Visfatin致动脉粥样硬化的基础与临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景内脂素(visfatin)是由内脏脂肪细胞高表达的一种脂肪细胞因子,与先前在淋巴细胞中发现的一种称为前B细胞克隆增强因子(PBEF)的蛋白结构一致,具有广泛的生物学效应。visfatin主要来源于脂肪组织中的巨噬细胞,同时在骨髓基质细胞、活化淋巴细胞、肝脏、脾脏、子宫、胸腺、胰腺、肌肉组织以及胎膜中均有表达。近年来的许多研究发现,visfatin与缺氧、易损斑块破裂、内皮功能紊乱、血管增生、炎症和糖脂代谢等密切相关,与动脉粥样硬化的发生发展过程密切相关。然而不同动脉粥样硬化性相关疾病患者血浆visfatin水平变化如何,本实验将做一探讨。
     目的通过检测动脉粥样硬化性相关疾病患者血浆visfatin水平,初步探讨血浆visfatin在动脉粥样硬化性相关疾病中的变化及其临床意义。
     方法将动脉粥样硬化性相关疾病(如冠心病、肥胖、代谢综合征、糖尿病、高血压等)患者和健康体检人群纳入研究对象,进行对照研究。通过酶联免疫吸附试验检测入选人群血浆visfatin水平,并同时抽血送检一般生化指标如空腹血糖(FPG)、甘油三酯(TG)、总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C).低密度脂蛋白胆固醇(LDL-C)、C反应蛋白(CRP)、同型半胱氨酸(HCY)等,收集临床资料,分析一般临床特征,包括年龄、性别、身高、体重、BMI、血压等。
     结果①冠心病组(CAD组)血浆visfatin水平较对照组明显升高[(3.17±0.36)ng/ml] vs. [(0.64±0.18)ng/ml] (p<0.05); CAD组各亚组中,多支病变组血浆visfatin水平[(4.27±0.47)ng/ml]和双支病变组血浆visfatin水平[(3.16±0.39)ng/ml]明显高于单支病变组[(1.95±0.36)ng/ml] (p<0.05),多支病变组血浆visfatin水平较双支病变组升高[(4.27±0.47)ng/ml] vs. [(3.16±0.39)ng/ml] (p<0.05);CAD组血浆visfatin水平随颈动脉内膜中层厚度(IMT)的增加而升高(p<0.05);CAD组冠状动脉病变支数越多,颈动脉粥样斑块发生率越高(p<0.05)。在CAD组,血浆visfatin水平与BMI、TG、LDL-C、CRP、HCY、IMT和冠状动脉病变支数呈明显正相关(P<0.05)。②单纯性肥胖组血浆visfatin水平[(2.03±0.29)ng/ml]和代谢综合征组(MS组)血浆visfatin水平[(4.47±0.37)ng/ml]明显高于对照组[(0.59±0.21)ng/ml] (p<0.05), MS组血浆visfatin水平高于单纯性肥胖组[(4.47±0.37)ng/ml] vs. [(2.03±0.29)ng/ml] (p<0.05);MS组血浆visfatin水平随MS组分数的增加而升高(P<0.05)。在MS组,血浆visfatin水平与BMI、腰围、TG、LDL-C、FPG和MS组分数呈明显正相关(p<0.05),与HDL-C呈负相关(p<0.05)。③糖耐量异常组(IGT组)血浆visfatin水平[(2.23±0.39)ng/ml]和糖尿病组(DM组)血浆visfatin水平[(4.17±0.38)ng/ml]明显高于对照组[(0.67±0.20)ng/ml](p<0.05),DM组血浆visfatin水平高于IGT组[(4.17±0.38)ng/ml]vs. [(2.23±0.39)ng/ml] (p<0.05)。在DM组,血浆visfatin水平与BMI、腰围、TG±FPG和HbA1C呈明显正相关(p<0.05)。④高血压组血浆visfatin水平[(1.17±0.36)ng/ml]和对照组[(0.97±0.48)ng/ml]比较,差异无显著性意义(p>0.05)。
     结论通过以上研究发现冠心病、肥胖、代谢综合征、糖耐量异常、糖尿病等动脉粥样硬化性相关疾病均可导致血浆visfatin水平升高,为进一步阐明visfatin在动脉粥样硬化发生发展过程中的作用奠定了一定的临床基础。visfatin的发现为研究动脉粥样硬化性相关疾病的发病机制增加了新的思路,为动脉粥样硬化性相关疾病的防治提供了一个新的靶点。
     背景目前关于动脉粥样硬化的发病机制存在着诸多学说,如损伤-反应学说、炎症学说等,然而,我们注意到,所有学说最终都归结为泡沫细胞形成。泡沫细胞的形成是早期动脉粥样硬化的一个典型的病理特征,因此,研究泡沫细胞形成机制,对于有效预防动脉粥样硬化的发生与发展具有重要意义。巨噬细胞胆固醇代谢稳态的失衡贯穿于泡沫细胞形成的整个过程,参与巨噬细胞胆固醇代谢的两个关键酶,即酰基辅酶A:胆固醇酰基转移酶1 (Acyl-CoA:cholesterol acyltransferases, ACAT1)催化细胞内游离胆固醇形成胆固醇酯,ATP结合盒转运子A1 (ATP-binding cassette transporters Al, ABCA1)促进细胞内游离胆固醇的流出。若ACAT1表达上调,胞内胆固醇酯合成增加,ABCA1表达下调,胞内游离胆固醇流出减少,两者协同作用导致巨噬细胞胆固醇代谢稳态的失衡,从而促进泡沫细胞的形成。那么visfatin对参与胆固醇代谢的关键酶ACAT1和ABCA1的表达是否具有调控作用呢?此方面的研究尚未见报道。
     目的研究单核/巨噬细胞分化成为泡沫细胞过程中visfatin对酰基辅酶A:胆固醇酰基转移酶1(ACAT-1)和ATP结合盒转运子A1(ABCA1)表达的调控作用,明确visfatin致动脉粥样硬化的发病机制
     方法体外培养人源单核细胞系(THP-1),由佛波酯(PMA)作用将其诱导分化为巨噬细胞,巨噬细胞在氧化低密度脂蛋白(ox-LDL)作用下进一步转变为泡沫细胞。实验分为两部分:①不同浓度visfatin干预组(4组):即泡沫细胞对照组(ox-LDL)、不同浓度visfatin干预组(10-5 mol/L、10-6 mol/L、10-7mol/L)。巨噬细胞分别加入上述不同浓度的visfatin,预孵2h后再加入ox-LDL 100mg/L,作用24h。采用油红O染色法观察泡沫细胞内脂滴形成情况,RT-PCR法检测ACAT1 mRNA、ABCA1 mRNA水平,Western-blot法检测ACAT1蛋白、ABCA1蛋白表达。②不同时间visfatin干预组(4组):即泡沫细胞对照组(ox-LDL).不同时间干预组(12h、24h、48h)。巨噬细胞加入visfatin 10-5 mol/L,预孵2h后再加入ox-LDL 100mg/L,分别作用12h、24h、48h。采用油红O染色法观察泡沫细胞内脂滴形成情况,RT-PCR法检测ACAT1 mRNA、ABCA1 mRNA水平,Western-blot法检测ACAT1蛋白、ABCA1蛋白表达。
     结果①与泡沫细胞对照组相比,visfatin干预组油红O染色显示脂滴形成增加,ACAT1 mRNA水平及蛋白表达显著升高(p<0.05), ABCA1 mRNA水平及蛋白表达显著降低(p<0.05);②不同浓度visfatin干预组之间比较,随着visfatin浓度越高,ACAT1 mRNA水平及蛋白表达越高(p<0.05), ABCA1 mRNA水平及蛋白表达越低(p<0.05);提示visfatin上调ACAT1 mRNA及蛋白表达,下调ABCA1 mRNA及蛋白表达,且上述效应呈浓度依赖性;③不同时间visfatin干预组之间比较,随着visfatin作用时间越长,ACAT1 mRNA水平及蛋白表达越高(p<0.05), ABCA1 mRNA水平及蛋白表达降低(24h组vs.12h组,p<0.05),但在48h组ABCA1 mRNA水平及蛋白表达略高于24h组。提示visfatin上调ACAT1表达呈时间依赖性,下调ABCA1表达不完全呈时间依赖性。
     结论visfatin可明显增加THP-1源性泡沫细胞内脂滴的形成,增加THP-1源性泡沫细胞形成过程中ACAT1 mRNA水平和蛋白表达,减少ABCA1 mRNA水平和蛋白表达。提示visfatin可在转录及翻译水平通过上调ACAT1表达,增加胞内胆固醇合成,同时下调ABCA1表达,抑制胞内游离胆固醇流出,两者协同作用促进泡沫细胞形成。
     背景过氧化物酶体增生物激活受体y (peroxisome proliferator activated-receptor gamma, PPARy)属于转录因子核受体超家族的一员,其被证实能在巨噬细胞核内表达,并能通过调控脂蛋白酶和CD36等基因表达而调节脂质稳态。多项对特异性敲除巨噬细胞中PPARy小鼠的研究发现,动脉壁的脂质稳态严重受损,并促进动脉粥样硬化的发展,证实PPARy在抗动脉粥样硬化中发挥着重要作用[3,4]。同时PPARy信号通路参与调控巨噬细胞内胆固醇代谢,通过对其下游靶基因,包括ACAT1和ABCA1的调控,维持胆固醇代谢的稳态。我们前期研究证实visfatin能上调ACAT1的表达,下调ABCA1的表达,导致巨噬细胞源性泡沫细胞的形成,那么PPARy信号通路是否参与了visfatin对ACAT1和ABCA1表达的调控作用呢?因此,在本实验中我们将观察PPARy信号通路在visfatin诱导泡沫细胞形成中的作用。
     目的探讨PPARy信号通路在visfatin诱导泡沫细胞形成中的作用。
     方法体外培养人源单核细胞系(THP-1),由佛波酯(PMA)作用将其诱导分化为巨噬细胞,巨噬细胞在氧化低密度脂蛋白(ox-LDL)作用下进一步转变为泡沫细胞。实验分为两部分:①不同浓度visfatin干预组(4组):即泡沫细胞对照组(ox-LDL)、不同浓度visfatin干预组(10-5 mol/L、10-6 mol/L、10-7mol/L)。巨噬细胞分别加入上述不同浓度的visfatin,预孵2h后再加入ox-LDL 100mg/L,作用24h。采用油红O染色法观察泡沫细胞内脂滴形成情况,RT-PCR法检测PPARy mRNA水平,Western-blot法检测PPARγ蛋白表达。②不同时间visfatin干预组(4组):即泡沫细胞对照组(ox-LDL)、不同时间visfatin干预组(12h、24h、48h)。巨噬细胞加入visfatin 10-5 mol/L,预孵2h后再加入ox-LDL 100mg/L,分别作用12h、24h、48h。采用油红O染色法观察细胞内脂形成情况,RT-PCR法检测PPARy mRNA水平,Western-blot法检测PPARy蛋白表达。
     结果①与泡沫细胞对照组比较,visfatin干预组油红O染色显示脂滴形成增加,PPARy mRNA水平和蛋白表达明显降低(p<0.05);②不同浓度visfatin干预组之间比较,随着visfatin浓度越高,PPARy mRNA及蛋白水平越低(p<0.05),提示visfatin下调PPARy mRNA及蛋白表达,且该效应呈浓度依赖性;③不同时间visfatin干预组之间比较,随着visfatin作用时间延长,24h组PPARγmRNA水平和蛋白表达较12h组降低(p<0.05),但在48h组PPARγmRNA水平和蛋白表达高于12h和24h组,提示visfatin下调PPARγ表达不完全呈时间依赖性。
     结论visfatin可明显增加THP-1源性泡沫细胞内脂滴的形成,降低THP-1源性泡沫细胞形成过程中PPARγmRNA水平和蛋白表达。提示visfatin可在转录及翻译水平下调PPARγ表达,表明PPARγ信号通路参与了visfatin诱导泡沫细胞的形成。
Background Visfatin is a newly found novel adipokine having high expression in adipocyte. Its structure is the same as the previously identified human pre-B-cell colony enhancing factor (PBEF)in the Lymphoid System. Macrophages of adipose tissue is principle source. It is widely distributed in bone marrow stromal cells(BMSC), activated lymphocyte, liver, spleen, pancreas, uterus,thymus gland,muscle tissues,caul and so on. Vsfatin is related to oxygend eficit, vulnerable plaque rupture, endothelial disfunction, angiogenesis, inflammation and the metabolism of glucose and lipid. However, the exactly serum level of visfatin in different patients with atherosclerosis-related diseases and their correlation have not been clarified.
     Objective Investigating the serum level of visfatin in different patients and observing the relationship between the variation of visfatin and atherosclerosis-related diseases.
     Methods A comparative study was performed in patients with atherosclerosis-related diseases,such as coronary artery disease (CAD), carotid artery atherosclerosis, obesity, metabolism syndrome(MS), diabetes mellitus (DM) and Hypertension. Enzyme linked immunosorbent assay was used to detect plasma levels of visfatin, at the same time, generally selected biochemical parameters such as the plasma glucose(FPG), total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), C-reactive protein(CRP) and homocysteine(HCY) were detected with submitted blood. Collecting clinical data, analyzing the general clinical feature such as age, sex, body mass index (BMI), blood pressure and so on.
     Results①The plasma levels of visfatin were significantly higher in the CAD group than in the controls [(3.17±0.36)ng/ml] vs. [(0.64±0.18)ng/ml] (p<0.05). In the CAD group,the higher extent of coronary artery lesions was,the higher the plasma visfatin (p<0.05); the greater the IMT was, the higher the plasma visfatin (p<0.05); the higher extent of coronary artery lesions was,the higher icedent of carotid atherosclerosis (p<0.05). In the CAD group, the plasma levels of visfatin were positively correlated with BMI, TG, LDL-C, CRP,HCY,IMT and the extent of coronary artery lesions (p<0.05).②The plasma levels of visfatin were significantly higher in the simple obesity group [(2.03±0.29)ng/ml] and MS group [(4.47±0.37)ng/ml] than in the controls [(0.59±0.21)ng/ml] (p<0.05). The plasma levels of visfatin were higher in the MS group than in the simple obesity group [(4.47±0.37)ng/ml] vs. [(2.03±0.29)ng/ml](p<0.05). In the MS group,the more ingredients of MS were,the higher the plasma visfatin (p<0.05), the plasma levels of visfatin were positively correlated with BMI, waistline, FPG, TG, LDL-C and the ingredients of MS(p<0.05), and negtively correlated with HDL-C(p<0.05).③The plasma levels of visfatin were significantly higher in the IGT group [(2.23±0.39)ng/ml] and the DM group [(4.17±0.38)ng/ml] than in the controls [(0.67±0.20)ng/ml] (p<0.05). The plasma levels of visfatin were higher in the DM group than in the IGT group[(4.17±0.38)ng/ml] vs. [(2.23±0.39)ng/ml](p<0.05). In the DM group, the plasma levels of visfatin were positively correlated with BMI, waistline, FPG, TG and HbA1C (p<0.05).④Comparison of Hypertension group and the controls, the plasma levels of visfatin were not significant changed [(1.17±0.36)ng/ml] vs. [(0.97±0.48)ng/ml] (p>0.05).
     Conclusions Serum level of visfatin in people with CAD,carotid artery atherosclerosis, obesity, MS and DM would lead to further increase. The data provide the natural phenomenon of visfatin, which may be the basis of further study about the function of visfatin. Visfatin may play an important role in the progress of atherosclerosis.The finding of visfatin will provide new idea in studying the atherosclerosis-related diseases, which will provide new target for the atherosclerosis-related diseases therapy.
     Background Acyl-CoA:cholesterol acyltransferases (ACAT1) could catalysis free cholesterol into cholesterol ester, and then form the foam cells. The foam cells formation would be promoted via up-regulating the expression of AC AT1. ATP-binding cassette transporter A1(ABCA1) could promote the efflux of free cholesterol from foam cells, and then inhibit the foam cells. The foam cells formation would be promoted via down-regulating the expression of ABCA1. Therefore, if visfatin has both functions about up-regulating ACAT1 and down-regulating ABCA1, the formation of foam cells would be promoted. The further mechanism of visfatin induce-atherosclerosis would be clarified. The data in this field has not been reported.
     Objective To investigate the effects of visfatin on the expression of ACAT1 and ABCA1 during the formation of foam cells.
     Methods The human monocytic leukemia cell line (THP-1) was chosen in our study. The differentiation of THP-1 cells into macrophages was induced by phorbol 12-myristate 13-acetate (PMA). Macrophages were incubated with oxidized LDL (ox-LDL) to generate foam cells. The experiment divided into two parts:①The cells were divided into four groups:control group (ox-LDL), different concentration groups of visfatin (10-5 mol/L、10-6 mol/L、10-7 mol/L). Visfatin of different concentrations were treated for 2 hours before ox-LDL(100mg/L) were added in. After being incubated for 24 hours, the cells medium were changed, the lipid droplet content were observed by Oil red staining method, the levels of ACAT1 mRNA and ABCA1 mRNA were detected by RT-PCR,the levels of ACAT1 protein and ABCA1 protein were detected by Western blotting.②The cells were divided into four groups:control group (ox-LDL), different time groups of visfatin (12h, 24h,48h). The concentration of visfatin(10-5 mol/L) were treated for 2 hours before ox-LDL(100mg/L) were added in. After being incubated for 12 hours,24 hours,48hours, the cells medium were changed, the lipid droplet content were observed by Oil red staining method, the ACAT1 mRNA and ABCA1 mRNA levels were detected by RT-PCR, the ACAT1 and ABCA1 protein levels were detected by Western blotting.
     Results①Comparison of control, in different concentration and time groups of visfatin, the lipid droplet contents were increased by Oil red staining method, the levels of ACAT1 mRNA and protein were increased (p<0.05), the levels of ABCA1 mRNA and protein were decreased (p<0.05).②Comparison of different concentration groups of visfatin, as concentration increasing, the levels of ACAT1 mRNA and protein were increased (p<0.05), the levels of ABCA1 mRNA and protein were decreased (p<0.05).These changes were in a dose-dependent manner.③Comparison of different time groups of visfatin, as time prolonging, the lipid droplet contents were changed by Oil red staining method, the levels of ACAT1 mRNA and protein were increased (p<0.05), these changes were in a time-dependent manner. The levels of ABCA1 mRNA and protein were decreased (24h group vs.12h group, p<0.05).
     Conclusion Visfatin could increase the formation of lipid droplet of foam cells derived from THP-1 macrophages. Visfatin might induced the formation of atherosclerosis via up-regulating the expression of ACAT-1 and down-regulating the expression of ABCA-1.
     Background Peroxisome proliferator-activated receptorγ(PPARγ) are key nuclear receptors that regulate macrophage cholesterol metabolism.
     Objective To investigate the roles of PPARγpathway during the formation of foam cells by visfatin induced.
     Methods The human monocytic leukemia cell line (THP-1) was chosen in our study. The differentiation of THP-1 cells into macrophages was induced by phorbol 12-myristate 13-acetate (PMA). Macrophages were incubated with oxidized LDL (ox-LDL) to generate foam cells. The experiment divided into two parts:①The cells were divided into four groups:control group (ox-LDL), different concentration groups of visfatin (10-5mol/L、10-6 mol/L、10-7 mol/L). Visfatin of different concentrations were treated for 2 hours before ox-LDL(100mg/L) were added in. After being incubated for 24 hours, the cells medium were changed, the lipid droplet content were observed by Oil red staining method, the levels of PPARγmRNA was detected by RT-PCR,the levels of PPARγprotein was detected by Western blotting.②The cells were divided into four groups:control group (ox-LDL), different time groups of visfatin (12h,24h,48h). The concentration of visfatin(10-5 mol/L) were treated for 2 hours before ox-LDL(100mg/L) were added in. After being incubated for 12 hours,24 hours,48hours, the cells medium were changed, the lipid droplet content were observed by Oil red staining method, the levels of PPARγmRNA was detected by RT-PCR,the levels of PPARγprotein was detected by Western blotting.
     Results①Comparison of control, in different concentration and time groups of visfatin, the lipid droplet contents were increased by Oil red staining method, the levels of PPARγmRNA and protein were decreased (p<0.05).②Comparison of different concentration groups of visfatin, as concentration increasing, the lipid droplet contents were increased by Oil red staining method, the levels of PPARγmRNA and protein were decreased (p<0.05).These changes were in a dose-dependent manner.③Comparison of different time groups of visfatin, as time prolonging, the levels of PPARγmRNA and protein were decreased (24h group vs.12h group, p<0.05).
     Conclusion Visfatin could increase the formation of lipid droplet of foam cells derived from THP-1 macrophages. Visfatin might induced the formation of atherosclerosis via PPARγpathway.
引文
1. Trayhum P, Beattie JH. Physiological role of adipose tissue:white adipose tissue as an endocrine and secretory organ[J]. Proe Nutr Soc,2001,60(3):329-339.
    2. Samal B, Sun Y, Stearns G, et al. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony enhancing factor[J]. Mol Cell Biol,1994,14(2): 1431-1437.
    3.Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin:a protein secreted by visceral fat that mimics the effects of insulin[J]. Science,2005,307(5708):426-430.
    4. Rongvaux A, Shea R J, Mulks M H, et al. Pre-B-cell colony enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyl transferase, a eytosolic enzyme involved in NAD biosynthesis. Eur J Immunol,2002, 32(11):3225-3234.
    5. Hug G, Lodish HF. Visfatin:a new adipokine[J]. Science,2005,307(5708):366-367.
    6. Curat CA, Wegner V, Sengends C, et al. Macrophages in human visceral adipose tissue: increased accum ulation in obesity and a source of resistin and visfatin[J]. Diabetologia,2006,49(4):744-747.
    7. Ognjanovic S, Bao S, Yamamoto SY, et al. Genomic organization of the gene coding for human pre-B-cell colony enhancing factor and expression in human fetal membranes[J]. J Mol Endocrinol,2001,26(2):107-117.
    8. Mesehen AR, Ktser A, Enrich B, et al. Visfatin, an adipocytokine with inflammatory and immunomodulating properties [J]. Immunology,2007,178(3):1748-1758.
    9. Kitani T, Okuno S, Fujisawa H. Growth phase-dependent changes in the subcellular localization of pre-B-cell colony enhancing factor[J]. FEBS Lett,2003,544(1/3):74-78.
    10. Kralisch S, Klein J, Lossner U, et al. Hormonal regulation of the novel adipocytokine visfatin in 3T3-L1 adipecytes[J]. Endocrinol,2005,185(3):R1-R8.
    11. TurpaevK, Bouton C, DictA, et al. Analysis of differentially expressed genes in nitric oxide-exposed human monocytic cells[J]. Free Radic Biol Med,2005,38(10):392-400.
    12. Patrone L, Damore MA, Lee MB, et al. Genes expressed during the IFN-gamma induced maturation of pre-B-cells[J]. Mol Immunology,2002,38(8):597-606.
    13. Haider DG, Schaller G, Kapiotis S, et al. The release of the adipocytokine visfatin is regulated by glucose and insulin[J]. Diabetologia,2006,49(8):1909-1914.
    14. Bae SK, Kim SR, Kim JO, et al. Hypoxic induction of human visfatin gene is directly mediated by hypoxia-inducible factor-1[J]. FEBS Lett,2006,580(17):4105-4113.
    15. Segawa K, Fukuhara A, Hosogai N, et al. Visfatin in adipocytes is up-regulated by hypoxia through HIF1 alpha dependent mechanism[J]. Biochem Biophys Res Commun,2006,349(3):875-882.
    16. Dahl TB, Yndestad A, Skjelland M, et al. Increased expression of visfatin in maerophages of hum an unstable carotid and coronary atherOsclerosis possible role in inflammation and plaque destabilization[J]. Circulation,2007,115(8):972-980.
    17. Adya R, Tan BK, Chen J, et al. Nuclear factor-kappaB induction by visfatin in human vascular endothelial cells:Its role in MMP-2/9 production and activation[J]. Diabetes Care,2008,31(4):758-761.
    18. Kim SR,Bae YH,Bae SK,et al. Visfatin enhances ICAM-land VCAM-I expression
    through ROS-dependent NF-kappaB activation in endothelial cells[J]. Biochim Biophys Acta,2008,1783(5):886-895.
    19. Adya R, Tan BK, Punn A, et al. Visfatin induces human endothelial VEGF and MMP 2/9 production via MAPKand PI3K/Akt signalling pathways:novel insights intovisfatin induced angiogenesis[J]. Cadiovasc Res,2008,78(2):356-365.
    20. Vander Veer E, Nong Z, O NellC, et al. Pre-B-cellcolony enhancing factor regulates NAD dependent protein deacatylase activity and promotes vascular smooth muscle cell maturation[J]. Circ Res,2005,97(1):25-34.
    21. Xu LG, Wu M, Hu J, et al. Identification of downstream genes up-regulated by the tumor necrosis factor family member TALL-1[J]. J Leukoc Biol,2002,72(2):410-416.
    22. Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature,2001,409:310-312.
    23. Lopoz-Bermejo A, Chico-JulRt B, Femhndez-Balsclls M, et al. Serum visfatin increases with progressive beta-cell deterioration[J]. Diabetes,2006,55(10):2871-2875.
    24. Sethi JK, Vidal PuisA. Visfatin:the missing link between intra-abdominal obesity and diabetes[J]. Trends Mol Med,2005,11(8):344-347.
    25. Erten Y, Ebinc FA, Ebinc H, et al. The relationship of visfatin levels to inflammatory cytokines and left ventricular hypertrophy in hemodialysis and continuous ambulatory peritoneal dialysis patients[J]. Ren Fail,2008,30(6):617-623.
    26. Rangwala SM, Rich AS, Rhoades B, et al. Abnormal glucose homeostasis due to chronic hyperresistinemia. Diabetes,2004,53(8):1937-1941.
    27. Zhong M, Tan HW, Gong HP, et al. Increased serum visfatin in patients with metabolic syndrome and carotid atherosclerosis. Clin Endocrinol Oxf,2008,69(6):878-884.
    28. Dahl TB, Yndestad A, Skjelland M, et al. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis:possible role in inflammation and plaque destabilization. Circulation,2007,115(8):972-980.
    29. Brown MS, Goldstein JL. Tne SREBP pathway:regulation of choleslerol metabolism by proteolysis of a membrence bond transcription factor[J]. Cell,1997,89(3):331-340.
    30. Kruth HS, Huang W, Ishiil, et al. Macrophage foam ceU formation with native low density lipoprotein[J]. J Biol chem,2002,277(37):34573-34580.
    31. Cathcan MK. Regulation of superoxide anion production by NADPH oxidase in monocyte/macrophages:contribution to atheroselerosis [J]. Arterioscler Thromb Vasc Biol,2004,24(1):23-28.
    32. Chang TY, Chang CY, Cheng D. Acyl-coeenzyme A:cholesterol acyltransferase[J]. Annu Rev Biochem,1997,66:613-638.
    33. Linton MF, Fazio S. Macrophages, inflammation and atherosclerosis[J].Int J Obes Relat Metab Disord,2003,7(3):S35-S40.
    34. Hans CP, Zerfaoui M, Naura AS, et al. Differential effects of PARP inhibition on vascular cell survival and ACAT-1 expression favouring atherosclerotic plaque stability. Cardiovasc Res,2008,78(3):429-439.
    35. Dean M, Haman Y, Chimini C. The human ATP binding cassette (ABC) transpoter superfamily[J]. Lipid Res,2001,42(8):1007-1017.
    36. Piehler AP, Haug KB, Wenzel JJ, et al.ABCA-transporters:regulators of cellular lipid transport. Tidsskr Nor Laegeforen,2007,127(22):2930-2933.
    37. Singaraja RR, Bocher V, James ER, et al. Human ABCA1 BAC transgenic mice show increased high density lipoprotein cholesterol and ApoA 1 dependent eflux stimulated by all internal promoter containing liver X receptor response element in intronl. J Biol Chem,2001,276(36):33-36.
    38. Vaisman BI, Lambert G, Amar M, et al. ABCA1 overexpression leads to hyperalphalipoproteinemia and increased biliary cholesterol excretion in transgenie mice. J Clin Invest,2001,108(2):303.
    39. Wenzel JJ, Piehler A, Kaminski WE. ABCA-subclass transporters-key regulators of molecular lipid transport. Med Klin (Munich),2007,102(7):524-530.
    40. Brown JD, Plutzky J. Peroxisome proliferator-activated receptors as transcriptional
    nodal points and therapeutic targets. Circulation,2007,115(4):518-533.
    41. Glass CK, Ogawa S. Combinatorial roles of nuclear receptors in inflammation and immunity. Nat Rev Immunol,2006,6(1):44-55.
    42. Blaschke F, Takata Y, Caglayan E, et al. Obesity, peroxisome proliferator-activated receptor, and atherosclerosis in type 2 diabetes. Arterioscler Thromb Vasc Biol. 2006,26(1):28-40.
    43. Li AC, Binder CJ, Gutierrez K, et al. Differential inhibitation of macrophage-derived foamcells foam cell formation and atherosclerosis in mice by PPAR-alpha, beta, delta, and gamma [J]. J Clin.Invest,2004, (114):1564-1576.
    44. Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature,1998, 391(6662):79-81.
    45. Babaev VR, Yancey PG, Ryzhov SV, et al. Conditional knockout of macrophage PPARgamma increases atherosclerosis in C57BL/6 and low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol,2005,25(8):1647-1653.
    46. Kaul D, Anand PK, Khanna A. Functional genomics of PPAR-gamma in human immunomodulatory cells. Mol Cell Biochem,2006,290(1-2):211-215.
    47. Jin-Bo Yang, Zhi-Jun Duan, Wei Yao, et al. Synergistic transcriptional activation of human ACAT1 gene by IFN-gamma and ATRA in THP-1 cells. J Biol Chem,2001, 276:20989-20998.
    48.柯丽,成蓓,余其振等.干扰素-γ对单核巨噬细胞源性泡沫细胞ACAT-1表达的影响.山东医药,2005,45(10):14-15.
    49. Knouff C, Auwerx J. Peroxisome proliferator-activated receptor-gamma calls for activation in moderation:lessons from genetics and pharmacology. Endocr Rev,2004, 25(6):899-918.
    1. Trayhum P, Beattie JH. Physiological role of adipose tissue:white adipose tissue as an endocrine and secretory organ[J]. Proe Nutr Soc,2001,60(3):329-339.
    2. Samal B, Sun Y, Stearns G, et al. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony enhancing factor[J]. Mol Cell Biol,1994,14(2): 1431-1437.
    3. Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin:a protein secreted by visceral fat that mimics the effects of insulin[J]. Science,2005,307 (5708):426-430.
    4.宋秀霞,纪立农.国际糖尿病联盟代谢综合征的全球共识定义.中华糖尿病杂志,2005,13(3):178-180.
    5.许竹梅,赵水平,范平.超声测量颈动脉内膜中层厚度颈动脉斑块的关系.中国动脉粥样硬化杂志,2000,8:165-167.
    6. Hug C, Lodish HF, Medicine. Visfatin:a new adipokine[J]. Science,2005,307: 366-367.
    7. Vande Veer E, Nong Z, O Nail C, etal. Pre_B cell colony enhancing factor regulates NAD dependent protein deacetylase activity and promotes vascular smooth muscle cell maturation[J]. Circ Ras,2005,97:25-34.
    8. Adya R, Tan BK, Punn A, et al. Visfatin induces human endothelial VEGF and MMP-2/9 production via MAPK and PI3K/Akt signalling pathways:novel insights intovisfatin induced angiogenesis[J]. Cadiovasc Res,2008,78(2):356-365.
    9. Blake GJ, Ridker PM. Inflammatory biomarkers and cardiovascular risk prediction[J]. Intern Med,2002,252:283-294.
    10. Ridker PM. C-reactive protein and the prediction of cardiovascular events among those at intermediate risk:moving an inflammatory hypothesis toward consensus[J]. J Am Coll Cardiol,2007,49:2129-2138.
    11. Ailen P, Burke V, Fonseca FK, et al. Increased serum homocysteine and sudden death resulting from coronary atheroscler0sis with fibrous plaques[J]. Arterioscler Thromb Vasc Biol,2002,22:1936-1941.
    12. Bailey JC, Loredo-Osti, Pierre Lepage, et al. Common polymorphisms in the promoter of the visfatin gene(PBEF1) influence plasma insulin levels in a French-Canadian population. Diabets,2006,55(10):2896-2902.
    13. Curat CA, W egner V, Sengends C, et al. Macrophages in human visceral adipose tissue:increased accumulation in obesity and a source of resistin and visfatin[J]. Diabetologia,2006,49(4):744-747.
    14. HaiderDG, SehindlerK, SehallerG, et al.Increased Plasma visfatin Concentration sinmorbidly obese subjects are reduced after gastric banding. Clin Endoerinol Metab, 2006,91(4):1578-1581
    15. Kim SR, Bae YH, Bae SK, et al. Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-kappaB activation in endothelial cells[J]. Biochim Biophys Acta,2008,1783(5):886-895.
    16. Dahl TB, Yndestad A, Skjelland M, et al. Increased expression of visfatin in maerophages of human unstable carotid and coronary atherosclerosis possible role in inflammation and plaque destabilization[J]. Circulation,2007,115(8):972-980.
    17. Adya R, Tan BK, Chen J, et al. Nuclear factor-kappaB induction by visfatin in human vascular endothelial cells:Its role in MMP-2/9 production and activation[J]. Diabetes Care,2008,31(4):758-761.
    18. Hanley AJ, Wagenknecht LE, D Agostino RB Jr, et al. Identification of subjects with insulin resistance and beta-cell dysfunction using alternative definitions of the metabolic syndrome [J]. Diabetes,2003,52(11):2740.
    19. Meerarani P, Badimon JJ, Zias E, et al. Metabolic syndrome and diabetic atherothrombosis:implications in vascular complications [J]. Curr Mol Med,2006, 6(5):501.
    20. Diamantopoulos EJ, Andreadis EA, Tsourous GI, et al. Early vascular lesions in subjects with metabolic syndrome and prediabetes [J]. Int Angiol,2006,25 (2):179.
    21. Klein BE, Klein R, Lee KE. Components of the Metabolic Syndrome and Risk of Cardiovascular Disease an Diabetes in Beaver Dam [J]. Diabetes Care,2002,25: 1790-1794.
    22. Kralisch S,Klein J, Issner U, et al. Hormonal regulation of the novel adipocytokine visfatin in 3T3-L1 adipocytes[J]. J Endocrinol,2005,185(3):1-8.
    23.Berndt J, Kloting N, Kralisch S, et al. Plasma visfatin concentration and fat depot specific mRNA expression in human[J]. Diabetes,2005,54(10):2911-2916.
    24. Chen MP, Chuang FM, Chang DM, et al. Elevateal plasma level of visfatin pre_B cell colony enhancing factor in patients with type 2 diabetes mellitus[J]. J Clin Endocrinol Metab,2006,91(1):295-299.
    25. Rangwala SM, Rich AS, Rhoades B, et al. Abnormal glucose homeostasis due to chronic hyperresistinemia. Diabetes,2004,53(8):1937-1941.
    26. Sethi JK, Vidal-Puig A. Visfatin:the missing link between intra-abdominal obesity and diabetes?[J]. Trends Mol Med,2005,11(8):344-347.
    27. Banerjee RR, Rargwala SM, Shapiro JS, et al. Regulation of fasteal blood glucose by resistin[J]. Science,2004,303(5661):1195-1198.
    28. Samal B, Sun Y, Stearns G, et al. Cloning and characterization ofthe cDNA enceding a hovel human pre-B-cell colony enhancing factor[J]. Mol Cell Biol,1994,14(2): 1431-1437.
    29. Berndt J, Kloting N, Kralisch S, et al. Plasnla visfmin concentrations and fat depot specific mRNA expression in humans [J]. Diabetes,2005,54(10):2911-2916.
    30. LiL, Yang G, Li Q, et al. Changes and relations of circulating visfatin, apelin, and resistin levels in normal, impaired glucose tolerance and type 2 diabetic subjects[J]. Exp Clin Endocrinol Diabetes,2006,114:544-548.
    31. Sandeep S, Velmurugan K, Deepa R, et al. Serum visfatin in relation to visceral fat, obesity and type 2 diabetes mellitus in Asian Indians[J]. Metabolism,2007,56: 565-570.
    32. Jian WX, Luo TH, Gu YY, et al. The visfatin gene is associated with glucose and lipid metabolism in a Chinese population[J]. Diabet Med,2006,23:967-973.
    33. Zhang YY, Gottard0 L, Tho pson R, et al. A visfatin promoter polymorphism is associated with low-grade inflammation and type 2 dibetes[J]. Obesity(Silver Spring), 2006,14:2119-2126.
    34. Haider DG, Schindler K, Schaller G, et al. Increased plasma visfatin concentrations in morbidly obese subjects am reduced after gastric banding [J]. J Clin Endocrinol Metab,2006,91(4):1578-1581.
    1. Chang TY, Chang CC, Lin S, et al. Roles of acyl-coenzyme A:cholesterol acyltransferase-1 and-2[J]. Curr Opin Lipidol,2001,12(3):289-296.
    2. Singaraja RR, Bocher V, James ER, et al. Human ABCA1 BAC transgenic mice show increased high density lipoprotein cholesterol and ApoA 1 dependent eflux stimulated by all internal promoter containing liver X receptor response element in intronl. J Biol Chem,2001,276(36):33-36.
    3. Curat CA, Wegner V, Sengends C, et al. Macrophages in human visceral adipose tissue:increased accum ulation in obesity and a source of resistin and visfatin[J]. Diabetologia,2006,49(4):744-747.
    4. Kim SR, Bae YH, Bae SK, et al. Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-kappaB activation in endothelial cells[J]. Biochim BiophysActa,2008,1783(5):886-895.
    5. Dahl TB, Yndestad A, Skjelland M, et al. Increased expression of visfatin in maerophages of human unstable carotid and coronary atherosclerosis possible role in inflammation and plaque destabilization[J]. Circulation,2007,115(8):972-980.
    6. Tsuchiya S, Kobayashi Y, Goto Y, et al. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res 1982 42: 1530-1536.
    7. Patricia G, Yancey and W, Gray Jerome, et al. Lysosomal sequestration of free and esterified cholesterol from oxidized low density lipoprotein in macrophages of different species. J LipidRes,1998,39:1349-1361.
    8. Brown MS, Goldstein JL. Tne SREBP pathway:regulation of choleslerol metabolism by proteolysis of a membrence bond transcription factor[J]. Cell,1997,89(3): 331-340.
    9. Linton MF, Fazio S. Macrophages, inflammation and atherosclerosis[J]. Int J Obes Relat Metab Disord,2003,7(3):S35-S40.
    10. Martha K, Cathcart. Regulation of superoxide anion productionby NAPDH oxidase in monocytes/macrophages:conributions to atherosclerosis [J]. Arterioscler Thromb Vasc Biol,2004,24(1):23-28.
    11. Chang C, Dong R, Miyazaki A, et al. Human acyl-CoA:cholesterol acyltransferase (ACAT) and its potential as a target for pharmaceutical intervention against atherosclerosis[J]. Acta Biochim Biophys Sin (shanghai),2006,38(3):151-156.
    12. Chang TY, Chang CCY, Cheng D. Acyl-coenzyme A:Cholesterol acyltransferase. Annu Rev Biochem,1997,66:613-638.
    13. Kruth HS, Huang W, Ishii I, et al. Macrophage foam ceU formation with native low density lipoprotein[J]. J Biol chem,2002,277(37):34573-34580.
    14. Hans CP, Zerfaoui M, Naura AS, et al. Differential effects of PARP inhibition on vascular cell survival and ACAT-1 expression favouring atherosclerotic plaque stability. Cardiovasc Res,2008,78(3):429-439.
    15. Yancey PG, Bortnick AE, Weibel GK, et al. Importance of different pathways of cellular cholesterol efflux [J]. Artheriosclerosis, Thrombosis and Vascular Biology, 2003,23:712-719.
    16. Piehler AP, Haug KB, Wenzel JJ, et al. ABCA-transporters:regulators of cellular lipid transport. Tidsskr Nor Laegeforen,2007,127(22):2930-2933.
    17. Vaisman BI, Lambert G, Amar M, et al. ABCA1 overexpression leads to hyperalphalipoproteinemia and increased biliary cholesterol excretion in transgenie mice. J Clin Invest,2001,108(2):303.
    18. Wenzel JJ, Piehler A, Kaminski WE. ABCA-subclass transporters-key regulators of molecular lipid transport. Med Klin (Munich),2007,102(7):524-530.
    1. Bensinger SJ, Tontonoz P. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature,2008,454(7203):470-477.
    2. Lee CH, Olson P, Evans RM. Minireview:lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology,2003,144 (6):2201-2207.
    3. Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs):nuclear receptors at the crossroads between lipid metabolism andinflammation. Inflamm Res,2000,49(10):497-505.
    4. Kuusisto J, Andrulionyte L, Laakso M. Atherosclerosis and cardiovascular risk reduction with PPAR agonists. Curr Atheroscler Rep,2007,9(4):274-280.
    5. Cabrero A, Cubero M, Llaverias G, et al. Differential effects of peroxisome proliferator-activated receptor activators on the mRNA levels of genes involved in lipid metabolism in primary human monocyte-derived macrophages. Metabolism,2003, 52(5):652-657.
    6. Feige JN, Gelman L, Michalik L, et al. From molecular action to physiological outputs:peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res,2006,45(2):120-159.
    7. Chinetti G, Lestavel S, Fruchart JC, et al. Peroxisome Proliferator-Activated Receptor a/y Reduces Cholesterol Esterification in Macrophages. Circ Res,2003,92 (2):212-217.
    8.白志峰,成蓓,李长运等.PPAR γ对单核/巨噬细胞酰基辅酶A:胆固醇酰基转移酶-1表达效应的研究.中国老年学杂志,2004,24(8):717-720.
    9. Bouhlel MA, Staels B, Chinetti-Gbaguidi G. Peroxisome proliferator-activated receptors-from active regulators of macrophage biology to pharmacological targets in the treatment of cardiovascular disease. J Intern Med,2008,263(1):28-42.
    10. Nicholson AC, Hajjar DP, Zhou X, et al. Anti-adipogenic action of pitavastatin occurs through the coordinate regulation of PPARy and Pref-1 expression. Br J Pharmacol,2007,151(6):807-815.
    11.汪家政,范明.蛋白质技术手册,2000,科学出版社,北京.
    12. Brown JD, Plutzky J. Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets. Circulation,2007,115(4):518-533.
    13. Glass CK, Ogawa S. Combinatorial roles of nuclear receptors in inflammation and immunity. Nat Rev Immunol,2006,6(1):44-55.
    14. Blaschke F, Takata Y, Caglayan E, et al. Obesity, peroxisome proliferator-activated receptor, and atherosclerosis in type 2 diabetes. Arterioscler Thromb Vasc Biol,2006, 26(1):28-40.
    15. Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature,1998, 391(6662):79-81.
    16. Chinetti G, Fruchart JC, Staels B, et al. Peroxisome proliferator-activated receptors: new targets for the pharmacological modulation of macrophage gene expression and function. Curr Opin Lipidol,2003,14(5):459-468.
    17. Chinetti G, Lestavel S, Bocher V, et al. PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med,2001,7(1):53-58.
    18. Ogata M, Tsujita M, Hossain MA, et al. On the mechanism for PPAR agonists to enhance ABCA1 gene expression. Atherosclerosis,2009 Jan 19. [Epub ahead of print].
    19. Babaev VR, Yancey PG, Ryzhov SV, et al. Conditional knockout of macrophage PPARgamma increases atherosclerosis in C57BL/6 and low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol,2005,25(8):1647-1653.
    20. Knouff C, Auwerx J. Peroxisome proliferator-activated receptor-gamma calls for activation in moderation:lessons from genetics and pharmacology. Endocr Rev, 2004,25(6):899-918.
    1. Trayhum P, Beattie JH. Physiological role of adipose tissue:white adipose tissue as an endocrine and secretory organ[J]. Proe Nutr Soc,2001,60(3):329-339.
    2. Beutler B, Mahoney J, LeTrang N. Purification of cachectin, a lipoprotein lipase-suppressing hormone secreted by endotoxin-induced RAW 264.7 cells. J Exp Med,1985,161(5):984-995.
    3. Hu E, Liang P, Spiegelman BM. A dipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem,1996,271(18):10697-10703.
    4. Pankovlu A. Leptin-a peptide hormone from adipocytes sensation of the 23rd FEBS Meeting. Bioorg Khim,1996,22(3):228-233.
    5. Steppan CM, Brown EJ, Wright CM, et al. A family of tissue-specifie resistin-like molecules. Proc Natl Acad Sei USA,2001,98(2):502-506.
    6. Samal B, Sun Y, Stearns G, et al. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony enhancing factor[J]. Mol Cell Biol,1994, 14(2):1431-1437.
    7. Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin:a protein secreted by visceral fat that mimics the effects of insulin[J]. Science,2005,307(5708):426-430.
    8. Kitani T, Okuno S, Fujizawa H. Growth phase-dependent changes in the subcellular localization of pre-B-cell colony enhancing factor. FEBS Lett,2003,544:74-78.
    9. Satoh H, Nguyen MT, Miles PD, et al. Adenovirus-mediated chronic"hyperresistinemia"leads to in vivo insulin resistance in normal rats. J Clin Invest,2004,114:224-231.
    10. Botteher Y, Teupser D, Enigk B, et al. Genetic variation in the visfatin gene(PBEF1) and its relation to glucose metabolism and fat-depot-specific messenger ribonucleic acid expression in humans[J]. Clin Endocrinol Metab,2006,91(7):2725-2731.
    11. Bailey SD, Loredo-Osti JC, Lepage P, et al. Common polymorphisms in the promoter of the visfatin gene(PBEF1) influence plasma insulin levels in a French Canadian population[J]. Diabetes,2006,55(10):2896-2902.
    12. Ye SQ, Simon BA, Maloney JP, et al. Pre-B-cell colony enhancing factor as a potential novel biomarker in acute lung injury. Am J Respir Crit Care Med,2005, 171(4):361-370.
    13. Bajwa EK, Yu CL, Gong MN, et al. Pre-B-cell colony enhancing factor gene polymorphisms and risk of acute respiratory distress syndrome. Crit Care Med,2007, 35(5):1290-1295.
    14. Zhang Y, Gottardo L, Thompson, et al. A visfatin promoter polymorphism is associated with low-grade inflammation and type 2 diabetes. Obesity,2006,14(12): 2119-2126.
    15. Rangwala SM, Rich AS, Rhoades B, et al. Abnormal glucose homeostasis due to chronic hyperresistinemia. Diabetes,2004,53:1937-1941.
    16. Banerjee RR, Rangwala SM, Shapiro JS, et al. Regulation of fasted blood glucose by resistin. Science,2004,303:1195-1198.
    17. Sato N, Kobayashi K, InoguchiT, et al. Adenovirus-mediated high expression of resistin causes dyslipidemia in mice. Endocrinology,2005,146:273-279.
    18. Kralisch S, Klein J, Lossner U, et al. Interleukin-6 is a negative regulator of visfatin gene expression in 3T3-L1 adipocytes[J]. Am J Physiol Endocfind Metab,2005, 289(4):E586-E590.
    19. Mesehen AR, Ktser A, Enrich B, et al. Visfafin, an adipocytokine with pminflammatory and immunomodulating properties[J]. Immunology,2007,178(3): 1748-1758.
    20. Moon B, Kwan JJ, Duddy N, et al. Resistin inhibits glucose uptake in L6 cells independently of changes in insulin signaling and GLUT4 translocation. Am J Physiol Endocrinol Metab,2003,285:E106-E115.
    21. Ort T, Arjona AA, MacDougall JR, et al. Recombinant human FlZZ3/resistin stimulates lipolysis in cultured human adipocytes, mouse adipose explants and in normal mice. Endocrinology,2005,146:2200-2209.
    22. Ognjanovic S, Bao S, Yamamoto SY, et al. Genomic organization of the gene coding for human pre-B-cell colony enhancing factor and expression in human fetal membranes. J Mol Endocrinol,2001,26:107-117.
    23. Steppan CM, Wang J, Whiteman EL, et al. Activation of SOCS-3 by resistin. Mol Cell Biol.2005,25:1569-1575.
    24. Xu LG, Wu M, Hu J, et al. Identification of downstream genes up-regulated by the tumor necrosis factor family member TALL-1[J]. J Leukoc Biol,2002,72(2): 410-416.
    25. MacLaren R, Cui W, Cianflone K. Visfatin expression is hormonally regulated by metabolic and sex hormones in 3T3-L1 pre-adipocytes and adipocytes. Diabetes Obes Metab,2007,9(4):490-497.
    26. Hector J, Schwarzloh B, Goehring J, et al. TNF-alpha alters visfatin and adiplonectin levels in human fat. Horm Metab Res,2007,39(4):250-255.
    27. Kralisch S, Klein J, Lossner U, et al. Hormonal regulation of the novel adipocytokine visfatin in 3T3-L1 adipocytes[J]. Endocrinol,2005,185(3):R1-R8.
    28. Ogujenovic S, Bryant- Greenwood GD. Pre-B-cell colony enhancing factor:a novel cytokine of human fetal membranes. Am J Obstet Gynecol,2002,187:1051-1058.
    29. TurpaevK, Bouton C, Dict A, et al. Analysis of differentially expressed genes in nitric oxide-exposed human monocytic cells[J]. Free Radic Biol Med,2005,38(10): 392-400.
    30. Patrone L, Damore MA, Lee MB, et al. Genes expressed during the IFN-gamma induced maturation of pre-B-cells[J]. Mol Immunology,2002,38(8):597-606.
    31. WenY, Wang HW, Wu J, et al. Effects of fatty acid regulation on visfatin gene expression in adipocytes. Chinese Medieal Journal,2006,119:1701-1708.
    32. Haider DG. Schaller G, Kapiotis S,et al. The release of the adipocytokine visfatin is regulated by glucose and insulin[J]. Diabetologia,2006,49(8):1909-1914.
    33. Sethi JK, Vidal Puis A. Visfatin:the missing link between intra-abdominal obesity and diabetes[J]. Trends Mol Med,2005,11(8):344-347.
    34. Steppan CM. Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature,2001,409:307-312.
    35. Minn AH, Patterson NB, Pack S, et al. Resistin is expressed in pancreatic islets. Biochem Biophys Res Commun.2003,310:641-645.
    36. Ando H, Yanagihara H, Hayashi Y, et al. Rhythmic messenger ribonucleic acid expression of clock genes and adipoytokines in mouse visceral adipose tissue. Endocrinology,2005,146:5631-5636.
    37. Lopoz-Bermejo A, Chico-JulRt B, Femhndez-Balsclls M, et al. Serum visfatin increases with progressive beta-cell deterioration[J]. Diabetes,2006,55(10): 2871-2875.
    38. Haider DG, Mittermayer F, Schaller G, et al. Free fatty acids normalize a rosiglitazane-induced visfatin release. Am J Physiol Enderinol Metab,2006,291: E885-E890.
    39. Chen MP, Chuang FM, Chang DM, et al. Elevateal plasma level of visfatin pre_B cell colony enhancing factor in patients with type 2 diabetes mellitus[J]. Clin Endocrinol Metab,2006,91(1):295-299.
    40. Varma V, Yao-Borengasser A, Rasouli N, et al. Human visfatin expression: relationship to insulin sensitivity, intramyocellular lipids and inflammation. J Clin Endocrinol & Metab,2007,92:2666-2672.
    41. Sethi JK. Is PBEF/visfatin/Nampt an anthentic adipokine relevant to the metabolic syndrome?[J]. Curt Hypertens Rep,2007,9(1):33-38.
    42.朱剑.Visfatin/PBEF/Nanlpt的研究进展[J].国际病理科学与临床杂志,2007,27(1):81-84.
    43. Cinti S, Mitchell G, Barbatelli G, et al. Adipoyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res, 2005,46:2347-2355.
    44. Arner P. Visfatin-a true or false trail to type 2 diabetes mellitus [J]. J Clin Endocrinol Metab,2006,91(1):28-30.
    45. Rongvaux A, Shea R J, Mulks M H, et al. Pre-B-cell colony enhancing factor,whose expression is up-regulated in activatedlymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur J Immunol,2002,32(11):3225-3234.
    46. Lehrke M, Reily MP. MiHington SC, et al. An inflammatory eascade leading to hyperresistinemia in humans. PLoS Med,2004,1:e45.
    47. Jung Hs, Park KH. ChoYM, et al. Resistin is secreted from macrophages in atheromas and promotes atherosclerosis. Cardiovasc Res,2006,69:76-85.
    48. Yeung F, Hoberg J E, Ramsey C S, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. Embo J,2004,23(12): 2369-2380.
    49. Yang T, Fu M, Pestell R, et al. SIRT1 and endocrine signaling. Trends Endocrinol Metab,2006,17(5):186-191.
    50. Van derVeer E, Nong Z, O Neil C, et al. Pre-B-cell colony enhancing factor regulates NAD-dependent protein deacatylase activity and promotes vascular smooth musclecell maturation[J]. Circ Res,2005,97(1):25-34.
    51. Van der Veer E, Ho C, O Neil C, et al. Extension of human cell lifespan by nicotinamide phosphoribosyl transferase. J Biol Chem,2007,282(15):10841-10845.
    52. Xie H, Tang SY, Luo XH, et al. Insulin-like effects of visfatin on human osteoblasts. Calcif Tissue Int,2007,80(3):201-210.
    53. Curat CA, Wegner V, Sengenes C, et al. Macrophages in human visceral adipose tissue:increase accumulation in obesity and a source of resistin and visfatin[J]. Diabetologia,2006,49(4):744-747.
    54. Jia SH, Li Y, Parodo J. Pre-B-cell colony enhancing factor inhibits neutrophil apoptosis in experimental inflammation an clinical sepsis [J]. J Clin Invest,2004, 113(9):1318-1327.
    55. Koerner A, Kratzsch J, Kiess W, et al. Adipocytokines:leptin-the classical, resistin-the controversical, adiponectin-the promising, and more to come. Best Pract Res Clin Endoerinol Metab,2005,19(4):525-546.
    56. Lizuka N, Oka M, Yamada-Okabe H, et al. Comparison of gene expression profiles between hepatitis B virus- and hepatitis C virus-infeeted hepatocellular carcinoma by oligonucleotide microarray data on the basis of a supervised learning method. Cancer Res,2002,62(14):3939-3944-
    57. Nowell M A, Richards P J, Fielding C A, et al. Regulation of pre-B-cell colony enhancing factor by STAT-3-dependent interleukin-6 trails-signaling:implications in the pathogenesis of rheumatoid arthritis. Arthritis Rheum,2006,54(7):2084-2095.
    58. Bae SK, Kim SR, Kim JO, et al. Hypoxic induction of human visfatin gene is directly mediated by hypoxia-inducible factor-1[J]. FEBS Lett,2006,580(17): 4105-4113.
    59. Segawa K, Fukuhara A, Hosogai N, et al. Visfatin in adipocytes is up-regulated by hypoxia through HIF1 alpha-dependent mechanism[J]. Biochem Biophys Res Commun,2006,349(3):875-882.
    60. Kim SR, Bae YH, Bae SK, et al. Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-kappaB activation in endothelial cells[J]. Biochim Biophys Acta,2008,1783(5):886-895.
    61. Dahl TB, Yndestad A, Skjelland M, et al. Increased expression of visfatin in maerophages of human unstable carotid and coronary atherosclerosis possible role in inflammation and plaque destabilization[J]. Circulation,2007,115(8):972-980.
    62. Adya R, Tan BK, Punn A, et al. Visfatin induces human endothelial VEGF and MMP-2/9 production via MAPK and PI3K/Akt signalling pathways:novel insights into visfatin induced angiogenesis[J]. Cadiovasc Res,2008,78(2):356-365.
    63. Adya R, Tan BK, Chen J, et al. Nuclear factor-kappaB induction by visfatin in human vascular endothelial cells:Its role in MMP-2/9 production and activation[J]. Diabetes Care,2008,31(4):758-761.
    64. Hug C, Lodish HF, Medicine. Visfatin:a new adipokine[J]. Science,2005,307: 366-367.
    65. Rangwala SM, Rich AS, Rhoades B, et al. Abnormal glucose homeostasis due to chronic hyperresistinemia. Diabetes,2004,53(8):1937-1941.
    66. Berndt J, Kloting N, Kralisch S, et al. Plasma visfatin concentration and fat depot specific mRNA expression in human[J]. Diabetes,2005,54(10):2911-2916.
    67. Bloomgarden ZT. Adiposity and diabetes. Diabetes Care,2002,25:2342-2349.
    68. Maitin PR, Shea RJ, Mulks MH. Identification of aplasmid-encoded gene from Haemophilus ducreyi which confers NAD+ idependence. Bacteriol,2001,83: 1168-1174.
    69. Choi KC, Ryll OH, Lee KW, et al. Effects of PPAR-a and y agonist on the expression of visfatin, adiponectin and TNF-a in visceral fat of OLETF rats. Biochem BioPhys Res Commun,2005,336:747-753.
    70. Ando H, Yanagihara H, Hayashi Y, et al. Rhythmic messenger ribonucleic acide expression of clock genes and adipocytokine mouse visceral adipose tissue. Endocrinology,2005,146:5631-5636.
    71. AlghashamAA, BarakatYA. Serum visfatin and its relation to insulin resistance and inflammation in type 2 diabetie patienis with and without macroangiopathy. Sandi Med J,2008,29(2):185-192.
    72.杨媚,杨刚毅,李伶等.不同糖耐量个体血浆内脂素水平的变化.中华内分泌代谢杂志,2006,24:245-247.
    73. Li L, Yang G, Li Q, et al.Changes and relations of circulating visfatin, apelin and resistin levels in normal, impaired glucose tolerance and tyPe 2 diabetic subjects. Exp Clin Endocrinol Diabetes,2006,114(10):544-548.
    74. Diamantopoulos EJ, Andreadis EA, Tsourous GI, et al. Early vascular lesions in subjects with metabolic syndrome and prediabetes [J]. Int Angiol,2006,25 (2): 179.
    75. Klein BE, Klein R, Lee KE. Components of the Metabolic Syndrome and Risk of Cardiovascular Disease an Diabetes in Beaver Dam [J]. Diabetes Care,2002,25: 1790-1794.
    76. Sandeep S, Velmumgan K, Deepa R, et al. Serum visfatin in relation to visceral fat, obesity, and type 2 diabetes mellitus in Asian Indians. Metabolism,2007,56(4): 565-570.
    77. Kloting N, Kloting I.Visfatin gene expressio in isolated adipocytes and sequence analysis in obese WOKW rats compared with lean control rats. Biochem Bio Phys Res Commun,2005,332:1070-1072.
    78. Dogru T, A Sonmez A, I Tasci I, et al. Plasma visfatin levels in young male patients with uncomplicated and newly diagnosed hypertension. Joumal of Human HyPertension,2007,21:173-175.
    79. Nusken KD, Petrasch M, Rauh M, et al. Active visfatin is elevated in serum of maintenance hemodialysis patients and correlates inversely with circulating HDL cholesterol[J]. Nephrol Dial Transplant,2009, [Epub ahead of print].
    80. Erten Y, Ebinc FA, Ebinc H, et al. The relationship of visfatin levels to inflammatory cytokines and left ventricular hypertrophy in hemodialysis and continuous ambulatory peritoneal dialysis patients[J]. Ren Fail,2008,30(6):617-623.
    81. Malyszko J, Pawlak K, et al. Visfatin and apelin, new adipocytokines and their relation to endothelial function in patients with chronic renal failure[J]. Adv Med Sci,2008,53(1):32-36.
    82. Song HK, Lee MH, Kim BK, et al. Visfatin:a new player in messengial cell physiology and diabetic nephropathy[J]. Am J Physiol Renal Physiol,2008,295(5): 1485-1494.