BaCeO_3基质子导体的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用高温固相反应法,制备不同煅烧温度的质子导体BaCe0.7Nb0.1Y0.2O3-δ,掺杂不同浓度的质子导体BaCe0.8-xNbxGd0.2O3-δ(0≤x≤0.45)和掺杂不同元素的质子导体BaCe0.7M0.1Y0.2O3-δ(M=Zr, Ti, Zn, Sn, Nb)。采用XRD、SEM及EIS等技术分别研究所制备材料的物相结构、微观形貌和电导率。研究了其在含有水蒸气、H2和CO2气氛中的稳定性。分别以BaCe0.7Zn0.1Y0.2O3-δ:Ce0.8Y0.2O2=5:5(体积比,传感器1)和6:4(传感器2)的混合导体为致密扩散层,以质子导体BaCe0.7Zn0.1Y0.2O3-δ为固体电解质,制备了极限电流型氢气传感器,对氢气传感器的氢敏性能进行了研究。研究结果表明:所制备的质子导体均为钙钛矿结构。BaCe0.7Nb0.1Y0.2O3-δ烧结样品的致密性随着煅烧温度的升高而增加,与热力学计算结果一致;700℃时样品在含有水蒸气和氢气的气氛中稳定性良好,但在纯CO2气氛中不够稳定;在湿润4000ppmH2/Ar气氛下,粉体煅烧温度不同的样品电导率相差不大;质子导体BaCe0.7Nb0.1Y0.2O3-δ的最佳煅烧温度为1300℃。
     BaCe0.8-xNbxGd0.2O3-δ(0≤x≤0.45)烧结样品的致密性随着x值的增大而增加;700℃时该系列质子导体对水的稳定性良好,对纯CO2的稳定性随着x值的增大而提高,而该系列质子导体在800℃时对纯CO2的稳定性优于700℃,与热力学计算结果一致;在湿润4000ppmH2/Ar气氛下,其电导率随着x值的增大而减小;x=0.1的烧结样品性能最好。
     BaCe0.7M0.1Y0.2O3-δ(M=Zr, Ti, Zn, Sn, Nb)烧结样品的致密性由好到差依次为Zn、Nb、Ti、Sn、Zr。700℃时所有烧结样品在含有水蒸气和氢气的气氛中表现出良好的稳定性,但在纯CO2气氛中不够稳定;在湿润4000ppmH2/Ar气氛下,Ti掺杂的烧结样品电导率最小,Zr掺杂的烧结样品电导率最大。
     传感器1和传感器2在工作温度为700℃、氢浓度为50~999ppm范围内、电压为0.4V时,响应电流与氢浓度存在良好的线性关系,相关系数分别为0.998和0.995;灵敏度分别为3.137和2.349μA·ppm-1。
Proton conductors BaCe0.7Nb0.1Y0.2O3-δin different calcination temperature, proton conductor BaCe0.8-xNbxGd0.2O3-δ(0≤x≤0.45) doped with different concentrations and proton conductor BaCe0.7M0.1Y0.2O3-δ(M=Zr, Ti, Zn, Sn, Nb) doped with different elements were prepared by high-temperature solid-state reaction method. Through using the technology of XRD, SEM and EIS, phase structure, micro-morphology and electrical conductivity of the materials were studied respectively. The stability in the atmosphere containing water vapor, H2 and CO2 was also studied. The limiting current hydrogen sensors were prepared with the dense diffusion layer of mixed conductors BaCe0.7Zn0.1Y0.2O3-δ: Ce0.8Y0.2O2=5:5(volume ratio, sensor 1) and 6:4(sensor 2) and with the solid electrolyte of BaCe0.7Zn0.1Y0.2O3-δ, then the hydrogen-sensitive properties of it were studied.
     The results showed that all of proton conductors formed perovskite structure. The densification of sintered samples of BaCe0.7Nb0.1Y0.2O3-δincreased with the calcination temperature of powders raised. This conclusion was also consistent with thermodynamic calculations. At 700℃, the stability of all the sintered samples was good in the atmosphere containing water vapor and H2, but it was poor in the atmosphere of pure CO2. In wet 4000ppmH2/Ar atmosphere, the conductivity of sintered samples of different calcination temperature was or less. The optimal calcination temperature of proton conductor BaCe0.7Nb0.1Y0.2O3-δwas at 1300℃.
     The densification of sintered samples of BaCe0.8-xNbxGd0.2O3-δ(0≤x≤0.45) increased with the value of x increased. At 700℃, the stability of all proton conductors was good in the atmosphere containing water vapor, and the stability increased with the value of x increased in pure CO2. But the stability of all proton conductors at 800℃was better than at 700℃in the atmosphere of pure CO2. This conclusion was also consistent with thermodynamic calculations. In wet 4000ppmH2/Ar atmosphere, the conductivity decreased with the value of x increased. When x = 0.1, the property of the sintered samples was best.
     The densification of sintered samples BaCe0.7M0.1Y0.2O3-δ(M=Zr, Ti, Zn, Sn, Nb) from good to poor was followed by Zn, Nb, Ti, Sn, Zr. At 700℃, the stability of all the sintered samples was poor in the atmosphere of pure CO2, but it was good in the atmosphere containing water vapor and H2. In wet 4000ppmH2/Ar atmosphere, the conductivity of sintered samples of Ti-doped and Zr-doped was the minimum and maximum respectively.
     At 700℃, there was a good linear relationship between response current at 0.4V and hydrogen concentration, hydrogen concentration was in the range of 50~999ppm, of sensor 1 and sensor 2. The correlation coefficient was 0.998 and 0.995, and the sensitivity was 3.137 and 2.349μA ? ppm-1 at 700℃, respectively.
引文
[1] Iwahara H, Esaka T, Uchida H, et al. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production [J]. Solid State Ionics, 1981, 3-4: 359-363.
    [2] Uchida H, Maeda N, Iwahara H. Relation between proton and hole conduction in SrCeO3-based solid electrolytes under water-containing atmospheres at high temperatures [J]. Solid State Ionics, 1983, 11(2): 117-124.
    [3] Zhong Z M. Stability and conductivity study of the BaCe0.9-xZrxY0.1O2.95 systems [J]. Solid State Ionics, 2007, 178(3-4): 213-220.
    [4] Yajima T, Koide K, Fukatsu N, et al. A new hydrogen sensor for molten aluminum [J]. Sensors and Actuators B, 1993, 14(1-3): 697-699.
    [5] Yajima T, Koide K, Takai H, et al. Application of hydrogen sensor using proton conductive ceramics as a solid electrolyte to aluminum casting industries [J]. Solid State Ionics, 1995, 79: 333-337.
    [6] Iwahara H, Uchida H, Ono K, et al. Proton conduction in sintered oxides based on BaCeO3 [J]. Journal of The Electrochemical Society, 1988, 135(2): 529-533.
    [7]王记江,李东升,胡怀明,等. BaCeO3高温质子导体研究进展[J].延安大学学报(自然科学版), 2006, 4(25): 60-64.
    [8] Ma G L, Shimura T, Iwahara H. Ionic conduction and nonstoichiometry in BaxCe0.90Y0.10O3-δ[J]. Solid State Ionics, 1998, 110(1-2): 103-110.
    [9] Truls N. Proton conduction in oxides [J]. Solid State Ionics, 1990, 40-41: 857-862.
    [10]马桂林,陈蓉,仇立干. Ba0.98Ce0.90Y0.10O3-δ固体电解质的离子导电性[J].功能材料, 2002, 4 (33): 418-419,421.
    [11] Bonanos N, Knight K S, Ellis B. Perovskite solid electrolytes: structure, transport properties and fuel cell applications [J]. Solid State lonics, 1995, 79: 161.
    [12] Knight K S. The crystal-structures of some doped and undoped alkaline-earth cerate perovskite [J]. Mater.Res.Bull, 1995, 30(3): 347.
    [13] Bi L, Zhang S Q, Fang S M, et al. A novel anode supported BaCe0.7Ta0.1Y0.2O3-δelectrolyte membrane for proton-conducting solid oxide fuel cell [J]. Electrochemistry Communications, 2008, 10(10): 1598-1601.
    [14] Iwahara H, Uchida H. High temperature fuel and steam electrolysis cells using protonconduction solid electrolyte [J]. Journal of Power Sources, 1982, 7(3): 293-301.
    [15]王常珍.固体电解质和电化学传感器[M].北京:冶金工业出版社,2000.
    [16]李志杰.钙钛矿型高温质子导体的合成及其在电化学合成氨中的应用[D].乌鲁木齐:新疆大学,2005.
    [17] Iwahara H, Yajima T, Hibino T, et al. Protonic conduction in calcium, strontium and barium zirconates [J]. Solid State Ionics, 1993, 61(1-3): 65-69.
    [18] Zuo C D, Lee T H, Dorris S E, et al. Composite Ni-Ba(Zr0.1Ce0.7Y0.2)O3 membrane for hydrogen separation [J]. Journal of Power Sources, 2006, 159(2): 1291-1295.
    [19] Emiliana F, Alessandra D E, Elisabetta D B, et al. Tailoring the chemical stability of Ba(Ce0.8-xZrx)Y0.2O3-δprotonic conductors for intermediate temperature solid oxide fuel cells (IT-SOFCs) [J]. Solid State Ionics, 2008, 179(15-16): 558-564.
    [20] Zuo C D, Zha S W, Liu M L, et al. Ba(Zr0.1Ce0.7Y0.2)O3-δas an electrolyte for low-temperature solid-oxide fuel cells [J]. Advanced Materials, 2006, 24(18): 3317-3320.
    [21] Xie K, Yan R Q, Jiang Y Z, et al. A simple and easy one-step fabrication of thin BaZr0.1Ce0.7Y 0.2O3-δelectrolyte membrane for solid oxide fuel cells [J].Journal of Membrane Science, 2008, 325(1): 6-10.
    [22] Guo Y M, Lin Y, Ran R, et al. Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3-δ(0.0≤y≤0.8) for fuel cell applications [J]. Journal of Power Sources, 2009, 193(2): 400-407.
    [23]吕敬德.质子导体制备、性能研究及在氢传感器中的应用[D].唐山:河北理工大学,2007.
    [24] Lv J D, Wang L, Fan L H, et al. Chemical stability of doped BaCeO3-BaZrO3 solid solutions in different atmospheres [J]. Journal of Rare Earths, 2008, 26(4): 505-510.
    [25] Shimada T, Wenb C, Taniguchi C, et al. The high temperature proton conductor BaZr0.4Ce0.4In 0.2O3-δ[J]. Journal of Power Sources, 2004, 131(1-2): 289-292.
    [26] Noboru T, Tomohiro K, Chiharu N, et al. Characteristics of novel BaZr0.4Ce0.4In0.2O3 proton conducting ceramics and their application to hydrogen sensors [J]. Solid State Ionics, 2005, 176(39-40): 2979-2983.
    [27] Kreuer K D. On the development of proton conducting materials for technological applications [J]. Solid State Ionics, 1997, 97(1-4): 1-15.
    [28] Xie K, Yan R Q, Chen X R, et al. A stable and easily sintering BaCeO3-based proton-conductive electrolyte [J]. Journal of Alloys and Compounds, 2009, 473(1-2): 323-329.
    [29] Xie K, Yan R Q, Liu X Q. The chemical stability and conductivity of BaCe0.9-xYxSn0.1O3-δsolid proton conductor for SOFC [J]. Journal of Alloys and Compounds, 2009, 479(1-2): L36-L39.
    [30] Xie K, Yan R Q, Liu X Q. A novel anode supported BaCe0.4Zr0.3Sn0.1Y0.2O3-δelectrolyte membrane for proton conducting solid oxide fuel cells [J]. Electrochemistry Communications, 2009, 11(8): 1618-1622.
    [31] Xie K, Yan R Q, Xu X X, et al. A stable and thin BaCe0.7Nb0.1Gd0.2O3-δmembrane prepared by simple all-solid-state process for SOFC [J]. Journal of Power Sources, 2009, 187(2): 403-406.
    [32] Xie K, Yan R Q, Xu X X, et al. The chemical stability and conductivity of BaCe0.9-xYxNb0.1O3-σproton-conductive electrolyte for SOFC [J]. Materials Research Bulletin, 2009, 44(7): 1474-1480.
    [33] Xie K, Yan R Q, Chen X R, et al. A new stable BaCeO3-based proton conductor for intermediate-temperature solid oxide fuel cells [J]. Journal of Alloys and Compounds, 2009, 472(1-2): 551-555.
    [34] Xie K, Yan R Q, Liu X Q. Stable BaCe0.7Ti0.1Y0.2O3-δproton conductor for solid oxide fuel cells [J]. Journal of Alloys and Compounds, 2009, 479(1-2): L40-L42.
    [35] Pasierd P, Rekas M. Properties of BaCe1-xTixO3 materials for hydrogen electrochemical separators [J]. Journal of Power Sources, 2008, 181(1): 17-23.
    [36] Bi L, Zhang S Q, Fang S M, et al. A novel anode supported BaCe0.7Ta0.1Y0.2O3-δelectrolyte membrane for proton-conducting solid oxide fuel cell [J]. Electrochemistry Communications, 2008, 10(10): 1598-1601.
    [37] Bi L, Fang S M, Tao Z T, et al. Influence of anode pore forming additives on the densification of supported BaCe0.7Ta0.1Y0.2O3-δelectrolyte membranes based on a solid state reaction [J]. Journal of the European Ceramic Society, 2009, 29(12): 2567-2573.
    [38] Tetsuo S, Hiroomi T, Hiroshige M, et al. Influence of the transition-metal doping on conductivity of a BaCeO3-based protonic conductor [J]. Solid State Ionics, 2005, 176(39-40): 2945-2950.
    [39] Shima D, Haile S M. The influence of cation non-stoichiometry on the properties of undoped and gadolinia-doped barium cerate [J]. Solid State Ionics, 1997, 97(1-4): 443-455.
    [40] Ma G L, Shimura T, Iwahara H. Ionic conduction and nonstoichiometry in BaxCe0.90Y0.10O3-α[J]. Solid State Ionics, 1998, 110(1-2): 103-110.
    [41]陈蓉. BaxCe0.8RE0.2O3-α固体电解质离子导电性及其燃料电池性能研究[D].苏州:苏州大学,2003.
    [42]仇立干. BaxCe0.8RE0.2O3-α陶瓷的合成、结构、离子导电性及其燃料电池性能[D].苏州:苏州大学,2005.
    [43]娄向东,赵晓华,成庆堂. ABO3钙钛矿复合氧化物研究进展[J].传感器技术, 2002, 21(7):5-8,11.
    [44]张翠娟,赵海雷,王治峰,等. BaCe0.5Zr0.4Y0.1O3-δ粉体的溶胶-凝胶法和高温固相法制备及性能表征[J].中国稀土学报, 2008, 26(4): 405-415.
    [45]宿新泰,燕青芝,葛昌存.溶胶-凝胶法低温自燃合成BaCe0.9Nd0.1O3-δ粉体[J].中国粉体技术, 2004, (6): 24-27.
    [46]梅辉,冯丽萍,费敬银.氢传感器材料前驱粉体的低温制备[J].腐蚀与防护, 2004, 25(6): 252-255.
    [47] Ding H P, Lin B, Fang D R, et al. BaZr0.1Ce0.7Y0.2O3-δproton-conducting electrolyte prepared by gel-casting for low-temperature solid oxide fuel cells [J]. Journal of Alloys and Compounds, 2009, 474(1-2): 364-369.
    [48]庞兆宝,孟波,谭小耀.高温质子导体Ba(Ce0.8Zr0.2)0.9Y0.1O3-δ的合成与性能[J].中国有色金属学报, 2006, 16(5): 558-561.
    [49]王力,卢建树,姚远. Pechini法合成BaCe0.7Zr0.2Gd0.1O3-δ质子导体[J].浙江化工, 2007, 38(6): 4-6,3.
    [50] Su X T, Yan Q Z, Ma X H, et al. Effect of co-dopant addition on the properties of yttrium and neodymium doped barium cerate electrolyte [J]. Solid State Ionics, 2006, 177(11-12): 1041-1045.
    [51]谷臣清.材料工程基础[M].北京:机械工业出版社,2004.
    [52] Zhang C J, Zhao H L, Xu N S, et al. Influence of ZnO addition on the properties of high temperature proton conductor Ba1.03Ce0.5Zr0.4Y0.1O3-δsynthesized via citrate-nitrate method [J]. International Journal of Hydrogen Energy, 2009, 34(6): 2739-2746.
    [53] Abul K A, John T S I. High density and low temperature sintered proton conductor BaCe0.5Zr 0.35Sc0.1Zn0.05O3-δ[J]. Solid State Ionics, 2008, 179(19-20): 678-682.
    [54] Costa R, Grunbaum N, Berger M H, et al. On the use of NiO as sintering additive for BaCe0.9Y0.1O3-α[J]. Solid State Ionics, 2009, 180(11-13): 891-895.
    [55] Gorbova E, Maragou V, Medvedev D, et al. Influence of sintering additives of transition metals on the properties of gadolinium-doped barium cerate [J]. Solid State Ionics, 2008, 179(21-26): 887-890.
    [56] Duval S B C, Holtappels P, Stimming U, et al. Effect of minor element addition on theelectrical properties of BaZr0.9Y0.1O3-δ[J]. Solid State Ionics, 2008, 179(21-26): 1112-1115.
    [57] Qi S W, Lin Y S. Electrical conduction and hydrogen permeation through mixed proton-electron conducting strontium cerate membranes [J]. Solid State Ionics, 2000, 130(1-2): 149-156.
    [58] Guan J, Dorris S E, Balachandran U, et al. Transport properties of SrCe0.95Y0.05O3-δand its application for hydrogen separation [J]. Solid State Ionics, 1998, 110(3-4): 303-310.
    [59] Hamakawa S, Hibino T, Iwahara H. Electrochemical hydrogen permeation in a proton-hole mixed conductor and its application to a membrane reactor [J]. The Electrochemical Society, Inc, 1994, 141(7): 1720-1725.
    [60] Mather G C, Figueiredo F M, Fagg D P, et al. Synthesis and characterisation of Ni-SrCe0.9Yb 0.1O3-δcermet anodes for protonic ceramic fuel cells [J]. Solid State Ionics. 2003, 158(3-4): 333-342.
    [61]李光涛.混合导体透氢膜材料的开发及相关材料制备技术的研究[D].大连:中国科学院大连化学物理研究所,2001.
    [62]杨静.致密金属陶瓷型氢分离膜的透氢性能研究[D].合肥:中国科学技术大学,2007.
    [63] Matsumoto H, Shimura T, Higuchi T, et al. Protonic-electronic mixed conduction and hydrog- en permeation in BaCe0.9-xY0.1RuxO3-α[J]. Journal of The Electrochemical Society, 2005, 152(3): A488-A492.
    [64]吕敬德,王岭,郭红霞,等.质子-电子混合导体透氢膜[J].化工新型材料, 2008, 36(3): 1-4.
    [65] Garzon F, Raistrick I, Brosha E, et al. Dense diffusion barrier limiting current oxygen sensors [J]. Sensors and Actuators B, 1998, 50(2): 125-130.
    [66] Kroll A V, Smorchkov V I. Electrochemical solid-state micro-sensor for hydrogen determinati- on [J]. Sensors and Actuators B, 1996, 34(1-3): 462-465.
    [67] Shin S, Huang H H, Iwahara H, et al. Protonic conduction in the single crystals of SrZrO3 and SrCeO3 doped with Y2O3 [J]. Solid State Ionics, 1990, 40-41(2): 910-913.
    [68] Yajima N, Iwahara H, Fukatsu N, et al. Measurement of hydrogen content in molten aluminum using proton conducting ceramic sensor [J]. Journal of Japan Institute of Light Metal, 1992, 42(5): 263-267.
    [69] Yajima T, Koide K, Fukatsu N, et al. A new hydrogen sensor for molten aluminum [J]. Sensors and Actuators B, 1993, 14(1-3): 697-699.
    [70]郭红霞,吕敬德,王岭,等.致密扩散障碍层极限电流型氢传感器[J].无机化学学报, 2008, 24(10): 1631-1635.
    [71]武淑艳,王静,李金良,等.化学共沉淀法制备BaTiO3陶瓷粉体及煅烧温度对粉体形貌的影响[J].佳木斯大学学报(自然科学版), 2004, 22(3): 368-370.
    [72]王东,范建华,刘春明,等. BaCe1-xYxO3-α及BaCe0.9Sm0.1O3-α质子导体的表征及组成氢泵对铝熔体的脱氢[J].金属学报, 2007, 43(11): 1228-1232.
    [73] Gopalan S, Virkar A V. Thermodynamic stabilities of SrCeO3 and BaCeO3 using a molten salt method and galvanic cells [J]. Journal of The Electrochemical Society, 1993, 140(4): 1060-1065.
    [74] Guan J. Ceramic membranes of mixed ionic-electronic conductors for hydrogen separation [D]. Georgia: Georgia Institute of Technology, 1998.
    [75] Su M Z. Solid state chemistry [M]. Beijing University Press, 1986.
    [76] Uksamai W, Metcalfe I S. Measurement of proton and oxide ion fluxes in a working Y-doped BaCeO3 SOFC [J]. Solid State Ionics, 2007, 178(7-10): 627-634.