蛋白质拼接法制备片段同位素标记ApoE及RAP结构的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ApoE是一种阿朴质蛋白(apolipoprotein),它有299个氨基酸。它可以同LDL受体蛋白、肝素以及磷酯相结合,其主要的生理功能是调节体内磷酯的代谢。它同第三类高酯血、动脉硬化及老年痴呆病相关。了解apoE的结构以及其在体内的分子生物学过程,可提高人类对这些疾病的预防以及治疗的水平。ApoE氨基端(1-199)的结构已用X-Ray法进行了测定,而apoE羧酸端及整个分子的结构依然未知。由于apoE蛋白质分子量较大,NMR信号重叠较多,不利于结构的解析以及片段相互作用的研究。我们拟利用INTEIN媒介蛋白质拼接方法,制备部分同位素标记的apoE ,降低NMR结构解析的难度。受体相关蛋白(Receptor-associated protein, RAP)是一种LDL受体折叠的伴侣蛋白,它由323个氨基酸组成,同apoE一样,可以同LDL受体蛋白结合,两者之间有一定的相似性。本文着重研究了利用INTEIN媒介蛋白质拼接法制备apoE,并对RAP及各片段性质进行了初步的研究。
     在使用蛋白质拼接法制备部分同位素标记apoE的过程中,详细研究了相关蛋白的制备及拼接反应的条件,产物的纯化。在制备羧酸端的过程中,使用三种不同的方法:直接法制备,使用CNBr切断法以及凝血因子Xa酶切方法,经比较发现凝血因子Xa酶切法无论时收率还是稳定性方面均较成功,但该方法的缺点是存在非特异性的酶切位点;在对apoE氨基端研究过程中,发现使用碱性的培养介质可提高蛋白质的表达收率,使用简单含巯基的化合物进行硫醇解后所得产物会发生水解,无法用于下步的反应;在比较了不同的蛋白质拼接方法后,发现使用INTEIN媒介的蛋白质拼接法可以得到较好的效果;使用优化后的反应条件,第一次大量地制备了部分片段同位素标记的apoE,并进行了NMR测定,得到了简化了的NMR谱图。为进一步使用NMR研究apoE的结构提供了可能。本方法对于制备其它部分同位素标记的蛋白质有借鉴意义。
     针对在使用pTYB1表达载体表达蛋白质的过程中出现的自裂解现象,进行了比较分析,有针对性提出的解决方案。所得到的两种变异体可以部分或几乎完全禁阻自裂解。所使用的方法具有通用性,完全可应于其它的蛋白质的表达过程。
     使用蛋白质交联反应,脂结合能力测定及CD等手段,对RAP及其片段的热力学性质进行了初步研究。
ApoE is one kind of apolipoprotein of 299 amino acids. It can bind to LDL receptor protein, lipid and heparin. It plays important roles in modulating the metabolism of lipid and associated to the type III hyperlipoproteinemia, atherosclerosis, and Alzheimer’s disease (AD). The understanding of the structure and molecular biological function of apoE is important and will help us to prevent and cure those diseases. The structure of apoE N-terminal (apoE1-199) has been solved with X-Ray, apoE C-terminal and full-length apoE are still unknown. ApoE is too big to solve the structure by NMR, so we try to prepare segmental isotopic labeling apoE for NMR study. Receptor-associated protein (RAP) is a chaperon protein of LDL receptor protein, it is consist of 323 amino acid residues. It can bind to the immature LDL receptor and help it refold correctly. In this paper, we study the methodology of preparing the full-length apoE by protein ligation and some property of full length RAP and some domain of RAP.
     In this paper, different ways were tried to prepare the alpha-Cys C-terminal, alpha-thioester N-terminal and carry out ligation. Three ways were tried to prepare alpha-Cys c-terminal: directly to expression, CNBr and Factor was use to cut fusion protein. After introducing reducing agent BME, factor Xa cleavage was found suitable to achieve this goal. To prepare alpha-thioester, apoE N-terminal was subcloning into IMPACT expression system. It is first time to observe that the high yield of protein can be gotten from basic medium, it also be found most protein contain alpha-thioester after thiolysis are easily hydrolysis to carboxyl acid which can’t be used in protein ligation. Different ways were tried to carry out the protein ligation, Intein-mediated protein ligation was found to be the best way to get ligation product. Finally CL-6B heparin column was used to purify to product. Segmental isotopic labeling apoE were prepared in large scale for NMR study.
     In order to block the autocleavage of fusion protein in pTWIN1 vector during expression, two mutants were successfully design base on protein engineering. RAP was also studied with cross-linking, CD and lipid binding assay.
引文
1. Weisgraber, K.H., Apolipoprotein E: structure-function relationships, Adv Protein Chem, 1994, 45: 249-302
    2. Mahley, R.W. and S.C. Rall, Jr., Apolipoprotein E: far more than a lipid transport protein, Annu Rev Genomics Hum Genet, 2000, 1: 507-37
    3. Ye, S., Y. Huang, K. Mullendorff, et al., Apolipoprotein (apo) E4 enhances amyloid {beta} peptide production in cultured neuronal cells: ApoE structure as a potential therapeutic target, Proc Natl Acad Sci U S A, 2005, 102(51): 18700-5
    4. Dong, J., C.A. Peters-Libeu, K.H. Weisgraber, et al., Interaction of the N-terminal domain of apolipoprotein E4 with heparin, Biochemistry, 2001, 40(9): 2826-34
    5. Dong, L.M., S. Parkin, S.D. Trakhanov, et al., Novel mechanism for defective receptor binding of apolipoprotein E2 in type III hyperlipoproteinemia, Nat Struct Biol, 1996, 3(8): 718-22
    6. Segelke, B.W., M. Forstner, M. Knapp, et al., Conformational flexibility in the apolipoprotein E amino-terminal domain structure determined from three new crystal forms: implications for lipid binding, Protein Sci, 2000, 9(5): 886-97
    7. Forstner, M., C. Peters-Libeu, E. Contreras-Forrest, et al., Carboxyl-terminal domain of human apolipoprotein E: expression, purification, and crystallization, Protein Expr Purif, 1999, 17(2): 267-72
    8. Wang, G., G.K. Pierens, W.D. Treleaven, et al., Conformations of human apolipoprotein E(263-286) and E(267-289) in aqueous solutions of sodium dodecyl sulfate by CD and 1H NMR, Biochemistry, 1996, 35(32): 10358-66
    9. Fan, D., Q. Li, L. Korando, et al., A monomeric human apolipoprotein E carboxyl-terminal domain, Biochemistry, 2004, 43(17): 5055-64
    10. Fan, D., L.A. Korando, R.S. Dothager, et al., Complete 1H, 13C and 15N assignments of a monomeric, biologically active apolipoprotein E carboxyl-terminal domain, J Biomol NMR, 2004, 29(3): 419-20
    11. Capila, I. and R.J. Linhardt, Heparin-protein interactions, Angew Chem Int Ed Engl, 2002, 41(3): 391-412
    12. Stratman, N.C., C.K. Castle, B.M. Taylor, et al., Isoform-specific interactions of human apolipoprotein E to an intermediate conformation of human Alzheimer amyloid-beta peptide, Chem Phys Lipids, 2005, 137(1-2): 52-61
    13. Manelli, A.M., W.B. Stine, L.J. Van Eldik, et al., ApoE and Abeta1-42 interactions: effects of isoform and conformation on structure and function, J Mol Neurosci, 2004, 23(3): 235-46
    14. Schneeweis, L.A., V. Koppaka, S. Lund-Katz, et al., Structural analysis of lipoprotein E particles, Biochemistry, 2005, 44(37): 12525-34
    15. Morita, S.Y., M. Nakano, A. Sakurai, et al., Formation of ceramide-enriched domains in lipid particles enhances the binding of apolipoprotein E, FEBS Lett, 2005, 579(7): 1759-64
    16. Raussens, V., J. Drury, T.M. Forte, et al., Orientation and mode of lipid-binding interaction of human apolipoprotein E C-terminal domain, Biochem J, 2005, 387(Pt 3): 747-54
    17. Peters-Libeu, C.A., Y. Newhouse, D.M. Hatters, et al., Model of biologically active apolipoprotein E bound to dipalmitoylphosphatidylcholine, J Biol Chem, 2005
    18. Drury, J. and V. Narayanaswami, Examination of lipid-bound conformation of apolipoprotein E4 by pyrene excimer fluorescence, J Biol Chem, 2005, 280(15): 14605-10
    19. Futamura, M., P. Dhanasekaran, T. Handa, et al., Two-step mechanism of binding of apolipoprotein E to heparin: implications for the kinetics of apolipoprotein E-heparan sulfate proteoglycan complex formation on cell surfaces, J Biol Chem, 2005, 280(7): 5414-22
    20. Kimmerlin, T. and D. Seebach, '100 years of peptide synthesis': ligation methods for peptide and protein synthesis with applications to beta-peptide assemblies, J Pept Res, 2005, 65(2): 229-60
    21. Nilsson, B.L., M.B. Soellner, and R.T. Raines, Chemical synthesis of proteins, Annu Rev Biophys Biomol Struct, 2005, 34: 91-118
    22. Borgia, J.A. and G.B. Fields, Chemical synthesis of proteins, Trends Biotechnol, 2000, 18(6): 243-51
    23. Berman, A.L., E. Kolker, and E.N. Trifonov, Underlying order in protein sequence organization, Proc Natl Acad Sci U S A, 1994, 91(9): 4044-7
    24. Gerstein, M., How representative are the known structures of the proteins in a complete genome? A comprehensive structural census, Fold Des, 1998, 3(6): 497-512
    25. Albericio, F., P. Lloyd-Williams, and E. Giralt, Convergent solid-phase peptide synthesis, Methods Enzymol, 1997, 289: 313-36
    26. Kemp, D.S., S.L. Leung, and D.J. Kerkman, Models that demonstrate peptide bond formation by prior thiol capture. I. Capture by disulfide formation, Tetrahedron, 1981, 22: 181-4
    27. Kemp, D.S. and D.J. Kerkman, Models that demonstrate peptide bond formation by prior thiol capture. II. Capture by organomercury derivatives, Tetrahedron Lett, 1981, 22: 185-6
    28. Kemp, D.S., N.G. Galakatos, S. Dranginis, et al., Peptide synthesis by prior thiol capture. 4. Amide bond formation: the effect of side-chain substituent on the rates of intramolecular O, N-acyl transfer, J. Org. Chem., 1986, 51(3320-4)
    29. Tam, J.P., J. Xu, and K.D. Eom, Methods and strategies of peptide ligation, Biopolymers, 2001, 60(3): 194-205
    30. Tam, J.P., Q. Yu, and Z. Miao, Orthogonal ligation strategies for peptide and protein, Biopolymers, 1999, 51(5): 311-32
    31. Cotton, G.J. and T.W. Muir, Peptide ligation and its application to protein engineering, Chem Biol, 1999, 6(9): R247-56
    32. Kochendoerfer, G.G. and S.B. Kent, Chemical protein synthesis, Curr Opin Chem Biol, 1999, 3(6): 665-71
    33. Schnolzer, M. and S.B.H. Kent, Constructing proteins by dovetailing unprotected synthetic peptides: backboneengineered HIV protease, science, 1992, 256: 221-5
    34. Dawson, P.E., T.W. Muir, I. Clark-Lewis, et al., Synthesis of proteins by native chemical ligation, Science, 1994, 266(5186): 776-9
    35. Dawson, P.E., M.J. Churchill, M.R. Ghadiri, et al., Modulation of reaction in native chemical ligation through the use of thiol additives, J Am Chem Soc, 1997, 119(19): 4325-9
    36. Wieland, V.T., R. Lamber, H.L. Lang, et al., Liebigs Ann. Chem., 1956, 591: 181-95
    37. Liu, C.F., C. Rao, and J.P. Tam, Tetrahedron Lett, 1996, 37: 933-6
    38. Hackeng, T.M., J.H. Griffin, and P.E. Dawson, Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology, Proc Natl Acad Sci U S A, 1999, 96(18): 10068-73
    39. Canne, L.E., S.J. Bark, and S.B.H. Kent, Extending the Applicability of Native Chemical Ligation, J Am Chem Soc, 1996, 118(25): 5891-5896
    40. Lu, W., M.A. Qasim, and S.B.H. Kent, Comparative total syntheses of turkey ovomucoid third domain by both stepwise solide phase peptide synthesis and native chemical ligation, J Am Chem Soc, 1996, 118: 8518-23
    41. Canne, L.E., S.M. Walker, and S.B.H. Kent, A general method for the synthesis of thioester resin linkers for use in the solid phase synthesis of peptide-a-thioacids, Tetrahedron Lett, 1995, 36: 1217-20
    42. Canne, L.E., A.R. Ferre′-D'Amare′, S.K. Burley, et al., Total chemical synthesis of a unique transcription factorrelated protein: cMyc-Max., J Am Chem Soc, 1995, 117: 2998-3007
    43. Tam, J.P., Y.-A. Lu, C.-F. Liu, et al., Peptide synthesis using unprotected peptides through orthogonal coupling methods, Proc Natl Acad Sci U S A, 1995, 92: 12485-9
    44. Zhang, L. and J.P. Tam, Lactone and lactam library synthesis by silver ionassisted orthogonal cyclization of unprotected peptides, J Am Chem Soc, 1999, 121: 3311-20
    45. Zhang, L. and J.P. Tam, Synthesis and application of unprotected cyclic peptides as building bloks for peptide dendrimers, J Am Chem Soc, 1997, 119: 2363-70
    46. Ingenito, R., E. Bianchi, D. Fattori, et al., Solid phase synthesis of peptide C-terminal thioesters by Fmoc/t-Bu chemistry, J Am Chem Soc, 1999, 121: 11369-74
    47. Tam, J.P. and Q. Yu, Methionine ligation strategy in the biomimetic synthesis of parathyroid hormones, Biopolymers, 1998, 46(5): 319-27
    48. Zhang, L. and J. Tam, Orthogonal Coupling of Unprotected Peptide Segments through Histidyl Amino Terminus, Tetrahedron Lett, 1997, 38(1): 3-6
    49. Rai, M. and H. Padh, Expression Systems for production of heterologous proteins, Curr Sci, 2001, 80(9): 1121-1128
    50. Makrides, S.C., Strategies for achieving high-level expression of genes in Escherichia coli, Microbiol Rev, 1996, 60(3): 512-38
    51. Hunt, I., From gene to protein: a review of new and enabling technologies for multi-parallel protein expression, Protein Expr Purif, 2005, 40(1): 1-22
    52. Braun, P. and J. LaBaer, High throughput protein production for functional proteomics, Trends Biotechnol, 2003, 21(9): 383-8
    53. Lesley, S.A., High-throughput proteomics: protein expression and purification in the postgenomic world, Protein Expr Purif, 2001, 22(2): 159-64
    54. van den Heuvel, J. and D. Heinz, "Plug and Play" -expression systems for high-quality production of recombinant proteins for structural anaylsis, Gene Gunct Dis, 2002, 3(1-2): 33-38
    55. Kraft, P., J. Mills, and E. Dratz, Mass spectrometric analysis of cyanogen bromide fragments of integral membrane proteins at the picomole level: application to rhodopsin, Anal Biochem, 2001, 292(1): 76-86
    56. Sorensen, H.P. and K.K. Mortensen, Advanced genetic strategies for recombinant protein expression in Escherichia coli, J Biotechnol, 2005, 115(2): 113-28
    57. Jonasson, P., S. Liljeqvist, P.A. Nygren, et al., Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli, Biotechnol Appl Biochem, 2002, 35(Pt 2): 91-105
    58. Varshavsky, A., The N-end rule pathway of protein degradation, Genes Cells, 1997, 2(1): 13-28
    59. Flynn, J.M., S.B. Neher, Y.I. Kim, et al., Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals, Mol Cell, 2003, 11(3): 671-83
    60. Hayes, C.S., B. Bose, and R.T. Sauer, Proline residues at the C terminus of nascent chains induce SsrA tagging during translation termination, J Biol Chem, 2002, 277(37): 33825-32
    61. Stevens, R.C., Design of high-throughput methods of protein production for structural biology, Structure, 2000, 8(9): R177-85
    62. Nilsson, J., S. Stahl, J. Lundeberg, et al., Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins, Protein Expr Purif, 1997, 11(1): 1-16
    63. Terpe, K., Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems, Appl Microbiol Biotechnol, 2003, 60(5): 523-33
    64. Ryan, M.D. and M. Flint, Virus-encoded proteinases of the picornavirus super-group, J Gen Virol, 1997, 78 ( Pt 4): 699-723
    65. Gross, E. and B. Witkop, The heterogeneity of the S peptide of bovine pancreatic ribonuclease A, Biochemistry, 1967, 6(3): 745-8
    66. Zhang, X., L. Dillen, K. Vanhoutte, et al., Characterization of unstable intermediates and oxidized products formed during cyanogen bromide cleavage of peptides and proteins by electrospray mass spectrometry, Anal Chem, 1996, 68(19): 3422-30
    67. Steers, E., Jr., G.R. Craven, C.B. Anfinsen, et al., Evidence for Nonidentical Chains in the Beta-Galactosidase of Escherichia Coli K12, J Biol Chem, 1965, 240: 2478-84
    68. Gall, W.E., B.A. Cunningham, M.J. Waxdal, et al., The covalent structure of a human gamma G-immunoglobulin. IV. The interchain disulfide bonds, Biochemistry, 1968, 7(5): 1973-82
    69. Kaiser, R. and L. Metzka, Enhancement of cyanogen bromide cleavage yields for methionyl-serine and methionyl-threonine peptide bonds, Anal Biochem, 1999,
    266(1): 1-8
    70. Walker, J.M. 2nd ed. The Protein Protocol Handbook. 2001, Totowa, NJ: Humana Press Inc. 485-91.
    71. Macmillan, D. and L. Arham, Cyanogen bromide cleavage generates fragments suitable for expressed protein and glycoprotein ligation, J Am Chem Soc, 2004, 126(31): 9530-1
    72. Davie, E.W., A brief historical review of the waterfall/cascade of blood coagulation, J Biol Chem, 2003, 278(51): 50819-32
    73. Davie, E.W., K. Fujikawa, and W. Kisiel, The coagulation cascade: initiation, maintenance, and regulation, Biochemistry, 1991, 30(43): 10363-70
    74. Leytus, S.P., D.C. Foster, K. Kurachi, et al., Gene for human factor X: a blood coagulation factor whose gene organization is essentially identical with that of factor IX and protein C, Biochemistry, 1986, 25(18): 5098-102
    75. Wei, A., R.S. Alexander, J. Duke, et al., Unexpected binding mode of tick anticoagulant peptide complexed to bovine factor Xa, J Mol Biol, 1998, 283(1): 147-54
    76. Padmanabhan, K., K.P. Padmanabhan, A. Tulinsky, et al., Structure of human des(1-45) factor Xa at 2.2 A resolution, J Mol Biol, 1993, 232(3): 947-66
    77. Wang, S.X., E. Hur, C.A. Sousa, et al., The extended interactions and Gla domain of blood coagulation factor Xa, Biochemistry, 2003, 42(26): 7959-66
    78. Rosing, J. and G. Tans, Factor V, Int J Biochem Cell Biol, 1997, 29(10): 1123-6
    79. Monteiro, R.Q., Targeting exosites on blood coagulation proteases, An Acad Bras Cienc, 2005, 77(2): 275-80
    80. Furlong, S.T., R.C. Mauger, A.M. Strimpler, et al., Synthesis and physical characterization of a P1 arginine combinatorial library, and its application to the determination of the substrate specificity of serine peptidases, Bioorg Med Chem, 2002, 10(11): 3637-47
    81. Bianchini, E.P., V.B. Louvain, P.E. Marque, et al., Mapping of the catalytic groove preferences of factor Xa reveals an inadequate selectivity for its macromolecule substrates, J Biol Chem, 2002, 277(23): 20527-34
    82. Ludeman, J.P., R.N. Pike, K.M. Bromfield, et al., Determination of the P1', P2' and P3' subsite-specificity of factor Xa, Int J Biochem Cell Biol, 2003, 35(2): 221-5
    83. Jenny, R.J., K.G. Mann, and R.L. Lundblad, A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa, Protein Expr Purif, 2003, 31(1): 1-11
    84. QIAGEN, Protocol 20. Factor Xa Protease treatment of fusion proteins containing a Factor Xa Protease recognition sequence. The QIAexpressionist: A handbook for high-level expression and purification of 6xHis-tagged proteins. 2003. 93-98.
    85. Perler, F.B., E.O. Davis, G.E. Dean, et al., Protein splicing elements: inteins and exteins--a definition of terms and recommended nomenclature, Nucleic Acids Res, 1994, 22(7): 1125-7
    86. Derbyshire, V. and M. Belfort, Lightning strikes twice: intron-intein coincidence, Proc Natl Acad Sci U S A, 1998, 95(4): 1356-7
    87. Pietrokovski, S., Intein spread and extinction in evolution, Trends Genet, 2001, 17(8): 465-72
    88. Chevalier, B.S. and B.L. Stoddard, Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility, Nucleic Acids Res, 2001, 29(18): 3757-74
    89. Liu, X.Q., Protein-splicing intein: Genetic mobility, origin, and evolution, Annu Rev Genet, 2000, 34: 61-76
    90. Gogarten, J.P., A.G. Senejani, O. Zhaxybayeva, et al., Inteins: structure, function, and evolution, Annu Rev Microbiol, 2002, 56: 263-87
    91. Caspi, J., G. Amitai, O. Belenkiy, et al., Distribution of split DnaE inteins in cyanobacteria, Mol Microbiol, 2003, 50(5): 1569-77
    92. Paulus, H., Protein splicing and related forms of protein autoprocessing, Annu Rev Biochem, 2000, 69: 447-96
    93. Pietrokovski, S., Modular organization of inteins and C-terminal autocatalytic domains, Protein Sci, 1998, 7(1): 64-71
    94. Pietrokovski, S., Conserved sequence features of inteins (protein introns) and their use in identifying new inteins and related proteins, Protein Sci, 1994, 3(12): 2340-50
    95. Perler, F.B., InBase, the New England Biolabs Intein Database, Nucleic Acids Res, 1999, 27(1): 346-7
    96. Amitai, G., O. Belenkiy, B. Dassa, et al., Distribution and function of new bacterial intein-like protein domains, Mol Microbiol, 2003, 47(1): 61-73
    97. Dassa, B., H. Haviv, G. Amitai, et al., Protein splicing and auto-cleavage of bacterial intein-like domains lacking a C'-flanking nucleophilic residue, J Biol Chem, 2004, 279(31): 32001-7
    98. Dassa, B., I. Yanai, and S. Pietrokovski, New type of polyubiquitin-like genes with intein-like autoprocessing domains, Trends Genet, 2004, 20(11): 538-42
    99. Noren, C.J., J. Wang, and F.B. Perler, Dissecting the Chemistry of Protein Splicing and Its Applications, Angew Chem Int Ed Engl, 2000, 39(3): 450-466
    100. Paulus, H., Inteins as enzymes, Bioorg Chem, 2001, 29(3): 119-29
    101. Xu, M.Q. and T.C. Evans, Jr., Recent advances in protein splicing: manipulating proteins in vitro and in vivo, Curr Opin Biotechnol, 2005, 16(4): 440-6
    102. Xu, M.Q., M.W. Southworth, F.B. Mersha, et al., In vitro protein splicing of purified precursor and the identification of a branched intermediate, Cell, 1993, 75(7): 1371-7
    103. Wallace, C.J., The curious case of protein splicing: mechanistic insights suggested by protein semisynthesis, Protein Sci, 1993, 2(5): 697-705
    104. Xu, M.Q., D.G. Comb, H. Paulus, et al., Protein splicing: an analysis of the branched intermediate and its resolution by succinimide formation, Embo J, 1994, 13(23): 5517-22
    105. Dawson, P.E. and S.B. Kent, Synthesis of native proteins by chemical ligation, Annu Rev Biochem, 2000, 69: 923-60
    106. Ichiyanagi, K., Y. Ishino, M. Ariyoshi, et al., Crystal structure of an archaeal intein-encoded homing endonuclease PI-PfuI, J Mol Biol, 2000, 300(4): 889-901
    107. Klabunde, T., S. Sharma, A. Telenti, et al., Crystal structure of GyrA intein from Mycobacterium xenopi reveals structural basis of protein splicing, Nat Struct Biol, 1998, 5(1): 31-6
    108. Mizutani, R., S. Nogami, M. Kawasaki, et al., Protein-splicing reaction via a thiazolidine intermediate: crystal structure of the VMA1-derived endonuclease bearing the N and C-terminal propeptides, J Mol Biol, 2002, 316(4): 919-29
    109. Fukuda, T., Y. Nagai, and Y. Ohya, Molecular mechanism of VDE-initiated intein homing in yeast nuclear genome, Adv Biophys, 2004, 38: 215-32
    110. Sun, P., S. Ye, S. Ferrandon, et al., Crystal Structures of an Intein from the Split dnaE Gene of Synechocystis sp. PCC6803 Reveal the Catalytic Model Without the Penultimate Histidine and the Mechanism of Zinc Ion Inhibition of Protein Splicing, J Mol Biol, 2005, 353(5): 1093-105
    111. Ding, Y., M.Q. Xu, I. Ghosh, et al., Crystal structure of a mini-intein reveals a conserved catalytic module involved in side chain cyclization of asparagine during protein splicing, J Biol Chem, 2003, 278(40): 39133-42
    112. Poland, B.W., M.Q. Xu, and F.A. Quiocho, Structural insights into the protein splicing mechanism of PI-SceI, J Biol Chem, 2000, 275(22): 16408-13
    113. Southworth, M.W., E. Adam, D. Panne, et al., Control of protein splicing by intein fragment reassembly, Embo J, 1998, 17(4): 918-26
    114. Mills, K.V., B.M. Lew, S. Jiang, et al., Protein splicing in trans by purified N- and C-terminal fragments of the Mycobacterium tuberculosis RecA intein, Proc Natl Acad Sci U S A, 1998, 95(7): 3543-8
    115. Lew, B.M., K.V. Mills, and H. Paulus, Protein splicing in vitro with a semisynthetic two-component minimal intein, J Biol Chem, 1998, 273(26): 15887-90
    116. Lew, B.M., K.V. Mills, and H. Paulus, Characteristics of protein splicing in trans mediated by a semisynthetic split intein, Biopolymers, 1999, 51(5):
    355-62
    117. Shingledecker, K., S.Q. Jiang, and H. Paulus, Molecular dissection of the Mycobacterium tuberculosis RecA intein: design of a minimal intein and of a trans-splicing system involving two intein fragments, Gene, 1998, 207(2): 187-95
    118. Xu, M.Q. and T.C. Evans, Jr., Intein-mediated ligation and cyclization of expressed proteins, Methods, 2001, 24(3): 257-77
    119. Evans, T.C., Jr., J. Benner, and M.Q. Xu, The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins, J Biol Chem, 1999, 274(26): 18359-63
    120. Mathys, S., T.C. Evans, I.C. Chute, et al., Characterization of a self-splicing mini-intein and its conversion into autocatalytic N- and C-terminal cleavage elements: facile production of protein building blocks for protein ligation, Gene, 1999, 231(1-2): 1-13
    121. Evans, T.C., Jr., J. Benner, and M.Q. Xu, The in vitro ligation of bacterially expressed proteins using an intein from Methanobacterium thermoautotrophicum, J Biol Chem, 1999, 274(7): 3923-6
    122. Southworth, M.W., K. Amaya, T.C. Evans, et al., Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein, Biotechniques, 1999, 27(1): 110-4, 116, 118-20
    123. Chong, S., Y. Shao, H. Paulus, et al., Protein splicing involving the Saccharomyces cerevisiae VMA intein. The steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system, J Biol Chem, 1996, 271(36): 22159-68
    124. Chong, S., F.B. Mersha, D.G. Comb, et al., Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element, Gene, 1997, 192(2): 271-81
    125. Chong, S., G.E. Montello, A. Zhang, et al., Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step, Nucleic Acids Res, 1998, 26(22): 5109-15
    126. Chong, S., K.S. Williams, C. Wotkowicz, et al., Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein, J Biol Chem, 1998, 273(17): 10567-77
    127. Machova, Z., C. Muhle, U. Krauss, et al., Cellular internalization of enhanced green fluorescent protein ligated to a human calcitonin-based carrier peptide, Chembiochem, 2002, 3(7): 672-7
    128. Ozawa, T., T.M. Takeuchi, A. Kaihara, et al., Protein splicing-based reconstitution of split green fluorescent protein for monitoring protein-protein interactions in bacteria: improved sensitivity and reduced screening time, Anal Chem, 2001, 73(24): 5866-74
    129. Ozawa, T., S. Nogami, M. Sato, et al., A fluorescent indicator for detecting protein-protein interactions in vivo based on protein splicing, Anal Chem, 2000, 72(21): 5151-7
    130. Strickland, D.K., J.D. Ashcom, S. Williams, et al., Sequence identity between the alpha 2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor, J Biol Chem, 1990, 265(29): 17401-4
    131. Herz, J., J.L. Goldstein, D.K. Strickland, et al., 39-kDa protein modulates binding of ligands to low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor, J Biol Chem, 1991, 266(31): 21232-8
    132. Herz, J., U. Hamann, S. Rogne, et al., Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor, Embo J, 1988, 7(13): 4119-27
    133. Hussaini, I.M., M.D. Brown, L.R. Karns, et al., Epidermal growth factor differentially regulates low density lipoprotein receptor-related protein gene expression in neoplastic and fetal human astrocytes, Glia, 1999, 25(1): 71-84
    134. Willnow, T.E., The low-density lipoprotein receptor gene family: multiple roles in lipid metabolism, J Mol Med, 1999, 77(3): 306-15
    135. Herz, J. and D.K. Strickland, LRP: a multifunctional scavenger and signaling receptor, J Clin Invest, 2001, 108(6): 779-84
    136. Willnow, T.E., A. Nykjaer, and J. Herz, Lipoprotein receptors: new roles for ancient proteins, Nat Cell Biol, 1999, 1(6): E157-62
    125. Chong, S., G.E. Montello, A. Zhang, et al., Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step, Nucleic Acids Res, 1998, 26(22): 5109-15
    126. Chong, S., K.S. Williams, C. Wotkowicz, et al., Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein, J Biol Chem, 1998, 273(17): 10567-77
    127. Machova, Z., C. Muhle, U. Krauss, et al., Cellular internalization of enhanced green fluorescent protein ligated to a human calcitonin-based carrier peptide, Chembiochem, 2002, 3(7): 672-7
    128. Ozawa, T., T.M. Takeuchi, A. Kaihara, et al., Protein splicing-based reconstitution of split green fluorescent protein for monitoring protein-protein interactions in bacteria: improved sensitivity and reduced screening time, Anal Chem, 2001, 73(24): 5866-74
    129. Ozawa, T., S. Nogami, M. Sato, et al., A fluorescent indicator for detecting protein-protein interactions in vivo based on protein splicing, Anal Chem, 2000, 72(21): 5151-7
    130. Strickland, D.K., J.D. Ashcom, S. Williams, et al., Sequence identity between the alpha 2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor, J Biol Chem, 1990, 265(29): 17401-4
    131. Herz, J., J.L. Goldstein, D.K. Strickland, et al., 39-kDa protein modulates binding of ligands to low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor, J Biol Chem, 1991, 266(31): 21232-8
    132. Herz, J., U. Hamann, S. Rogne, et al., Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor, Embo J, 1988, 7(13): 4119-27
    133. Hussaini, I.M., M.D. Brown, L.R. Karns, et al., Epidermal growth factor differentially regulates low density lipoprotein receptor-related protein gene expression in neoplastic and fetal human astrocytes, Glia, 1999, 25(1): 71-84
    134. Willnow, T.E., The low-density lipoprotein receptor gene family: multiple roles in lipid metabolism, J Mol Med, 1999, 77(3): 306-15
    135. Herz, J. and D.K. Strickland, LRP: a multifunctional scavenger and signaling receptor, J Clin Invest, 2001, 108(6): 779-84
    136. Willnow, T.E., A. Nykjaer, and J. Herz, Lipoprotein receptors: new roles for ancient proteins, Nat Cell Biol, 1999, 1(6): E157-62
    149. Hendrick, J.P. and F.U. Hartl, Molecular chaperone functions of heat-shock proteins, Annu Rev Biochem, 1993, 62: 349-84
    150. Vash, B., N. Phung, S. Zein, et al., Three complement-type repeats of the low-density lipoprotein receptor-related protein define a common binding site for RAP, PAI-1, and lactoferrin, Blood, 1998, 92(9): 3277-85
    151. Migliorini, M.M., E.H. Behre, S. Brew, et al., Allosteric modulation of ligand binding to low density lipoprotein receptor-related protein by the receptor-associated protein requires critical lysine residues within its carboxyl-terminal domain, J Biol Chem, 2003, 278(20): 17986-92
    152. Hsieh, J.C., L. Lee, L. Zhang, et al., Mesd encodes an LRP5/6 chaperone essential for specification of mouse embryonic polarity, Cell, 2003, 112(3): 355-67
    153. Willnow, T.E., S.A. Armstrong, R.E. Hammer, et al., Functional expression of low density lipoprotein receptor-related protein is controlled by receptor-associated protein in vivo, Proc Natl Acad Sci U S A, 1995, 92(10): 4537-41
    154. Willnow, T.E., A. Rohlmann, J. Horton, et al., RAP, a specialized chaperone, prevents ligand-induced ER retention and degradation of LDL receptor-related endocytic receptors, Embo J, 1996, 15(11): 2632-9
    155. Bu, G. and S. Rennke, Receptor-associated protein is a folding chaperone for low density lipoprotein receptor-related protein, J Biol Chem, 1996, 271(36): 22218-24
    156. Obermoeller, L.M., Z. Chen, A.L. Schwartz, et al., Ca2+ and receptor-associated protein are independently required for proper folding and disulfide bond formation of the low density lipoprotein receptor-related protein, J Biol Chem, 1998, 273(35): 22374-81
    157. Savonen, R., L.M. Obermoeller, J.S. Trausch-Azar, et al., The carboxyl-terminal domain of receptor-associated protein facilitates proper folding and trafficking of the very low density lipoprotein receptor by interaction with the three amino-terminal ligand-binding repeats of the receptor, J Biol Chem, 1999, 274(36): 25877-82
    158. Sato, A., Y. Shimada, J. Herz, et al., 39-kDa receptor-associated protein (RAP) facilitates secretion and ligand binding of extracellular region of very-low-density-lipoprotein receptor: implications for a distinct pathway from low-density-lipoprotein receptor, Biochem J, 1999, 341 ( Pt 2): 377-83
    159. Nielsen, P.R., L. Ellgaard, M. Etzerodt, et al., The solution structure of the N-terminal domain of alpha2-macroglobulin receptor-associated protein, Proc Natl Acad Sci U S A, 1997, 94(14): 7521-5
    160. Ellgaard, L., T.L. Holtet, P.R. Nielsen, et al., Dissection of the domain architecture of the alpha2macroglobulin-receptor-associated protein, Eur J Biochem, 1997, 244(2): 544-51
    161. Medved, L.V., M. Migliorini, I. Mikhailenko, et al., Domain organization of the 39-kDa receptor-associated protein, J Biol Chem, 1999, 274(2): 717-27
    162. Rall, S.C., Jr., P. Ye, G. Bu, et al., The domain structure of human receptor-associated protein. Protease sensitivity and guanidine HCl denaturation, J Biol Chem, 1998, 273(37): 24152-7
    163. Lazic, A., K. Dolmer, D.K. Strickland, et al., Structural organization of the receptor associated protein, Biochemistry, 2003, 42(50): 14913-20
    164. Erlanson, D.A., M. Chytil, and G.L. Verdine, The leucine zipper domain controls the orientation of AP-1 in the NFAT.AP-1.DNA complex, Chem Biol, 1996, 3(12): 981-91
    165. Camarero, J.A., A. Shekhtman, E.A. Campbell, et al., Autoregulation of a bacterial sigma factor explored by using segmental isotopic labeling and NMR, Proc Natl Acad Sci U S A, 2002, 99(13): 8536-41
    166. Huse, M., M.N. Holford, J. Kuriyan, et al., Semisythesis of Hyperphosphorylated Type I TGFB Receptor: Addressing the Mechanism of Kinase Activation, J Am Chem Soc, 2000, 122(34): 8337-8338
    167. Camarero, J.A. and T.W. Muir, Biosynthesis of a Head-to-Tail Cyclized Protein with Improved Biological Activity, J Am Chem Soc, 1999, 121(23): 5597-5598
    168. Xu, R., B. Ayers, D. Cowburn, et al., Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies, Proc Natl Acad Sci U S A, 1999, 96(2): 388-93
    169. Pal, G., F. Santamaria, A.A. Kossiakoff, et al., The first semi-synthetic serine protease made by native chemical ligation, Protein Expr Purif, 2003, 29(2): 185-92
    170. Flavell, R.R., M. Huse, M. Goger, et al., Efficient semisynthesis of a tetraphosphorylated analogue of the Type I TGFbeta receptor, Org Lett, 2002, 4(2): 165-8
    171. Tolber, T.J. and C.H. Wong, New Methods for Proteomic Research: Preparation of Proteins with N-Terminal Cysteines for Labeling and Conjugation, Angew Chem Int Ed Engl, 2002, 41(12): 2171-2174
    159. Nielsen, P.R., L. Ellgaard, M. Etzerodt, et al., The solution structure of the N-terminal domain of alpha2-macroglobulin receptor-associated protein, Proc Natl Acad Sci U S A, 1997, 94(14): 7521-5
    160. Ellgaard, L., T.L. Holtet, P.R. Nielsen, et al., Dissection of the domain architecture of the alpha2macroglobulin-receptor-associated protein, Eur J Biochem, 1997, 244(2): 544-51
    161. Medved, L.V., M. Migliorini, I. Mikhailenko, et al., Domain organization of the 39-kDa receptor-associated protein, J Biol Chem, 1999, 274(2): 717-27
    162. Rall, S.C., Jr., P. Ye, G. Bu, et al., The domain structure of human receptor-associated protein. Protease sensitivity and guanidine HCl denaturation, J Biol Chem, 1998, 273(37): 24152-7
    163. Lazic, A., K. Dolmer, D.K. Strickland, et al., Structural organization of the receptor associated protein, Biochemistry, 2003, 42(50): 14913-20
    164. Erlanson, D.A., M. Chytil, and G.L. Verdine, The leucine zipper domain controls the orientation of AP-1 in the NFAT.AP-1.DNA complex, Chem Biol, 1996, 3(12): 981-91
    165. Camarero, J.A., A. Shekhtman, E.A. Campbell, et al., Autoregulation of a bacterial sigma factor explored by using segmental isotopic labeling and NMR, Proc Natl Acad Sci U S A, 2002, 99(13): 8536-41
    166. Huse, M., M.N. Holford, J. Kuriyan, et al., Semisythesis of Hyperphosphorylated Type I TGFB Receptor: Addressing the Mechanism of Kinase Activation, J Am Chem Soc, 2000, 122(34): 8337-8338
    167. Camarero, J.A. and T.W. Muir, Biosynthesis of a Head-to-Tail Cyclized Protein with Improved Biological Activity, J Am Chem Soc, 1999, 121(23): 5597-5598
    168. Xu, R., B. Ayers, D. Cowburn, et al., Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies, Proc Natl Acad Sci U S A, 1999, 96(2): 388-93
    169. Pal, G., F. Santamaria, A.A. Kossiakoff, et al., The first semi-synthetic serine protease made by native chemical ligation, Protein Expr Purif, 2003, 29(2): 185-92
    170. Flavell, R.R., M. Huse, M. Goger, et al., Efficient semisynthesis of a tetraphosphorylated analogue of the Type I TGFbeta receptor, Org Lett, 2002, 4(2): 165-8
    171. Tolber, T.J. and C.H. Wong, New Methods for Proteomic Research: Preparation of Proteins with N-Terminal Cysteines for Labeling and Conjugation, Angew Chem Int Ed Engl, 2002, 41(12): 2171-2174