功能材料,2003,34(1):13-19.
    [60]Molly S S,Thomas J M..Convenient syntheses of carboxylic acid functionalized fluoropolymer surfaces[J].Macromolecules,1991,24:982-986.
    [61]Swanson M J.A unique photochemical approach for polymer surface modification[J].Po lm Surface Interfaces,1995,1:19-25.
    [62]韦亚兵,钱翼清.聚四氟乙烯薄膜表面光接枝改性的ESCA研究[J].南京化工大学学报,1999,21(2):65-67.
    [63]陆晓峰,汪庚华,梁国明,等.聚偏氟乙烯超滤膜的辐照接枝改性研究[J].膜科学与技术,1998,18(6):54.
    [64]Holmberg S,Nasman J H,et al.Synthesis and properties of sulfonated cross linked poly (vinylidene fluoride)-graft-styrene membrane[J].Polym Adv Yechn,1998,9(2):121
    [65]Clochard M C,Begue J,Lafon,et al.Tailoring bulk and surface grafting of poly(acrylic acid) in electron-irradiated PVDF[J].Polymer,2004,45:8683-8694.
    [66]苗小郁,李建生,王连军,孙秀云,等.聚偏氟乙烯膜的亲水化改性研究进展[J].材料导报,2006,20(3):56-59.
    [67]Mariana D D,Carmina L P,Tatiana P.Surface modification of polyvinylidene fluoride (PVDF) under rf Ar plasma[J].Polym Degradation and Stability,1998,61:65.
    [68]黎雁,吕晓龙.聚偏氟乙烯多孔膜的改性研究进展.[M].天津工业大学学报,2001,20(5):74-78.
    [69]Jokela K.Temperature-dependent X-ray scattering studies on radiation grafted and sulfonated poly(vinylidene fluoride)[J].Mater Sci Forum 2000:321-324.
    [70]王睿,谢雁,潘炯玺.聚合物表面光接枝改性研究进展[J].现代塑料加工应用,2004,16(6):61-64.
    [71]邓建平,杨万泰,表面光接枝及其在分离膜中的应用[J].膜科学与技术,1999,19:13-18
    [72]Yamagishi,H.,Crivello,J.V.,Belfort,G..Development of a novel photochemical technique for modifying poly(arylsulfone) ultrafiltration membranes[J].J.Membr.Sci.,1995,105:237-247.
    [73]Yanagishita,H.,Kitamoto,D.,Ikegami,T.,Negishi,H.,Endo,A.,Haraya,K.,etc..Preparation of photo-induced graft filling polymerized membranes for pervaporation using polyimide with benzophenone structure[J].J.Membr.Sci.,2002,203,:191-199.
    [74]中颖洁,钟慧,吴光夏,膜表面光接枝改性的研究现状及展望[J].环境污染治理技术与设备,2001,2(6):31-37.
    [75]Yang W T,Randy B..Bulk surface photografting process and its applications I.Reactions and kinetics[J].J Polym Sci,1996,62:533-545.
    [76]Kobuta H,Ogiwara Y..Effect of water in vapor-phase photografting of vinyl monomers on polymer films[J].J Appl Polym Sci,1991,43:1001-1005.
    [77]喻全发,杨嘉谟.紫外光引发淀粉接枝丙烯腈的溶剂效应[J].武汉化学学院学报,1997,19(2):22-26.
    [78]白功健,胡兴洲.聚合物的表面光接枝改性[J].高分子通报,1995,(1):27-33.
    [79]Pieracci,J.,Crivello,J.V.,Belfort,G..Photochemical modification of 10 kDa polyethersulfone ultrafiltration membranes for reduction of biofouting[J].J.Membr.Sci.,1999,156:223-240.
    [80]Pashova V S,Georgiev,Dakov V A..Photoinitiated graft copolymerization of glycidyl methacrylate and 2-hydroxyethyl methacrylate onto polyacrylonitrile and application of the synthesized graft copolymers in penicillinamidase immobilization[J].J Appl Polym Sci,1994,51:807-813.
    [81]Allmer K,Hilborn J,Hult A..Surface modification of polymers.V.Biomaterial applications[J].J Polym Sci,Part A:Polym Chem,1990,28:173-183.
    [82]Tatiana,A.S.,Heike,M.,Serfiy,A.P.Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization[J],J.Chromatography A.,2001,907:89-99.
    [83]Bellobono I R,Selli E,Polissi A.Immobilization of biocatalysts by photochemically grafted membranes:some studies with catalase as model system[J].Biotechnol.Bioeng.,1990,35:646-649.
    [84]卢红梅,纳滤膜的特征及其在国内水处理中的应用进展[J].过滤与分离,2002,12,38-41.
    [85]郝继华等,低压季胺化聚砜反渗透膜[J].水处理技术,1987,13,255-259.
    [86]高从堦等,荷电的反渗透和超滤膜[J].水处理技术,1987,13,140-145.
    [87]夏冰,董声华,英剑雄,荷电纳滤膜的研究[J].水处理技术,1992,18,75-83.
    [88]何昌生,孙雪雁,小孔径磺化聚砜超滤膜研制[J].水处理技术,1998,24,265-269.
    [89]Qiu C Q,Xu F,Nguyen Q T,Ping Z H.Nanaofiltration membrane prepared from cardo polyetherketone ultrafiltration membrane by UV-induced grafting method[J].J Membr Sci,2005,255:107-115.
    [90]邱长泉,张力恒,平郑骅,UV辐照接枝制备酚酞基聚芳醚酮纳滤膜--链转移剂的作用[J].化学学报,2005,63:1906-1912.
    [91]She,Z,Yin G N,Ping Z H.Preparation of Hydrophilic Charged Nanofiltration Membrane by UV Irradiation Graft Polymerization[J].Acta Chim.Sinica.2006,64:2027-2032 1906(in Chinese).
    [92]Hannemaaijer,J.H.,Robbertsen,T.,van der Boomgaard,Th.,Gunnink,J.W.,Characterization of cleaned and.fouled ultrafiltration membranes[J].Desalination,1988,68:93-108.
    [93]Chen,V.,Fane,A.G.,Fell,C.J.D.,The use of anionic surfactants for reducing fouling of ultrafiltration membranes:their effects and optimization[J].J.Membr.Sci.,1992,67:249-261.
    [94]Nabe,A.,Staude,E.,Belfort,G.,Surface modification of polysulfone ultrafiltration membranes and fouling by BSA solutions[J].J.Membr.Sci.,1997,133:57-72.
    [95]Snjaroonrat,R,Julien,E.,Aurelle,Y.,Unstable secondary oil/water emulsion treatment using ultrafiltration:fouling control by backflushing[J].J.Membr.Sci.,1999,159:11-20.
    [96]Koehler,J.A.,Ulbricht,M.,Belfort,G.,Intermolecular forces between a protein and a hydrophilic modified polysulfone film with relevance to filtration[J].Langmuir,2000,16:10419-10427.
    [97]Ramamoorthy,M.,Raju,M.D.,Cellulose Acetate and Sulfonated Polysulfone Blend Ultrafiltration Membranes.Part Ⅲ.Application Studies[J].Ind.Eng.Chem.Res.,2001,40:4815-4820.
    [98]Amanda,A.,Mallapragada,S.K.,Selectivity Studies and Mapping of Protein Fouling on Heat-Treated Poly(vinyl alcohol),Poly(ether sulfone),and Regenerated Cellulose Membranes Using DRIFTS[J].Biotechnol.Prog.,2001,17:917-923.
    [99]Wavhal,D.S.,Fisher,E.R.,Membrane Surface Modification by Plasma-Induced Polymerization of Acrylamide for Improved Surface Properties and Reduced Protein Fouling[J].Langmuir,2003,19:79-85.
    [100]李娜,刘忠洲,续曙光.冷冻-解冻法制聚乙烯醇水凝胶研究进展[J].膜科学与技术,1996.19:1-7.
    [101]Benavente,J.,Garcia,J.M.,Riley,R.,Lozano,A.E.,Abajo,J.,Sulfonated poly(ether ether sulfones):Characterization and study of dielectrical properties by impedance spectroscopy[J].J.Membr.Sci.,2000,175:43-52.
    [102]Blanco,J.F.,Nguyen,Q.T.,Schaetzel,R,Novel hydrophilic membrane materials:sulfonated polyethersulfone Cardo[J].J.Membr.Sci.,2001,186:267-279.
    [103]Bowen,W.R.,Doneva,T.A.,Yin,H.B.,The effect of sulfonated poly(ether ether ketone)additives on membrane formation and performance[J].Desalination,2002,145:39-45.
    [104]Ulbricht,M.,Belfort,G..Surface modification of ultrafiltration membranes by low temperature plasma.I.Treatment of polyacrylonitrile[J].J.Appl.Polym.Sci.,1995,56:325-343.
    [105]Ulbricht,M.,Belfort,G..Surface modification of ultrafiltration membranes by low temperature plasma Ⅱ.Graft polymerization onto polyacrylonitrile and polysulfone[J].J.Membr.Sci.,1995,111:193-215.
    [106]Zhao,Z.P.,Li,J.,Zhang,D.X.,Chen,C.X..Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma:I.Graft of acrylic acid in gas[J].J.Membr.Sci.,2004,232:1-8.
    [107]柴红,陈欢林,等离子体引发聚合固定金属离子亲和膜的制备及其吸附性能[J].化工学报,2001,52(2):162-166.
    [108]张丹霞,王保国,等离子体技术在膜分离领域的应用[J].膜科学与技术,2002,22(4):65-70.
    [109]Kilduff,J.E.,Mattaraj,S.,Pieracci,J.P.,Belfort,G..Photochemical modification of poly(ether sulfone) and sulfonated poly(sulfone) nanofiltration membranes for control of fouling by natural organic matter[J].Desalination,2000,132:133-142.
    [110]Kim,D.S.,Kang,J.S.,Kim,K.Y.,Lee,Y.M..Surface modification of a poly(vinyl chloride) membrane by UV irradiation for reduction in sludge adsorption[J].Desalination,2002,146:301-305.
    [111]Ulbricht,M.,Matuschewski,A..Oechel,A.,Hicke,H.G.,Photo-induced graft polymerization surface modifications for the preparation of hydrophilic and low-proten-adsorbing ultrafiltration membranes[J].J.Membr.Sci.,1996,115,31-47.
    [112]Ulbricht,M.,Richau,K.,Kamusewitz,H..Chemically and morphologically defined ultrafiltration membrane surfaces prepared by heterogeneous photo-initiated graft polymerization[J].Colloids and Surface A:Physicochemical and Eng.Aspects,1998,138,353-365.
    [113]Pieracci,J.,Wood,D.W.,Crivello,J.V.,Belfort,G..UV-Assisted Graft Polymerization of N-vinyl-2-pyrrolidinone onto Poly(ether sulfone) Ultrafiltration Membranes:Comparison of Dip versus Immersion Modification Techniques[J].Chem.Matter.,2000,12:2123-2133.
    [114] Taniguchi, M., Belfort, G., Low protein fouling synthetic membranes by UV-assisted surface grafting modification: varying monomer type[J]. J. Membr. Sci., 2004, 231:147-157.
    [115] Bequet, S., Abenoza, T., Aptel, P., Espenan, J.M., Remigy, J.C., Ricard, A., New composite membrane for water softening[J]. Desalination, 2000, 131: 299-305.
    [116] Bequet, S., Remigy, J.C., Rouch, J.C., Espenan, J.M., Clifton, M., Aptel, P., From ultrafiltration to nanofiltration hollow fiber membranes: a continuous UV-photografting process [J]. Desalination, 2002, 144: 9-14.
    [117] Trushinski, B., Dickson, J., Childs, J., McCarry, B., Photochemically modified thin-film composite membranes. I. Acid and ester membranes [J]. J. Appl. Polym. Sci., 1993, 48:187-198.
    [118] Trushinski, B., Dickson, J., Childs, R., McCarry, B., Gagnon, D., Photochemically modified thin-film composite membranes. II. Bromoethyl ester, dioxolan, and hydroxyethyl ester membranes [J[. J. Appl. Polym. Sci., 1994, 54: 1233-1242.
    [119] Mika, A., Chilids, R., Dickson, J., McCarry, B., Gagnon, D., A new class of polyelectrolyte-filled microfiltration membranes with environmentally controlled porosity [J]. J. Membr. Sci., 1995, 108 : 37-56.
    [120] Mika, A., Childs, R., Dickson, J., McCarry, B., Gagnon, D.. Porous, polyelectrolyte-filled membranes: Effect of cross-linking on flux and separation [J]. J. Membr. Sci., 1997, 135:81-92.
    [121] Ulbricht, M., Schwarz, H.H.. Novel high performance photo-graft composite membranes for separation of organic liquids by pervaporation [J]. J. Membr. Sci., 1997, 136: 25-33.
    [122] Cai, B., Zhou, Y., Gao, C.. Modified performance of cellulose triacetate hollow fiber membrane[J]. Desalination, 2002, 146 : 331-336.
    [123] Bellobone, I., Muffato, F., Ermondi, C., Shelli, E., Righetto, L.. Gas separation membranes containing carbon immobilized by photochemical grafting onto polymers[J]. J.Membr. Sci., 1991,55:273-281.
    [124] Matsui, S., Ishiguro, T., Higuchi, A., Nakagawa, T.. Effect of ultraviolet light irradiation on gas permeability in polyimide membranes. 1. Irradiation with low pressure mercury lamp on photosensitive and nonphotosensitive membranes[J]. J. Polym. Sci. Part B: Polym. Phys.,1997,35:2259-2269.
    [125] Matsui, S., Nakagawa, T.. Effect of ultraviolet light irradiation on gas permeability in polyimide membranes. II. Irradiation of membranes with high-pressure mercury Iamp[J]. J.Appl. Polym. Sci., 1998, 67: 49-60.
    [126] Yamagishi, H.; Crivello, J.; Belfort, G. Evaluation of photochemically modified poly (arylsulfone) ultrafiltration membranes[J].J.Membr.Sci.1995,105:249-259.
    [127]H.Chen,G.Belfort.Surface modification of poly(ether sulfone) ultrafiltration membranes by low-temperature plasma induced graft polymerization[J].J.Appl.Polym.Sci.1999,72:1699-1711.
    [128]M.Menon,A.Zydney.Measurement of protein charge and ion binding using capillary electrophoresis[J].Anal.Chem.1998,70:1581-1584.
    [129]江杨,韩德昌,魏民,魏建敏.聚偏氟乙烯膜结构的研究[J].天津纺织工学院学报,1996,15(3):6-11.
    [130]陆因,陈欢林,刘伯耿。制膜条件对PVDF膜形态结构的影响[J]。功能高分子学报,2002,15(2):171-176.
    [131]Khayet,M.,Matsurra,T..Application of surface modifying macromolecules for the preparation of membranes for membrane distillation[J].Desalination,2003,158:51-56.
    [132]曾一鸣.膜生物反应器的工艺原理[M].北京:国防工业出版社,2007:27.
    [133]A.Akbari,S.Desclaux,J.C.Remigy and R Aptel.Treatment of textile dye effluents using a new photografted nanofiltration membrane[J].Desalination,2002,149:101-107.
    [134]P.Ying,G.Gin,Z.Tao.Competitive adsorption of collagen and bovine serum albumin-effect of the surface wettability[J].Colloids Surf.,B:Biointerfaces,2004,33:259-263.
    [135]B.Sweryda-Krawiec,H.Devaraj,G.Jacon,J.J..Hickman,A New Interpretation of Serum Albumin Surface Passivation[J].Langmuir,2004,20:2054-2056.
    [136]H.Lee,B.J.Jeong,H.B.Lee,Plasma protein adsorption and platelet adhesion onto comb-like PEO gradient surfaces[J].J.Biomed.Mater.Res.1997,34:105-114.
    [137]K.Ishihara,H.Nomura,T.Mihara,K.Kurita,Y.Iwasaki,N.Nakabayashi,Why do phospholipids polymers reduce protein adsorption?[J].J.Biomed.Mater.Res.1998,39:323-330.
    [138]K.Ishihara,Y.Iwasaki.Reduced protein adsorption on novel phospholipidspolymers[J].J.Biomater.Appl.1998,13:111-127.
    [139]邱长泉.紫外接枝制备亲水性纳滤膜的研究[D].上海:复旦大学,2005.
    [140]R.E.Kesting,Synthetic Polymeric membrane.A structural Perspective,second ed.,Wiley/Interscience,New York,1985.
    [141]Pontalier,P,Y.,Ismail,A.,Ghoul,M..Mechanisms for the selective rejection of solutes in nanofiltration membranes[J].Sep.and Purif.Tech.,1997,12:175-181.
    [142]Wang,X.L.,Tsuru,T.,Nakao,S.I.,Kimura,S..The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes[J].J.Membr.Sci.,1997,135:19-32.
    [143] J. Schaep, B. Van der Bruggen, C. Vandecasteele, D. Wilms. Influence of ion size and charge in nanofiltration[J]. Sep. Purif. Technol. 1998, 14:155-162.
    [144] Y. Xu, R.E. Lebrun. Investigation of the solute separation by charged nanofiltration membrane: effect of Ph [J]. J. Membr. Sci. 1999, 158: 93-104.
    [145] G.M. Rios, R. Joulie, S.J. Sarrade, M. Carles. Investigation of ion separation by microporous nanofiltration membranes[J]. AIChE J. 1996, 42 (9):2521-2528.
    [146] P.Y. Pontalier, A. Ismail, M. Ghoul, Mechanisms for the selectively rejectio.n of solutes in nanofiltration membranes[J]. Sep. Purif. Technol. 1997, 12: 175-181.
    [147] T.W. Xu, W.H. Yang. Effect of cell configurations on the performance of citric acid production by a bipolar membrane electrodialysis[J]. J. Membr. Sci. 2002, 203:145-153.
    [148] T.W. Xu, W.H. Yang. A novel positively charged composite membranes for nanofiltration prepared from poly(2,6-dimethyl-l,4-phenylene oxide) by in situ amines crosslinking[J]. J. Membr. Sci. 2003,215: 25-32.