细首科纽虫分子系统发育及三种纽虫线粒体基因组的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细首科(Cephalothricidae)隶属纽形动物门古纽目(Palaeonemertea)。由于其有限的形态学特征及形态学鉴定本身的复杂性,而成为分类学中较为混乱的类群之一。有关线细首科系统发育的研究较少,尤其从分子水平上来研究线细首科纽虫系统发育关系目前还未见报道。本研究将以细首科纽虫为研究对象,验证统计简约网络法进行物种界定的可行性;拟基于COI,16SrDNA,28SrDNA基因序列探讨细首科纽虫的系统发育关系,并且利用三种纽虫线粒体基因组基因排列信息及蛋白质编码基因,探讨纽虫在后生动物中的分类地位。
     主要研究成果如下:
     1.扩增了线细首科165个个体的线粒体COI基因,依据统计简约法原理,用TCS软件构建单倍型网络图。探讨此方法在线细首科纽虫中进行物种界定的可行性。同时在MEGA4.0软件中进行遗传距离分析,在Phyml和MrBayes软件中构建系统发育树。结果表明,同一种的个体明显地聚在同一个单倍型网络图中。种间K2p遗传距离显著地大于种内遗传距离,得到的最大似然树和贝叶斯树显示同一物种的不同个体均形成高支持率的单系。因此得出结论,基于线粒体COI基因的统计简约单倍型网络图方法能够对细首科物种进行有效地物种界定。
     2.以核基因(28SrDNA)和线粒体基因(16SrDNA和COI)为遗传标记,对线细首科的系统发育关系进行了探讨。以针纽目Amphiporus angulatus,Amphiporus lactifloreus为外类群,采用最大似然法(ML)和贝叶斯法(BI)分别构建系统发育树。系统发育树的拓扑结构显示,细首科并不是单系。
     3.首次测定了纽形动物门三种纽虫,Cephalothrix simula,Cephalothrix sp.和Paranemetes peregrine的线粒体基因组,基因组大小分别为16296bp,15800bp(部分非编码区没有测定)和14560bp。三者均包含后生动物线粒体基因组典型的基因组成(13个蛋白质编码基因、22个转运RNA和2个核糖体RNA)。C.simula与C.sp.基因排列完全一致。与这两种纽虫相比,Paranemetesperegrine的基因组中有11个基因发生了易位包括4个蛋白质编码基因(nad6,cox1,cox2,atp6)和7个tRNA(trnY,trnE,trnG,trnF trnQ,trnW,trnC)。
     基于基因排列,蛋白质编码基因氨基酸及氨基酸数据的系统发育分析结果均支持纽虫与有体腔的冠轮动物有较近的亲缘关系,而不是无体腔的扁形动物。基于基因排列及蛋白质编码基因核苷酸数据系统发育研究结果表明纽虫与内肛动物近缘。基于蛋白质编码基因氨基酸序列的系统发育分析结果支持纽虫与软体动物近缘。
Cephalothricidae is one of the classes within the order Palaeonemertea of thephylum Nemertea. Taxonomy among this group remains confused due to their fewmorphological characters and the complication of morphology methods based on thehistological sectioning. So far, few reports have been published on the phylogeny ofCephalothricidae, especially at the molecular level. In the present study, we tried totest the potential use of statistical parsimony network analysis based on COI sequenceas a tool to delimit species in Cephalothricidae species, and to estimate thephylogenetic relationship among this group based on CO1, 16SrDNA and 28SrDNA.In addition, we used gene arrangement and the protein-coding genes to assess thephylogenetie position of Nemertea within the lophotrochozoans.
     The main work and conclusion of the present study were as the following:
     (1) To test the potential use of statistical parsimony network analysis as a tool todelimit species in Cephalothricidae species. COI gene sequences from 165Cephalothricidae specimens were sequenced and performed a statistical parsimonyanalysis in the program TCS. Genetic distance was calculated in MEGA3.0 software,and phylogenetic trees were constructed with Phyml and MrBayes software. COI genesequences from single species typically stick together in a single haplotype network.In class Cephalothricidae distance within species is obviously lower than that betweenspecies. And in the phylogenetic trees, all individuals of each species formed a clade.From these results, we can draw a conclusion that statistical parsimony networkanalysis based on the mitochondrial CO1 gene can effectively support the speciesdelimitation in Cephalothricidae.
     (2) Three combined genes (COI, 16SrDNA and 28SrDNA) were employed toestimate the relationship of the Cephalothricidae. Two hoplonemerteans Amphiporus lactifloreus and Amphiporus angulatus were chosen as outgroup. Maximum likelihood (ML)and Bayesian inference (BI) methods were adopted to construct the phylogenetic trees.All these analyses consistently showed that the family Cephalothricidae is notmonophyletic, which is not consistent with the results from morphology study.
     (3) The mitochondrial genomes from Cephalothrix simula, Paranemetes peregrineand Cephalothrix sp. were sequenced, which is first report of complete mitochondrialgenome in phylum Nemertea. The mitochondrial genomes of them is 16,296 bp,14,560 bp, and more than 15,800 bp in length (partial non-coding region was notdetermined), respectively.
     As other metazoans, the genomes of C. simula, P. peregrine and C. sp. contain astandard set of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNAgenes. The gene arrangements of C. simula and C. sp. mitochondrial genomes areconsistent. Compared to this two, transloeations of 4 protein-coding genes (nad6,cox1, cox2, atp6) and 7 tRNA (trnY, trnE, trnG, trnF, trnQ, trnW, trnC)were found inP. peregrine.
     All analyses based on gene rearrangements, nucleotide and amino acid datasupport that the nemertean is close to the coelomate lophotrochozoans, rather than theacoelomate platyhelminths. Both the pattern of gene rearrangements andphylogenomic analyses using concatenated nucleotide sequences of the 13mitochondrial protein-coding genes support the close relationship between nemerteanand the phoronid. While the phylogenomic analyses based on the concatenated aminoacid sequences showed the sister relationship between Nemertea and Mollusca.
引文
申欣.2008.软甲刚动物和星虫动物基因组特征及分子进化研究。博士毕业论文。
    郑乐怡.1987.动物分类原理与方法.北京:高等教育出版社。
    肖金花,肖晖,黄大卫.2004.生物分类学的新动向-DNA条形编码.动物学报,50:852-855.
    于黎.2005.食肉目哺乳动物(Carnivora)的分子进化研究.中国科学院昆明动物研究所,Vol.博士,昆明。
    于黎,张亚平.2006.系统发育基因组学--重建生命之树的一条迷人途径.遗传.28:1445-1450.
    张亚平.从DNA序列到物种树.动物学研究,1996,17:247-252。
    Anderson, F. E., Cordoba, A.J., Thollesson, M., 2004. Bilaterian phylogeny based on analyses of a region of the sodium-potassium ATPase beta-subunit gene. J. Mol. Evol. 58:252-268.
    B(a|¨)nfer, G., Moog, U., Fiala, B., Mohamed, M., Weising, K., Blattner, F.R. 2006. A chloroplast genealogy of myrrnecophytic Macaranga species (Euphorbiaceae) in Southeast Asia reveals hybridization, vicariance and long-distance dispersals. Mol. Eco1.15:4409-4424.
    Bichain, J. M., P. Gaubert, S. Samadi, and M. C. Boisselier-Dubayle. 2007. A gleam in the dark: phylogenetic species delimitation in the confusing spring-snail genus Bythinella Moquin-Tandon, 1856 (Gastropoda: Rissooidea: Amnicolidae) . Mol. Phylogenet. Evol. 45:927-941.
    Blanchette, M., T. Kunisawa, D. Sankoff. 1999. Gene order breakpoint evidence in animal mitochondrial phylogeny. J. Mol. Evol. 49:193-203.
    Boore, J. L., Staton., J. L., 2002. The mitochondrial genome of the Sipunculid Phascoiopsis gouldii supports its association with Annelida rather than Mollusca. Mol. Biol. Evol. 19:127-137.
    Boore, J. L., Brown, W. M., 1998. Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr. Opin. Genet. Dev. 8:668-674.
    Boore, J. L., Macey, J. R., Medina. M., 2005. Sequencing and comparing whole mitochondrial genomes of animals. Methods Enzymol. 395:311-348.
    Boore, J. L., Medina, M., Rosenberg, L.A., 2004. Complete sequences of the highly rearranged molluscan mitochondrial genomes of the Scaphopod Graptacme eborea and the bivalve Mytilus edulis. Mol. Biol. Evol. 21:1492-1503.
    Boore,J.L., Staton, J.L., 2002.The mitochondrial genome of the Sipunculid Phascolopsis gouldii supports its association with Annelida rather than Mollusca.Mol.Biol.Evol.19:127-137.
    Borlase, W., and Pre-1801 Imprint Collection (Library of Congress). 1758. The natural history of Cornwall. The air, climate, waters, rivers, lakes, sea and tides ... Of the inhabitants, their manners, customs, plays or interludes, exercises, and festivals; the Cornish language, trade, tenures, and arts. Printed for the author by W. Jackson ; Oxford,.
    Cantell, C.-E., Gidholm, L., 1977. Isozyme studies of two related nemertines, Micrura fasciolata Ehrenberg, 1831, and Micrura baltica Cantell, 1975. Zoon 5, 87-89.Checklist of nemertean genera and species published between 1995 and 2007. Spec. Diver. 13: 245-274.
    Charlebois, R. L., R. G. Beiko, and M. A. Ragan. 2003. Microbial phylogenomics: Branching out. Nature 421:217.
    Chernyshev, A.V., 2008. Nemertean fauna of northeast Asia. Marine Biodiversity and Bioresources of the North-Eastern Asia (October 21-22, 2008, Jeju, Korea) (Abstract book), pp. 81-84.
    Dellaporta, S. L., A. Xu, S. Sagasser, W. Jakob, M. A. Moreno, L. W. Buss, and B. Schierwater. 2006. Mitochondrial genome of Trichoplax adhaerens supports placozoa as the basal lower metazoan phylum. Proc Natl Acad Sci U S A 103:8751-8756.
    Dunn, C. W., A. Hejnol, D. Q. Matus, K. Pang, W. E. Browne, S. A. Smith, E. Seaver, G. W. Rouse, M. Obst, G D. Edgecombe, M. V. Sorensen, S. H. Haddock, A. Schmidt-Rhaesa, A. Okusu, R. M. Kristensen, W. C. Wheeler, M. Q. Martindale, and G. Giribet. 2008. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745-749.
    Eisen, J. A., and C. M. Fraser. 2003. Phylogenomics: intersection of evolution and genomics. Science 300:1706-1707.
    Envall, M., Sundberg, P., 1998. Phylogenetic relationships and genetic distances between some monostiliferous interstitial nemerteans (Ototyphlonemertes, Hoplonemertea, Nemertea) indicated from the 16S rRNA gene. Zool. J. Linn. Soc. 123:105-115
    Erber, A., D. Riemer, M. Bovenschulte, and K. Weber. 1998. Molecular phylogeny of metazoan intermediate filament proteins. J. Mol. Evol. 47:751-762.
    Fritzsch, G, M. Schlegel, and P. F. Stadler. 2006. Alignments of mitochondrial genome arrangements: applications to metazoan phylogeny. J. Theor. Biol. 240:511-520.
    Gibson, R., Sundberg, P., 2002. Some heteronemerteans (Nemertea) from the Solomon Islands. J Nat. Hist. 36:1785-1804
    Giribet, G, D. L. Distel, M. Polz, W. Sterrer, and W. C. Wheeler. 2000. Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology. Syst. Biol. 49:539-562.
    Godfray, H. C. J. 2002. Challenges for taxonomy. Nature 417:17-19.
    Grande, C, J. Templado, and R. Zardoya. 2008. Evolution of gastropod mitochondrial genome arrangements. BMC Evol. Biol. 8:61.
    Hebert,P. D. N., A. Cywinska, S. L. Ball, and J. R.DeWaard. 2003. Biological identifications through DNA barcodes. Proc. R. Soc. B 270:313-321.
    Helfenbein, K. G, H. M. Fourcade, R. G Vanjani, and J. L. Boore. 2004. The mitochondrial genome of Paraspadella gotoi is highly reduced and reveals that chaetognaths are a sister group to protostomes. Proc. Natl. Acad. Sci. USA 101:10639-10643.
    Iwata, F.,1960. Studies on the comparative embryology of nemerteans with special reference to their interrelationships. Publ. Akkeshi Mar. Biol. Stations 10:1-51.
    J(?)rnegren J, Schander C, Sneli J-A, R(?)nningen V, Young CM. 2007. Four genes, morphology and ecology: distinguishing a new species of Acesta (Mollusca; Bivalvia) from the Gulf of Mexico. Mar.Biol. 152:43-55.
    Jondelius, U,, Ruiz-Trillo, I,, Bagu(?)(?), J,, Riutort M 2002. The Nemertodermatida are basal bilaterians and not members of the Platyhelminthes. Zool. Scr. 31:201-215
    Kajihara H., Chernyshev A.V., Sun S.-C, Sundberg P. and Crandall F.B., 2008. Checklist of nemertean genera and species published between 1995 and 2007. Spec. Diver, 13: 245-274.
    Larget, B., D. L. Simon, J. B. Kadane, and D. Sweet. 2005. A bayesian analysis of metazoan mitochondrial genome arrangements. Mol. Biol. Evol. 22:486-495.
    Lavrov, D. V., and B. F. Lang. 2005. Poriferan mtDNA and animal phylogeny based on mitochondrial gene arrangements. Syst. Biol. 54:651-659.
    Lee, Y. S., J. Oh, Y. U. Kim, N. Kim, S. Yang, and U. W. Hwang. 2008. Mitome: dynamic and interactive database for comparative mitochondrial genomics in metazoan animals. Nuclei. Acids. Res. 36.D938-942.
    Lipscomb, D., Platnick, N., Wheeler, Q., 2003. The intellectual content of taxonomy : a comment on DNA taxonomy. Trends Ecol. Evol. 18:65-66.
    Macey,J.R., Schulte, J.A., Larson, A., 2000. content of mitochondrial genomic structural features illustrated with acrodont lizards.Syst. Biol.49:257-277.
    Mallet, J., Willmott, K., 2003. Taxonomy: renaissance or tower of babel. Trends Ecol. Evol. 18:57-59.
    Macey, J. R., T. J. Papenfuss, J. V. Kuehl, H. M. Fourcade, and J. L. Boore. 2004. Phylogenetic relationships among amphisbaenian reptiles based on complete mitochondrial genomic sequences. Mol. Phylogenet. Evol. 33:22-31.
    Manchenko, G.P., Kulikova, V.I., 1988. Genetic divergence between closely related species of nemerteans. Isozyme Bull. 21: 193.
    Manchenko, G.P., Kulikova, V.I., 1996. Allozyme and colour differences between two sibling species of the heteronemertean Lineus torquatus from the Sea of Japan. Mar. Biol. 125:687-691.
    Marshall E. 2005. Taxonomy. Will DNA barcodes breathe life into classification. Science, 307: 1037.
    Moritz, C, Cicero, C, 2004 DNA Barcoding: Promise and Pitfalls. PLoS. Biol. 2:e354. doi: 10.1371 /journal.pbio.0020354
    Nei, M., Kumar, S. 2000.Molecular evolution and phylogenetics.Oxford University Press, Oxford; New York.
    Nikaido, M., A. P. Rooney, and N. Okada. 1999. Phylogenetic relationships among cetartiodactyls based on insertions of short and long interpersed elements: hippopotamuses are the closest extant relatives of whales. Proc. Natl. Acad. Sci. U S A 96:10261-10266.
    Papillon, D., Y. Perez, X. Caubit, and Y. Le Parco. 2004. Identification of chaetognaths as protostomes is supported by the analysis of their mitochondrial genome. Mol. Biol. Evol. 21:2122-2129.
    Passamaneck, Y., and K. M. Halanych. 2006. Lophotrochozoan phylogeny assessed with LSU and SSU data: evidence of lophophorate polyphyly. Mol. Phylogenet. Evol. 40:20-28.
    Peterson, K. J., and D. J. Eernisse. 2001. Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evol. Dev. 3:170-205.
    Proudlove, G., Wood, P. J., 2003.The blind leading the blind: cryptic subterranean species and DNA taxonomy. Trends Ecol. Evol. 18:272-273.
    Pons, J., Barraclough, T.G, Gomez-Zurita, J., Cardoso, A., Duran, D.P., Hazell, S., Kamoun, S., Sumlin,W.D., Vogler, A.P. 2006. Sequencebased species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55:595-609.
    Roehrdanz, R. L., M. E. Degrugillier, and W. C. t. Black. 2002. Novel rearrangements of arthropod mitochondrial DNA detected with long-PCR: applications to arthropod phylogeny and evolution. Mol. Biol. Evol. 19:841-849.
    Rogers, A.D., Junoy, J., Gibson, R., Thorpe, J.P., 1993. Enzyme electrophoresis, genetic identity and description of a new genus and species of heteronemertean (Nemertea, Anopla) from northwestern Spain and North Wales. Hydrobiologia 266:219-238.
    Rogers, A.D., Thorpe, J.P., Gibson, R., 1995. Genetic evidence for the occurrence of a cryptic species with the littoral nemerteans Lineus ruber and L. viridis (Nemertea: Anopla). Mar. Biol. 122:305-316.
    Ruiz-Trillo, I., J. Paps, M. Loukota, C. Ribera, U. Jondelius, J. Baguna, and M. Riutort. 2002. A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proc. Natl. Acad. Sci. USA 99:11246-11251.
    Ruiz-Trillo, I., M. Riutort, D. T. Littlewood, E. A. Herniou, and J. Baguna. 1999. Acoel flatworms: earliest extant bilaterian Metazoans, not members of Platyhelminthes. Science 283:1919-1923.
    Tautz, D., A rctander, P., Minelli, A., 2002. DNA po ints the w ay ahead in taxonomy. Nature 418:479.
    Tautz, D.A., rctander. P., Minelli,A ., 2003. A p lea fo r DNA taxonomy. Trends Ecol. Evol. 18:70-74.
    Knapp, S., A. Polaszek, and M. Watson. 2007. Spreading the word. Nature 446:261-262.
    Schindel, D.E., Miller, S.E., 2005.DNA barcoding a useful tool for taxonomists. Nature 435: 17
    Scoble, M. J. 2004. Unitary or unified taxonomy? Phil. Trans. R. Soc. Lond. B 359:699-710.
    Steinauer, M. L., Nickol, B. B.,. Broughton, R., Orti, G.2005. First sequenced mitochondrial genome from the phylum Acanthocephala (Leptorhynchoides thecatus) and its phylogenetic position within Metazoa. J. Mol. Evol. 60:706-715.
    Stoeckle M, 2003. Taxonomy, DNA, and the Barcode of Life. Bio.Science 53: 796-797
    Struck, T. H., F. Fisse., 2008. Phylogenetic position of Nemertea derived from phylogenomic data. Mol. Biol. Evol .25:728-736.
    Struck, T. H., N. Schult, T. Kusen, E. Hickman, C. Bleidorn, D. McHugh, and K. M. Halanych. 2007. Annelid phylogeny and the status of Sipuncula and Echiura. BMC Evol Biol 7:57.
    Sundberg, P., 1988. A new monostiliferous hoplonemertean (Nemertea), Oerstedia striata sp. n., from the west coast of Sweden. Zool. Scr. 17:135-139.
    Sundberg, P., Saur. M, 1998. Molecular phylogeny of some European heteronemertean (Nemertea) species and the monophyletic status of Riseriellus, Lineus, and Micrura. Mol Phylogenet Evol 10:271-280.
    Sundberg P., 2003. Anopla. In "Grzimek's Animal Life Encyclopedia 2nd ed Vol 1 Lower Metazoans and Lesser Deuterostomes" Ed by M Hutchins, DA Thoney, N Schlager, Gale Group, Farmington Hills, Michigan, pp 245-251.
    Tautz, D., Arctander, P., Minelli, A., Thomas, R. H., Vogler. A. P., 2003. A plea for DNA taxonomy. Trends Ecol. Evol. 18:70-74.
    Telford, M. J. 2007. Phylogenomics. Curr. Biol. 17:R945-946.
    Weyandt, SE., van Den Bussche, R.A. 2007. Phylogeographic structuring and volant mammals: the case of the pallid bat (Antrozous pallidus). Journal of Biogeography 34:1233-1245.
    Wolstenholme, D.R., 1992. Animal mitochondrial DNA: structure and evolution. Int. Rev. Cyt. 141:173-216.
    von Nickisch-Rosenegk, M.,. Brown, W. M., Boore. J. L., 2001. Complete sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta: gene arrangements indicate that Platyhelminths are Eutrochozoans. Mol. Biol. Evol. 18:721-730.
    Yokobori, S., T. Iseto, S. Asakawa, T. Sasaki, N. Shimizu, A. Yamagishi, T. Oshima, and E. Hirose. 2008. Complete nucleotide sequences of mitochondrial genomes of two solitary entoprocts, Loxocorone allax and Loxosomella aloxiata: implications for lophotrochozoan phytogeny. Mol. Phylogenet. Evol. 47:612-628.
    Zrzav(?), J., Hypsa, V., Tietz, D.F., 2001. Myzostomida are not annelids: molecular and morphological support for a clade of animals with anterior sperm flagella. Cladistics 17: 170-198.
    Zrzav(?) J., Mihulka, P., Kepka, S., Bezdek, A., 1998. Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics 14:249-285.
    Banfer, G, U. Moog, B. Fiala, M. Mohamed, K. Weising, and F. R. Blattner. 2006. A chloroplast genealogy of myrmecophytic Macaranga species (Euphorbiaceae) in Southeast Asia reveals hybridization, vicariance and long-distance dispersals. Mol. Ecol. 15:4409-4424.
    Bichain, J. M., P. Gaubert, S. Samadi, and M. C. Boisselier-Dubayle. 2007. A gleam in the dark: phylogenetic species delimitation in the confusing spring-snail genus Bythinella Moquin-Tandon, 1856 (Gastropoda: Rissooidea: Amnicolidae) . Mol. Phylogenet. Evol. 45:927-941.
    BlaxterM. 2004. The p romise of a DNA taxonomy. Philosophical Transactions: B iological Sciences 359:669-679.
    Bond J, Stockman A. 2008. An Integrative Method for Delimiting Cohesion Species: Finding the Population-Species Interface in a Group of Californian Trapdoor Spiders with Extreme Genetic Divergence and Geographic Structuring. Systematic Biology 57:628-646
    B(?)rger O.1904. Nemertini. Das Tierreich. 20:1-151.
    Cassens I, Mardulyn P, Milinkovitch M C. 2005, Evaluating intraspecific "network" construction methods using simulated sequence data: do existing algorithms outperform the global maximum parsimony approach. Syst. Biol. 54:363-372.
    Clement, M., Posada, D., Crandall, K., 2000. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9:1657-1660.
    Folmer, O., M. Black, W. Hoeh, R. Lutz, and R. Vrijenhoek. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3:294-299.
    Godfray, H. C. J. 2002 Challenges for taxonomy-the discipline will have to reinvent itself if it is to survive and flourish. Nature 417:17-19.
    Guindon, S., Gascuel, O., 2003. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704.
    Gibson, R., 1994. Nemerteans. Field Studies Council, Shrewsbury
    Hart, M. W., and J. Sunday. 2007. Things fall apart: biological species form unconnected parsimony networks. Biol. Lett. 3:509-512.
    Hebert, P. D., E. H. Penton, J. M. Burns, D. H. Janzen, and W. Hallwachs. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci .U S A 101:14812-14817.
    Hebert, P., D N,Cywinska A., Ball, S, L.,deWaard, J. R.,2003(a). Biological identification through DNA barcodes.Proc. R. Soc. Lond. B. Biol. Sci.270:313-321.
    Hebert, P,D,N, Penton, E,H, Burns, J,M, Janzen, D,H, Hallwachs, W., 2004.Ten species in one: DNA barcoding reveals cryptic species in the Neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci .U S A 101:14812-14817.
    Hebert, P.D.N, Ratnasingham, S., deWard, J.R., 2003 (b) . Barcoding animal life:cytochrome coxidase subunit I divergences among closely related species Proc. Natl. Acad. Sci .USA 270:96-99.
    Hebert, P.D.N.,Stoeckle, M.Y., Zemlak, T.S., Francis, C.M., 2004.Identification of birds through DNA barcodes.PLOS Biol.2:1657-1663.
    Huelsenbeck, J.P., Ronquist, F.R., 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754-755.
    J(?)rnegren, J., Schander, C, Sneli J-A, R(?)nningen, V., Young, C.M., 2007. Four genes, morphology and ecology: distinguishing a new species of Acesta (Mollusca; Bivalvia) from the Gulf of Mexico. Mar. Biolo. 152:43-55.
    Librado, P., Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451-1452.
    Lefebure, T., C. J. Douady, M. Gouy, and J. Gibert. 2006. Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Mol. Phylogenet. Evol. 40:435-447.
    Marcus, L., 1999. Sigmund Freud's The interpretation of dreams : new interdisciplinary essays. Manchester University Press ; Distributed exclusively in the USA by St. Martin's Press, Mancheste; New York.
    Monaghan, M.T., Balke, M., Gregory, T.R., Vogler A.P., 2005. DNA-based species delineation in tropical beetles using mitochondrial and nuclear markers. Phil. Trans. R. Soc. B 1-9
    Nei, M., 1987. Molecular evolutionary genetics. Columbia University Press, New York.
    Pons, J., T. G Barraclough, J. Gomez-Zurita, A. Cardoso, D. P. Duran, S. Hazell, S. Kamoun, W. D. Sumlin, and A. P. Vogler. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55:595-609.
    Posada, D., Crandall, K.A., 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817-818.
    Rissler, L. J., R. J. Hijmans, C. H. Graham, C. Moritz, and D. B Wake. 2006. Phylogeographic lineages and species comparisons in conservation analyses: a case study of california herpetofauna. Am. Nat. 167:655-666.
    Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574.
    Rubinoff, D., 2006. Utility of mitochondrial DNA barcodes in species conservation. Conserv Biol 20:1026-1033.
    Rubinoff, D., Holland. B.S., 2005. Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Syst Biol 54:952-961.
    Sambrook, J., Russell. D.W., 2001. Rapid isolation of yeast DNA. In: Sambrook, J., Russell, D.W. (Eds.), Molecular Cloning, a Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, pp. 631-632.
    Sites, J.W., Marshall, J.C., 2003. Delimiting species: A Renaissance issue in systematic biology. Trends in Ecology and Evolution 18:462-470.
    Strand, M., P. Sundberg. 2005a. Genus Tetrastemma Ehrenberg, 1831 (Phylum Nemertea) -a natural group? Phylogenetic relationships inferred from partial 18S rRNA sequences. Mol. Phylogenet. Evol. 37:144-152.
    Strand M, Sundberg P. 2005b. Delimiting species in the hoplonemertean genus Tetrastemma (phylum Nemertea): morphology is not concordant with phylogeny as evidenced from mtDNA sequences. Biol. J. Linn. Soc. 86:201-212.
    Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599.
    Tautz, D., Arctander, P., Minelli, A ., Thomas, R,H., Vogler, A,P., 2002.DNA points the way ahead in taxonomy. Nature 418:479.
    Tautz, D., Arctander, P., Minelli A, Thomas RH and Vogler A P. 2003. A plea for DNA taxonomy. Trends Ecol. Evol. 18:70-74.
    Templeton, A,R., Crandall, K,A,, Sing, C,F. ,1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. Ⅲ. Cladogram estimation. Genetics 132: 619-633.
    Templeton, A.R., Crandall, K.A., Sing, C.F., 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. Ⅲ. Cladogram estimation. Genetics 132:619-633.
    Thollesson, M., and J. L. Norenburg. 2003. Ribbon worm relationships: a phylogeny of the phylum Nemertea. Proc. Biol. Sci. 270:407-415.
    Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic. Acids. Res. 25:4876-4882.
    Tudge, C, 2000, The variety of life. Oxford: Oxford University Press.
    Wiens, J. J., 2007. Species delimitation: new approaches for discovering diversity. Syst Biol 56:875-878.
    Weyandt, SE., van Den Bussche, R.A. 2007. Phylogeographic structuring and volant mammals: the case of the pallid bat (Antrozous pallidus). Journal of Biogeograp 34:1233-1245.
    Wilson, E.O., 2003, The encyclopedia of life. Trends Ecol. Evol. 18:77-80.
    Bernardi, G., Robertson, D. R., Cliftton, K. E., Azzurro, E., 2000. Molecular systematics,zoogeography, and evolutionary ecology of the Atlantic parrotfish genus Sparisoma. Mol. Phyl. Evol. 15:292-300.
    Folmer, O., Black, M., 1994. DNA primers for amplication of mitochondrial cytochrome coxidase subunit I from diverse metazoan invertebrates. Mol.Mar.e Bio. Biotech. 3:29-42.
    Gilles, A., Lecointre, G, Faure, E., Chappaz, R., Brun, G, 1998. Mitochondrial Phylogeny of the European Cyprinids:Implications for Their Systematics,Reticulate Evolution and Colonization Time. Mol. Phyl. Evol.10:132-143.
    Guindon, S., Gascuel, O., 2003. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704.
    Hall, T., 2007. Bioedit version 7.0.9.A Biological sequence alignment editor. Ibis Biosciences: Carlsbad, CA.
    Huelsenbeck, J.P., Ronquist, F.R., 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754-755.
    Posada, D., Crandall, K.A., 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817-818.
    Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574.
    Sanderson, M. J., 1989, Confidence limits on phylogenies:the bootstrap revisited.Cladistics 5:113-129.
    Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Bio. Evol. 24:1596-1599.
    Thollesson, M., Norenburg, J.L., 2003. Ribbon worm relationships- a phylogeny of the phylum Nemertea. Pro. Royal. Soc. London B 270:407-415.
    Lecointre, G, Philippe, H., L(?)., Guyader, H. Le., 1993.Species sampling has a major impacton phylogeny inference. Mol. Phyl. Evol. 2:205-224.
    Lecointre, G, H Philippe, H. L(?)., Guyader, H.Le., 1994. How many nucleotides are required to resolve a phylogenetic problem?The use of new statistical method applicable to available sequences. Mol. Phyl. Evol. 3:292-309.
    Nylander, J. A. A., 2004. MrModeltest v2. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
    Xia, X., Xie, Z., 2000. DAMBE: data analysis in molecular biology and evolution.Kluwer Academic Publisher, Boston.
    Yang, Z. 1994a. Estimating the Patterm of nueleotide substitution. J. Mol. Evol. 39:105-111.
    Yang, Z., 1994b. Maximum likelihood Phylogenetie estimation form DNA sequences with variable rates oversites: approximate methods. J. Mol. Evol. 39:306-314.
    Anderson, F. E., Cordoba, A. J., Thollesson, M., 2004. Bilaterian phylogeny based on analyses of a region of the sodium-potassium ATPase beta-subunit gene. J. Mol. Evol. 58:252-268.
    Blanchette, M., T. Kunisawa, D. Sankoff. 1999. Gene order breakpoint evidence in animal mitochondrial phylogeny. J. Mol. Evol .49:193-203.
    Boore, J. L., Staton., J. L., 2002. The mitochondrial genome of the Sipunculid Phascolopsis gouldii supports its association with Annelida rather than Mollusca. Mol. Biol. Evol. 19:127-137.
    Boore, J. L., Brown, W. M., 1998. Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr. Opin. Genet. Dev. 8:668-674.
    Boore, J. L., Macey, J. R., Medina. M., 2005. Sequencing and comparing whole mitochondrial genomes of animals. Methods. Enzymol .395:311-348.
    Boore, J. L., Medina, M., Rosenberg, L.A., 2004. Complete sequences of the highly rearranged molluscan mitochondrial genomes of the Scaphopod Graptacme eborea and the bivalve Mytilus edulis. Mol. Biol. Evol .21:1492-1503.
    Boore,J.L., Staton, J.L., 2002.The mitochondrial genome of the Sipunculid Phascolopsis gouldii supports its association with Annelida rather than Mollusca.Mol.Biol.Evol.l9:127-137.
    Borlase, W., and Pre-1801 Imprint Collection (Library of Congress). 1758. The natural history of Cornwall. The air, climate, waters, rivers, lakes, sea and tides ... Of the inhabitants, their manners, customs, plays or interludes, exercises, and festivals; the Cornish language, trade, tenures, and arts. Printed for the author by W. Jackson ; Oxford,.
    Cantell, C.-E., Gidholm, L., 1977. Isozyme studies of two related nemertines, Micrura fasciolata Ehrenberg, 1831, and Micrura baltica Cantell, 1975. Zoon 5, 87-89.Checklist of nemertean genera and species published between 1995 and 2007. Spec. Diver. 13: 245-274.
    Charlebois, R. L., R. G. Beiko, and M. A. Ragan. 2003. Microbial phylogenomics: Branching out. Nature 421:217.
    Chernyshev, A.V., 2008. Nemertean fauna of northeast Asia. Marine Biodiversity and Bioresources of the North-Eastern Asia (October 21-22, 2008, Jeju, Korea) (Abstract book), pp. 81-84.
    Dellaporta, S. L., A. Xu, S. Sagasser, W. Jakob, M. A. Moreno, L. W. Buss, and B. Schierwater. 2006. Mitochondrial genome of Trichoplax adhaerens supports placozoa as the basal lower metazoan phylum. Proc. Natl .Acad. Sci. USA 103:8751-8756.
    Dunn, C. W., A. Hejnol, D. Q. Matus, K. Pang, W. E. Browne, S. A. Smith, E. Seaver, G W. Rouse, M. Obst, G. D. Edgecombe, M. V. Sorensen, S. H. Haddock, A. Schmidt-Rhaesa, A. Okusu, R. M. Kristensen, W. C. Wheeler, M. Q. Martindale, and G. Giribet. 2008. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745-749.
    Eisen, J. A., and C. M. Fraser. 2003. Phylogenomics: intersection of evolution and genomics. Science 300:1706-1707.
    Envall, M., Sundberg, P., 1998. Phylogenetic relationships and genetic distances between some monostiliferous interstitial nemerteans (Ototyphlonemertes, Hoplonemertea, Nemertea) indicated from the 16S rRNA gene. Zool. J. Linn. Soc. 123:105-115
    Erber, A., D. Riemer, M. Bovenschulte, and K. Weber. 1998. Molecular phylogeny of metazoan intermediate filament proteins. J. Mol. Evol. 47:751-762.
    Fritzsch, G., M. Schlegel, and P. F. Stadler. 2006. Alignments of mitochondrial genome arrangements: applications to metazoan phylogeny. J. Theor. Biol. 240:511-520.
    Gibson, R., Sundberg, P., 2002. Some heteronemerteans (Nemertea) from the Solomon Islands. J. Nat. Hist 36: 1785-1804
    Giribet, G., D. L. Distel, M. Polz, W. Sterrer, and W. C. Wheeler. 2000. Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology. Syst. Biol. 49:539-562.
    Grande, C, J. Templado, and R. Zardoya. 2008. Evolution of gastropod mitochondrial genome arrangements. BMC Evol. Biol .8:61.
    Hebert,P. D. N., A. Cywinska, S. L. Ball, and J. R.DeWaard. 2003. Biological identifications through DNA barcodes. Proc. R.. Soc. B 270:313-321.
    Helfenbein, K. G., H. M. Fourcade, R. G. Vanjani, and J. L. Boore. 2004. The mitochondrial genome of Paraspadella gotoi is highly reduced and reveals that chaetognaths are a sister group to protostomes. Proc. Natl. Acad. Sci. USA 101:10639-10643.
    Iwata, F.,1960. Studies on the comparative embryology of nemerteans with special reference to their interrelationships. Publ. Akkeshi Mar. Biol. Stations 10:1-51.
    Jondelius, U,, Ruiz-Trillo, I,, Bagu(?)(?), J,, Riutort M (2002) The Nemertodermatida are basal bilaterians and not members of the Platyhelminthes. Zool. Scr .31:201-215
    Kajihara H., Chernyshev A.V., Sun S.-C, Sundberg P. and Crandall F.B., 2008. Checklist of nemertean genera and species published between 1995 and 2007. Spec. Diver., 13: 245-274.
    Larget, B., D. L. Simon, J. B. Kadane, and D. Sweet. 2005. A bayesian analysis of metazoan mitochondrial genome arrangements. Mol. Biol. Evol. 22:486-495.
    Lavrov, D. V., and B. F. Lang. 2005. Poriferan mtDNA and animal phylogeny based on mitochondrial gene arrangements. Syst. Biol .54:651-659.
    Lee, Y. S., J. Oh, Y. U. Kim, N. Kim, S. Yang, and U. W. Hwang. 2008. Mitome: dynamic and interactive database for comparative mitochondrial genomics in metazoan animals. Nucleic Acids. Res. 36:D938-942.
    Lipscomb, D., Platnick, N., Wheeler, Q., 2003. The intellectual content of taxonomy : a comment on DNA taxonomy. Trends Ecol. Evol. 18:65-66.
    Macey,J.R., Schulte, J.A., Larson, A., 2000. content of mitochondrial genomic structural features illustrated with acrodont lizards.Syst. Biol.49:257-277.
    Mallet, J., Willmott, K., 2003. Taxonomy: renaissance or tower of babel. Trends Ecol. Evol. 18:57-59.
    Macey, J. R., T. J. Papenfuss, J. V. Kuehl, H. M. Fourcade, and J. L. Boore. 2004. Phylogenetic relationships among amphisbaenian reptiles based on complete mitochondrial genomic sequences. Mol. Phylogenet. Evol. 33:22-31.
    Manchenko, G.P., Kulikova, V.I., 1988. Genetic divergence between closely related species of nemerteans. Isozyme Bull. 21:193.
    Manchenko, G.P., Kulikova, V.I., 1996. Allozyme and colour differences between two sibling species of the heteronemertean Lineus torquatus from the Sea of Japan. Mar. Biol. 125:687-691.
    Nikaido, M., A. P. Rooney, and N. Okada. 1999. Phylogenetic relationships among cetartiodactyls based on insertions of short and long interpersed elements: hippopotamuses are the closest extant relatives of whales. Proc. Natl. Acad. Sci. USA 96:10261-10266.
    Papillon, D., Y. Perez, X. Caubit, and Y. Le Parco. 2004. Identification of chaetognaths as protostomes is supported by the analysis of their mitochondrial genome. Mol. Biol. Evol. 21:2122-2129.
    Passamaneck, Y., and K. M. Halanych. 2006. Lophotrochozoan phytogeny assessed with LSU and SSU data: evidence of lophophorate polyphyly. Mol. Phylogenet. Evol .40:20-28.
    Peterson, K. J., and D. J. Eernisse. 2001. Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evol. Dev. 3:170-205.
    Proudlove, G, Wood, P. J., 2003.The blind leading the blind: cryptic subterranean species and DNA taxonomy. Trends Ecol. Evol. 18: 272-273.
    Roehrdanz, R. L., M E. Degrugillier, and W. C. t. Black. 2002. Novel rearrangements of arthropod mitochondrial DNA detected with long-PCR: applications to arthropod phylogeny and evolution. Mol. Biol. Evol. 19:841-849.
    Rogers, A.D., Junoy, J., Gibson, R., Thorpe, J.P., 1993. Enzyme electrophoresis, genetic identity and description of a new genus and species of heteronemertean (Nemertea, Anopla) from northwestern Spain and North Wales. Hydrobiologia 266: 219-238.
    Rogers, A.D., Thorpe, J.P., Gibson, R., 1995. Genetic evidence for the occurrence of a cryptic species with the littoral nemerteans Lineus ruber and L. viridis (Nemertea: Anopla). Mar. Biol. 122:305-316.
    Ruiz-Trillo, I., J. Paps, M. Loukota, C. Ribera, U. Jondelius, J. Baguna, and M. Riutort. 2002. A phylogenetic analysis of myosin heavy chain type Ⅱ sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proc. Natl. Acad. Sci .USA 99:11246-11251.
    Ruiz-Trillo, I., M. Riutort, D. T. Littlewood, E. A. Herniou, and J. Baguna. 1999. Acoel flatworms: earliest extant bilaterian Metazoans, not members of Platyhelminthes. Science 283:1919-1923.
    Tautz, D., A rctander, P., Minelli, A., 2002. DNA po ints the w ay ahead in taxonomy. Nature, , 418: 479.
    Tautz, D.A., rctander. P., Minelli,A ., 2003. A p lea fo r DNA taxonomy. Trends Ecol. Evol. 18:70-74.
    Steinauer, M. L., B. B. Nickol, R. Broughton, and G. Orti. 2005. First sequenced mitochondrial genome from the phylum Acanthocephala (Leptorhynchoides thecatus) and its phylogenetic position within Metazoa. J. Mol. Evol. 60:706-715.
    Struck, T. H., and F. Fisse. 2008. Phylogenetic position of Nemertea derived from phylogenomic data. Mol. Biol. Evol. 25:728-736.
    Struck, T. H., N. Schult, T. Kusen, E. Hickman, C. Bleidorn, D. McHugh, and K. M. Halanych. 2007. Annelid phylogeny and the status of Sipuncula and Echiura. BMC Evol Biol 7:57.
    Sundberg, P., 1988. A new monostiliferous hoplonemertean (Nemertea), Oerstedia striata sp. n., from the west coast of Sweden. Zool. Scr. 17:135-139.
    Sundberg, P., Saur. M., 1998. Molecular phylogeny of some European heteronemertean (Nemertea) species and the monophyletic status of Riseriellus, Lineus, and Micrura. Mol. Phylogenet. Evol. 10:271-280.
    Sundberg P., 2003. Anopla. In "Grzimek's Animal Life Encyclopedia 2nd ed Vol 1 Lower Metazoans and Lesser Deuterostomes" Ed by M Hutchins, DA Thoney, N Schlager, Gale Group, Farmington Hills, Michigan, pp 245-251
    Tautz, D., P. Arctander,A. Minelli, R. H. Thomas, and A. P. Vogler. 2003. A plea for DNA taxonomy. Trends Ecol. Evol. 18:70-74.
    Telford, M. J. 2007. Phylogenomics. Curr. Biol. 17:R945-946.
    von Nickisch-Rosenegk, M., W. M. Brown, and J. L. Boore. 2001. Complete sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta: gene arrangements indicate that Platyhelminths are Eutrochozoans. Mol. Biol. Evol. 18:721-730.
    Yokobori, S., T. Iseto, S. Asakawa, T. Sasaki, N. Shimizu, A. Yamagishi, T. Oshima, and E. Hirose. 2008. Complete nucleotide sequences of mitochondrial genomes of two solitary entoprocts, Loxocorone allax and Loxosomella aloxiata: implications for lophotrochozoan phylogeny. Mol. Phylogenet. Evol. 47:612-628.
    Zrzav(?), J., Mihulka, S., Kepka, P., Bezdek, A .,1998. Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics 14:249-285
    Zrzav(?), J., Hypsa, V., Tietz, D.F., 2001, Myzostomida are not annelids: molecular and morphological support for a clade of animals with anterior sperm flagella. Cladistics 17: 170-198.