肝X受体与小鼠心脏功能及能量代谢的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:近年来研究发现多种核受体家族成员包括肝X受体在抑制机体炎症反应中起到不同程度的作用,但在心肌细胞炎症反应以及心肌肥厚方面却无研究。本文通过体内及体外实验,研究肝X受体是否对病理性刺激后小鼠心脏细胞炎症反应以及病理性心肌肥厚反应具有调节作用,并探讨其可能的作用机制。
     方法:(1)通过TAC手术建立小鼠心肌肥厚模型,检测小鼠模型心肌细胞LXR表达情况;(2)分别对野生型和LXRα基因敲除小鼠进行TAC手术,诱导心肌炎症反应以及病理性心肌肥厚,通过观察其心肌肥厚反应程度以分析LXR心肌炎症反应的关系;(3)通过体外细胞实验,观察LXR人工合成配体T1317对AngⅡ或LPS诱导心肌肥厚反应作用,并通过质粒转染及荧光素酶实验进一步分析其作用机制。
     结果:在TAC诱导的小鼠心肌肥厚模型中,LXRα表达明显增加,而LXRβ表达没有改变。LXRα基因敲除后,小鼠在TAC手术的诱导下,出现更为显著的心肌肥厚变化。细胞实验进一步证实T1317激活LXR的表达后,能够抑制由AngⅡ或LPS诱导的心肌细胞炎症反应以及心肌肥厚。同时,LXR激活对心肌肥厚反应的抑制作用是通过阻断NF-κB信号传导通路而实现。通过腺病毒分别激活两种LXR亚型,发现虽然两者都有抑制心肌肥厚的作用,LXRα在两者中起主要的作用。
     结论:(1) LXRα是心肌适应病理性心肌肥厚的重要调控元素,在病理性刺激的情况下,其缺失将导致小鼠心脏出现更加严重的心肌肥厚现象;(2)LXR人工合成配体T1317激活LXR后,可抑制NF-κB信号传导通路,从而减轻病理性刺激诱导的心肌肥厚现象。(3)LXRα与LXRβ均能通过抑制NF-κB信号传导通路从而负调节心肌细胞肥厚性生长,而且LXRα作用更为明显。
     目的:LXR不但作为全身胆固醇调节元件,同时在脂肪酸代谢方面也有着重要的调节作用。尽管LXR已被证明在成年心脏内表达,但是LXR在成年心脏能量代谢方面的具体作用却仍然不清楚。本部分实验我们通过对条件性心肌特异LXRα基因敲除小鼠进行相关研究,分析成年小鼠心肌LXRα基因缺失后心肌代谢改变,并观察其对心脏形态及功能的影响。
     方法:(1)培育条件性心肌特异LXRα基因敲除小鼠,在LXRα基因敲除后检测心肌代谢相关基因的变化。(2)通过离体工作心实验以及体外细胞实验对LXRα基因敲除小鼠心脏及心肌细胞的糖脂代谢进行研究。(3)对转基因小鼠心脏进行组织形态学观察,并通过超声心动图和离体心实验对小鼠心脏功能分别进行研究。
     结果:成年小鼠心肌特异敲除LXRα基因后,导致部分调节脂肪酸与葡萄糖代谢靶基因的下调。心肌脂肪酸与葡萄糖氧化率以及葡萄糖摄取率下降,ATP生成减少,并引起了小鼠心脏出现以心肌纤维化、心肌肥厚为特征的心肌重构,心脏功能下降。
     结论:本研究表明LXRα是心肌脂肪酸与葡萄糖代谢的重要调节因子,成年小鼠LXRα心肌特异性敲除可使得脂肪酸及葡萄糖代谢的靶基因表达下调,引起心脏代谢紊乱,心功能降低以及心肌重构。
Several members of nuclear receptor superfamily, including liver X receptors (LXRa and LXRP), have been shown to suppress inflammatory responses, but little is known about their effects in cardiomyocytes. We investigated LXR expression patterns in pressure overload-induced hypertrophic hearts and the hypertrophic growth of the LXRa-deficient hearts from mice (C57/B6) in response to pressure overload. The underlying mechanisms were also explored using cultured myocytes. We found that cardiac expression of LXRa was upregulated in pressure overload-induced left ventricular hypertrophy in mice. Transverse aorta coarctation-induced left ventricular hypertrophy was exacerbated in LXRa-null mice relative to control mice. A synthetic LXR ligand, T1317, suppressed cardiomyocyte hypertrophy in response to angiotensinⅡand lipopolysaccharide treatments. In addition, LXR activation suppressed NF-κB signalling and the expression of associated inflammatory factors. Overexpression of constitutively active LXRa and b in cultured myocytes suppressed NF-κB activity. LXRs are negative regulators of cardiac growth and inflammation via suppressing NF-κB signaling in cardiomyocytes. This should provide new insights into novel therapeutic targets for treating cardiac hypertrophy and heart failure.
     In addition to its important role in maintaining cholesterol homeostasis, LXRs is also essential in regulating lipid metabolism. Expression of LXRa has long been identified in adult heart, however, the role of LXRa in the transcriptional regulation of myocardial metabolism and cardiac pathophysiology remains obscure. To test the hypothesis that LXRa plays an important role in regulating lipid and glucose metabolism in the heart, Cardiomyocyte-restricted LXRa knockout were induced in mice treated with tamoxifen. After confirmation of LXRa knockout, LXRs target genes that were crucial in lipid and glucose metabolism were downregulated. Lipid and glucose metabolism were examined in ex vivo heart and in vitro cardiomyocytes. And in vivo and in vitro cardiac function was evaluated with echocardiography and isolated heart working system. Morphological and histological examinations of heart were also performed in transgenic mice. Fatty acid and glucose oxidation, as well as glucose uptake were both decreased in cardiomyocytes, followed by repressed cardiac function, cardiac hypertrophy and remodeling. Therefore, the present study demonstrated LXRa is essential in myocardial lipid and glucose metabolism, inducible cardiomyocyte-restricted LXRa knockout in adults leads to downregulation of related gene expression which regulates lipid and glucose metabolism, depressed ATP production, as well as cardiac dysfunction and remodeling.
引文
1. Levy, D., et al., Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med,1990. 322(22):p.1561-6.
    2. Lorell, B.H. and B.A. Carabello, Left ventricular hypertrophy:pathogenesis, detection, and prognosis. Circulation,2000.102(4):p.470-9.
    3. Li, Y., et al., NF-kappaB activation is required for the development of cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol,2004.287(4):p. H1712-20.
    4. Higuchi, Y., et al., Cardioprotection afforded by NF-kappaB ablation is associated with, activation of Akt in mice overexpressing TNF-alpha. Am J Physiol Heart Circ Physiol,2006.290(2):p. H590-8.
    5. Wu, L., et al., Nifedipine inhibited angiotensin Ⅱ-induced monocyte chemoattractant protein 1 expression:involvement of inhibitor of nuclear factor kappa B kinase and nuclear factor kappa B-inducing kinase. J Hypertens,2006.24(1):p.123-30.
    6. Hong, C. and P. Tontonoz, Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors. Curr Opin Genet Dev,2008.18(5):p. 461-7.
    7. Song, C., et al., Ubiquitous receptor:a receptor that modulates gene activation by retinoic acid and thyroid hormone receptors. Proc Natl Acad Sci U S A, 1994.91(23):p.10809-13.
    8. Willy, P.J., et al., LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev,1995.9(9):p.1033-45.
    9. Teboul, M., et al., OR-1, a member of the nuclear receptor superfamily that interacts with the 9-cis-retinoic acid receptor. Proc Natl Acad Sci U S A,1995. 92(6):p.2096-100.
    10. Alberti, S., K.R. Steffensen, and J.A. Gustafsson, Structural characterisation of the mouse nuclear oxysterol receptor genes LXRalpha and LXRbeta. Gene, 2000.243(1-2):p.93-103.
    11. Janowski, B.A., et al., An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature,1996.383(6602):p.728-31.
    12. Peet, D.J., et al., Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell,1998.93(5):p. 693-704.
    13. Joseph, S.B., et al., Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med,2003.9(2):p.213-9.
    14. Joseph, S.B., et al., LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell,2004.119(2):p. 299-309.
    15. Walcher, D., et al., LXR activation reduces proinflammatory cytokine expression in human CD4-positive lymphocytes. Arterioscler Thromb Vasc Biol,2006.26(5):p.1022-8.
    16. Yasuda, T., et al., Suppression of inducible nitric oxide synthase and cyclooxygenase-2 gene expression by 22(R)-hydroxycholesterol requires de novo protein synthesis in activated macrophages. J Steroid Biochem Mol Biol, 2005.97(4):p.376-83.
    17. Zelcer, N. and P. Tontonoz, Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest,2006.116(3):p.607-14.
    18. Laffitte, B.A., et al., The phospholipid transfer protein gene is a liver X receptor target expressed by macrophages in atherosclerotic lesions. Mol Cell Biol,2003.23(6):p.2182-91.
    19. Thaik, C.M., et al., Interleukin-1 beta modulates the growth and phenotype of neonatal rat cardiac myocytes. J Clin Invest,1995.96(2):p.1093-9.
    20. Laffitte, B.A., et al., LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc Natl Acad Sci U S A,2001.98(2):p.507-12.
    21. Sadoshima, J., et al., Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J Biol Chem,1992.267(15):p.10551-60.
    22. Liu, C.J., et al., Lipopolysaccharide induces cellular hypertrophy through calcineurin/NFAT-3 signaling pathway in H9c2 myocardiac cells. Mol Cell Biochem,2008.313(1-2):p.167-78.
    23. Wang, Y.Y., et al., Activation of the liver X receptor protects against hepatic injury in endotoxemia by suppressing Kupffer cell activation. Shock,2006. 25(2):p.141-6.
    24. Cook, S.A., et al., A20 is dynamically regulated in the heart and inhibits the hypertrophic response. Circulation,2003.108(6):p.664-7.
    25. Meldrum, D.R., Tumor necrosis factor in the heart. Am J Physiol,1998. 274(3 Pt 2):p. R577-95.
    26. Gurevitch, J., et al., Anti-tumor necrosis factor-alpha improves myocardial recovery after ischemia and reperfusion. J Am Coll Cardiol,1997.30(6):p. 1554-61.
    27. Raymond, R.J., et al., Elevated interleukin-6 levels in patients with asymptomatic left ventricular systolic dysfunction. Am Heart J,2001.141(3): p.435-8.
    28. Fontaine, C., et al., Liver X receptor activation potentiates the lipopolysaccharide response in human macrophages. Circ Res,2007.101(1): p.40-9.
    29. Imayama, I., et al., Liver X receptor activator downregulates angiotensin Ⅱ type 1 receptor expression through dephosphorylation of Sp1. Hypertension, 2008.51(6):p.1631-6.
    30. Apfel, R., et al., A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Mol Cell Biol,1994.14(10):p.7025-35.
    31. Ulven, S.M., et al., LXR is crucial in lipid metabolism. Prostaglandins Leukot Essent Fatty Acids,2005.73(1):p.59-63.
    32. Repa, J.J., et al., Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev,2000.14(22):p.2819-30.
    33. Tontonoz, P. and D.J. Mangelsdorf, Liver X receptor signaling pathways in cardiovascular disease. Mol Endocrinol,2003.17(6):p.985-93.
    34. Kamei, Y., et al., Regulation of SREBP1c gene expression in skeletal muscle: role of retinoid X receptor/liver X receptor and forkhead-O1 transcription factor. Endocrinology,2008.149(5):p.2293-305.
    35. Lehmann, J.M., et al., Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem,1997.272(6):p. 3137-40.
    36. Wang, D.Q., Regulation of intestinal cholesterol absorption. Annu Rev Physiol,2007.69:p.221-48.
    37. Cavelier, C., et al., Lipid efflux by the ATP-binding cassette transporters ABCA1 and ABCG1. Biochim Biophys Acta,2006.1761(7):p.655-66.
    38. Alberti, S., et al., Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRbeta-deficient mice. J Clin Invest,2001.107(5):p.565-73.
    39. Lund, E.G., J.G. Menke, and C.P. Sparrow, Liver X receptor agonists as potential therapeutic agents for dyslipidemia and atherosclerosis. Arterioscler Thromb Vasc Biol,2003.23(7):p.1169-77.
    40. Quinet, E.M., et al., Liver X receptor (LXR)-beta regulation in LXRalpha-deficient mice:implications for therapeutic targeting. Mol Pharmacol,2006.70(4):p.1340-9.
    41. Zhou, J., et al., Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology,2008. 134(2):p.556-67.
    42. Cao, G., et al., Phospholipid transfer protein is regulated by liver X receptors in vivo. J Biol Chem,2002.277(42):p.39561-5.
    43. Liu, Y., et al., Liver X receptor agonist T1317 inhibition of glucocorticoid receptor expression in hepatocytes may contribute to the amelioration of diabetic syndrome in db/db mice. Endocrinology,2006.147(11):p.5061-8.
    44. Ulven, S.M., et al., Tissue-specific autoregulation of the LXRalpha gene facilitates induction of apoE in mouse adipose tissue. J Lipid Res,2004. 45(11):p.2052-62.
    45. Kase, E.T., et al., Skeletal muscle lipid accumulation in type 2 diabetes may involve the liver X receptor pathway. Diabetes,2005.54(4):p.1108-15.
    46. Wu, S., et al., Liver X receptors are negative regulators of cardiac hypertrophy via suppressing NF-kappaB signalling. Cardiovasc Res,2009. 84(1):p.119-26.
    47. Zhang, Y. and D. J. Mangelsdorf, LuXuRies of lipid homeostasis:the unity of nuclear hormone receptors, transcription regulation, and cholesterol sensing. Mol Interv,2002.2(2):p.78-87.
    48. Li, Y., et al., Peroxisome proliferator-activated receptor delta regulates mitofusin 2 expression in the heart. J Mol Cell Cardiol,2009.46(6):p. 876-82.
    49. Cheng, L., et al., Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med,2004.10(11):p.1245-50.
    50. Yoshikawa, T., et al., Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. I. PPARs suppress sterol regulatory element binding protein-lc promoter through inhibition of LXR signaling. Mol Endocrinol, 2003.17(7):p.1240-54.
    51. Ide, T., et al., Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. II. LXRs suppress lipid degradation gene promoters through inhibition of PPAR signaling. Mol Endocrinol,2003.17(7):p.1255-67.
    52. Steffensen, K.R. and J.A. Gustafsson, Putative metabolic effects of the liver X receptor (LXR). Diabetes,2004.53 Suppl 1:p. S36-42.
    53. Li, Y., et al., High-fat feeding in cardiomyocyte-restricted PPARdelta knockout mice leads to cardiac overexpression of lipid metabolic genes but fails to rescue cardiac phenotypes. J Mol Cell Cardiol,2009.47(4):p.536-43.
    54. Dalen, K.T., et al., Expression of the insulin-responsive glucose transporter GLUT4 in adipocytes is dependent on liver X receptor alpha. J Biol Chem, 2003.278(48):p.48283-91.
    55. Ross, S.E., et al., Microarray analyses during adipogenesis:understanding the effects of Wnt signaling on adipogenesis and the roles of liver X receptor alpha in adipocyte metabolism. Mol Cell Biol,2002.22(16):p.5989-99.
    56. Neely, J.R., M.J. Rovetto, and J.F. Oram, Myocardial utilization of carbohydrate and lipids. Prog Cardiovasc Dis,1972.15(3):p.289-329.
    57. Vary, T.C., D.K. Reibel, and J.R. Neely, Control of energy metabolism of heart muscle. Annu Rev Physiol,1981.43:p.419-30.
    58. van der Vusse, G.J., et al., Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev,1992.72(4):p.881-940.
    1. Apfel R, Benbrook D, Lernhardt E, Ortiz MA, Salbert G, Pfahl M. A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Mol Cell Biol 1994; 14:7025-7035.
    2. Song C, Kokontis JM, Hiipakka RA, Liao S. Ubiquitous receptor:a receptor that modulates gene activation by retinoic acid and thyroid hormone receptors. Proc Natl Acad Sci USA 1994; 91:10809-10813.
    3. Ulven SM, Dalen KT, Gustafsson JA, Nebb HI. LXR is crucial in lipid metabolism. Prostaglandins Leukot Essent Fatty Acids 2005; 73:59-63.
    4. Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev 1995; 9:1033-1045.
    5. Repa JJ, Mangelsdorf DJ. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu Rev Cell Dev Biol 2000; 16: 459-481.
    6. Wojcicka G, Jamroz-Wisniewska A, Horoszewicz K, Beltowski J. Liver X receptors (LXRs). Part I:structure, function, regulation of activity, and role in lipid metabolism. Postepy Hig Med Dosw (Online) 2007; 61:736-759.
    7. Lehmann JM, Kliewer SA, Moore LB, et al. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem 1997; 272:3137-3140.
    8. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 1996; 383:728-731.
    9. Janowski BA, Grogan MJ, Jones SA, et al. Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc Natl Acad Sci USA 1999; 96:266-271.
    10. Bjorkhem I, Meaney S, Diczfalusy U. Oxysterols in human circulation:which role do they have? Curr Opin Lipidol 2002; 13:247-253.
    11. Song C, Hiipakka RA, Liao S. Selective activation of liver X receptor alpha by 6alpha-hydroxy bile acids and analogs. Steroids 2000; 65:423-427.
    12. Mitro N, Mak PA, Vargas L, et al. The nuclear receptor LXR is a glucose sensor. Nature 2007; 445:219-223.
    13. Denechaud PD, Bossard P, Lobaccaro JM, et al. ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver. J Clin Invest 2008; 118:956-964.
    14. Schultz JR, Tu H, Luk A, et al. Role of LXRs in control of lipogenesis. Genes Dev 2000; 14:2831-2838.
    15. Collins JL, Fivush AM, Watson MA, et al. Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines. J Med Chem 2002; 45:1963-1966.
    16. Mitro N, Vargas L, Romeo R, Koder A, Saez E. T1317 is a potent PXR ligand:implications for the biology ascribed to LXR. FEBS Lett 2007; 581: 1721-1726.
    17. Lund EG, Peterson LB, Adams AD, et al. Different roles of liver X receptor alpha and beta in lipid metabolism:Effects of an alpha-selective and a dual agonist in mice deficient in each subtype. Biochem Pharmacol 2006; 71: 453-463.
    18. Molteni V, Li X, Nabakka J, et al. N-Acylthiadiazolines, a new class of liver X receptor agonists with selectivity for LXRbeta. J Med Chem 2007; 50: 4255-4259.
    19. Gan X, Kaplan R, Menke JG, et al. Dual mechanisms of ABCA1 regulation by geranylgeranyl pyrophosphate. J Biol Chem 2001; 276:48702-48708.
    20. Forman BM, Ruan B, Chen J, Schroepfer GJ Jr, Evans RM. The orphan nuclear receptor LXRalpha is positively and negatively regulated by distinct products of mevalonate metabolism. Proc Natl Acad Sci USA 1997; 94: 10588-10593.
    21. Song C, Hiipakka RA, Liao S. Auto-oxidized cholesterol sulfates are antagonistic ligands of liver X receptors:implications for the development and treatment of atherosclerosis. Steroids 2001; 66:473-479.
    22. Yoshikawa T, Shimano H, Yahagi N, et al. Polyunsaturated fatty acids suppress sterol regulatory element-binding protein lc promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements. J Biol Chem 2002; 277:1705-1711.
    23. Ou J, Tu H, Shan B, et al. Unsaturated fatty acids inhibit transcription of the sterol regulatory element-binding protein-1c (SREBP-lc) gene by antagonizing ligand-dependent activation of the LXR. Proc Natl Acad Sci USA 2001; 98: 6027-6032.
    24. Nakatani T, Katsumata A, Miura S, Kamei Y, Ezaki O. Effects of fish oil feeding and fasting on LXRalpha/RXRalpha binding to LXRE in the SREBP-lc promoter in mouse liver. Biochim Biophys Acta 2005; 1736:77-86.
    25. Pawar A, Botolin D, Mangelsdorf DJ, Jump DB. The role of liver X receptor-alpha in the fatty acid regulation of hepatic gene expression. J Biol Chem 2003; 278:40736-40743.
    26. Li Y, Bolten C, Bhat BG, et al. Induction of human liver X receptor alpha gene expression via an autoregulatory loop mechanism. Mol Endocrinol 2002; 16: 506-514.
    27. Laffitte BA, Joseph SB, Walczak R, et al. Autoregulation of the human liver X receptor alpha promoter. Mol Cell Biol 2001; 21:7558-7568.
    28. Whitney KD, Watson MA, Goodwin B, et al. Liver X receptor (LXR) regulation of the LXRalpha gene in human macrophages. J Biol Chem 2001; 276:43509-43515.
    29. Kase ET, Thoresen GH, Westerlund S, Hojlund K, Rustan AC, Gaster M. Liver X receptor antagonist reduces lipid formation and increases glucose metabolism in myotubes from lean, obese and type 2 diabetic individuals. Diabetologia 2007; 50:2171-2180.
    30. Ulven SM, Dalen KT, Gustafsson JA, Nebb HI. Tissue-specific autoregulation of the LXRalpha gene facilitates induction of apoE in mouse adipose tissue. J Lipid Res 2004; 45:2052-2062.
    31. Tobin KA, Steineger HH, Alberti S, et al. Cross-talk between fatty acid and cholesterol metabolism mediated by liver X receptor-alpha. Mol Endocrinol 2000; 14:741-752.
    32. Forcheron F, Cachefo A, Thevenon S, Pinteur C, Beylot M. Mechanisms of the triglyceride-and cholesterol-lowering effect of fenofibrate in hyperlipidemic type 2 diabetic patients. Diabetes 2002; 51:3486-3491.
    33. Chinetti G, Lestavel S, Bocher V, et al. PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 2001; 7:53-58.
    34. Juvet LK, Andresen SM, Schuster GU, et al. On the role of liver X receptors in lipid accumulation in adipocytes. Mol Endocrinol 2003; 17:172-182.
    35. Chawla A, Boisvert WA, Lee CH, et al. APPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 2001; 7:161-171.
    36. Hammarstedt A, Sopasakis VR, Gogg S, Jansson PA, Smith U. Improved insulin sensitivity and adipose tissue dysregulation after short-term treatment with pioglitazone in non-diabetic, insulin-resistant subjects. Diabetologia 2005; 48:96-104.
    37. Tobin KA, Ulven SM, Schuster GU, et al. Liver X receptors as insulin-mediating factors in fatty acid and cholesterol biosynthesis. J Biol Chem 2002; 277:10691-10697.
    38. Yamamoto T, Shimano H, Inoue N, et al. Protein kinase A suppresses sterol regulatory elementbinding protein-1C expression via phosphorylation of liver X receptor in the liver. J Biol Chem 2007; 282:11687-11695.
    39. Peet DJ, Turley SD, Ma W, et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 1998; 93:693-704.
    40. Alberti S, Schuster G, Parini P, et al. Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRbeta-deficient mice. J Clin Invest 2001; 107:565-573.
    41. Chiang JY, Kimmel R, Stroup D. Regulation of cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription by the liver orphan receptor (LXRalpha). Gene 2001; 262:257-265.
    42. Goodwin B, Watson MA, Kim H, Miao J, Kemper JK, Kliewer SA. Differential regulation of rat and human CYP7A1 by the nuclear oxysterol receptor liver X receptor-alpha. Mol Endocrinol 2003; 17:386-394.
    43. Yu L, York J, von Bergmann K, Lutjohann D, Cohen JC, Hobbs HH. Stimulation of cholesterol excretion by the liver X receptor agonist requires ATP-binding cassette transporters G5 and G8. J Biol Chem 2003; 278: 15565-15570.
    44. Repa JJ, Berge KE, Pomajzl C, Richardson JA, Hobbs H, Mangelsdorf DJ. Regulation of ATPbinding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. J Biol Chem 2002; 277:18793-18800.
    45. Yu L, Hammer RE, Li-Hawkins J, et al. Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci USA 2002; 99:16237-16242.
    46. Wang DQ. Regulation of intestinal cholesterol absorption. Annu Rev Physiol 2007; 69:221-248.
    47. Duval C, Touche V, Tailleux A, et al. Niemann-Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine. Biochem Biophys Res Commun 2006; 340:1259-1263.
    48. Cavelier C, Lorenzi I, Rohrer L, von Eckardstein A. Lipid efflux by the ATP-binding cassette transporters ABCA1 and ABCG1. Biochim Biophys Acta 2006; 1761:655-666.
    49. Repa JJ, Turley SD, Lobaccaro JA, et al. Regulation of absorption and ABC 1-mediated efflux of cholesterol byRXR heterodimers. Science 2000; 289: 1524-1529.
    50. Plosch T, Kok T, Bloks VW, et al. Increased hepatobiliary and fecal cholesterol excretion upon activation of the liver X receptor is independent of ABCA1. J Biol Chem 2002; 277:33870-33877.
    51. Eberle D, Hegarty B, Bossard P, Ferre P, Foufelle F. SREBP transcription factors:master regulators of lipid homeostasis. Biochimie 2004; 86:839-848.
    52. Aravindhan K, Webb CL, Jaye M, et al. Assessing the effects of LXR agonists on cellular cholesterol handling:a stable isotope tracer study. J Lipid Res 2006; 47:1250-1260.
    53. Costet P, Luo Y, Wang N, Tall AR. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem 2000; 275:28240-28245.
    54. Sabol SL, Brewer HB Jr, Santamarina-Fojo S. The human ABCG1 gene: identification of LXR response elements that modulate expression in macrophages and liver. J Lipid Res 2005; 46:2151-2167.
    55. Zhao SP, Yu BL, Xie XZ, Dong SZ, Dong J. Dual effects of oxidized low-density lipoprotein on LXR-ABCA1-apoA-I pathway in 3T3-L1 cells. Int J Cardiol 2008; 128:42-47.
    56. Kotokorpi P, Ellis E, Parini P, et al. Physiological differences between human and rat primary hepatocytes in response to liver X receptor activation by 3-[3-[N-(2-chloro-3-trifluoromethylbenzyl)-(2,2-diphenylethyl)amino]propyl oxy]phenylacetic acid hydrochloride (GW3965). Mol Pharmacol 2007; 72: 947-955.
    57. Schwartz K, Lawn RM, Wade DP. ABC1 gene expression and ApoA-I-mediated cholesterol efflux are regulated by LXR. Biochem Biophys Res Commun 2000; 274:794-802.
    58. Sparrow CP, Baffic J, Lam MH, et al. A potent synthetic LXR agonist is more effective than cholesterol loading at inducing ABCA1 mRNA and stimulating cholesterol efflux. J Biol Chem 2002; 277:10021-10027.
    59. Muscat GE, Wagner BL, Hou J, et al. Regulation of cholesterol homeostasis and lipid metabolism in skeletal muscle by liver X receptors. J Biol Chem 2002; 277:40722-40728.
    60. Naik SU, Wang X, Da Silva JS, et al. Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation 2006; 113: 90-97.
    61. Calpe-Berdiel L, Rotllan N, Fievet C, Roig R, Blanco-Vaca F, Escola-Gil JC. Liver X receptormediated activation of reverse cholesterol transport from macrophages to feces in vivo requires ATP-binding cassette (ABC) G5/G8. J Lipid Res 2008; 49:1904-1911.
    62. Zanotti I, Poti F, Pedrelli M, et al. The LXR agonist T1317 promotes the reverse cholesterol transport from macrophages by increasing plasma efflux potential. J Lipid Res 2008; 49:954-960.
    63. Rigamonti E, Helin L, Lestavel S, et al. Liver X receptor activation controls intracellular cholesterol trafficking and esterification in human macrophages. Circ Res 2005; 97:682-689.
    64. Wouters K, Shiri-Sverdlov R, van Gorp PJ, van Bilsen M, Hofker MH. Understanding hyperlipidemia and atherosclerosis:lessons from genetically modified apoe and ldlr mice. Clin Chem Lab Med 2005; 43:470-479.
    65. Laffitte BA, Repa JJ, Joseph SB, et al. LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc Natl Acad Sci USA 2001; 98:507-512.
    66. Singh SB, Ondeyka JG, Liu W, et al. Discovery and development of dimeric podocarpic acid leads as potent agonists of liver X receptor with HDL cholesterol raising activity in mice and hamsters. Bioorg Med Chem Lett 2005; 15:2824-2828.
    67. Miao B, Zondlo S, Gibbs S, et al. Raising HDL cholesterol without inducing hepatic steatosis and hypertriglyceridemia by a selective LXR modulator. J Lipid Res 2004;45:1410-1417.
    68. Beyer TP, Schmidt RJ, Foxworthy P, et al. Coadministration of a liver X receptor agonist and a peroxisome proliferator activator receptor-alpha agonist in mice:effects of nuclear receptor interplay on high-density lipoprotein and triglyceride metabolism in vivo. J Pharmacol Exp Ther 2004; 309:861-868.
    69. Grefhorst A, van Dijk TH, Hammer A, et al. Differential effects of pharmacological liver X receptor activation on hepatic and peripheral insulin sensitivity in lean and ob/ob mice. Am J Physiol Endocrinol Metab 2005; 289: E829-E838.
    70. Sato M, Kawata Y, Erami K, Ikeda I, Imaizumi K. LXR agonist increases the lymph HDL transport in rats by promoting reciprocally intestinal ABCA1 and apo A-I mRNA levels. Lipids 2008; 43:125-131.
    71. Joseph SB, McKilligin E, Pei L, et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci USA 2002; 99: 7604-7609.
    72. Terasaka N, Hiroshima A, Koieyama T, et al. T-0901317, a synthetic liver X receptor ligand, inhibits development of atherosclerosis in LDL receptor-deficient mice. FEBS Lett 2003; 536:6-11.
    73. Levin N, Bischoff ED, Daige CL, et al. Macrophage liver X receptor is required for antiatherogenic activity of LXR agonists. Arterioscler Thromb Vasc Biol 2005; 25:135-142.
    74. Tangirala RK, Bischoff ED, Joseph SB, et al. Identification of macrophage liver X receptors as inhibitors of atherosclerosis. Proc Natl Acad Sci USA 2002; 99:11896-11901.
    75. Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 2003; 9:213-219.
    76. Blaschke F, Leppanen O, Takata Y, et al. Liver X receptor agonists suppress vascular smooth muscle cell proliferation and inhibit neointima formation in balloon-injured rat carotid arteries. Circ Res 2004; 95:el 10-el23.
    77. Castrillo A, Joseph SB, Marathe C, Mangelsdorf DJ, Tontonoz P. Liver X receptor-dependent repression of matrix metalloproteinase-9 expression in macrophages. J Biol Chem 2003; 278:10443-10449.
    78. Luo Y, Tall AR. Sterol upregulation of human CETP expression in vitro and in transgenic mice by an LXR element. J Clin Invest 2000; 105:513-520.
    79. Barter PJ, Brewer HB Jr, Chapman MJ, Hennekens CH, Rader DJ, Tall AR. Cholesteryl ester transfer protein:a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler Thromb Vasc Biol 2003; 23:160-167.
    80. Masson D, Staels B, Gautier T, et al. Cholesteryl ester transfer protein modulates the effect of liver X receptor agonists on cholesterol transport and excretion in the mouse. J Lipid Res 2004; 45:543-550.
    81. Groot PH, Pearce NJ, Yates JW, et al. Synthetic LXR agonists increase LDL in CETP species. J Lipid Res 2005; 46:2182-2191.
    82. Schuster GU, Parini P, Wang L, et al. Accumulation of foam cells in liver X receptor-deficient mice. Circulation 2002; 106:1147-1153.
    83. Kalaany NY, Gauthier KC, Zavacki AM, et al. LXRs regulate the balance between fat storage and oxidation. Cell Metab 2005; 1:231-244.
    84. Repa JJ, Liang G, Ou J, et al. Regulation of mouse sterol regulatory element-binding protein-lc gene (SREBP-lc) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev 2000; 14:2819-2830.
    85. Quinet EM, Savio DA, Halpern AR, et al. Liver X receptor (LXR)-beta regulation in LXRalphadeficient mice:implications for therapeutic targeting. Mol Pharmacol 2006; 70:1340-1349.
    86. Chu K, Miyazaki M, Man WC, Ntambi JM. Stearoyl-coenzyme A desaturase 1 deficiency protects against hypertriglyceridemia and increases plasma high-density lipoprotein cholesterol induced by liver X receptor activation. Mol Cell Biol 2006; 26:6786-6798.
    87. Zhou J, Febbraio M, Wada T, et al. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology 2008; 134:556-567.
    88. Yoshikawa T, Shimano H, Amemiya-Kudo M, et al. Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein lc gene promoter. Mol Cell Biol 2001; 21:2991-3000.
    89. Liang G, Yang J, Horton JD, Hammer RE, Goldstein JL, Brown MS. Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding
    protein-lc. J Biol Chem 2002; 277:9520-9528.
    90. Joseph SB, Laffitte BA, Patel PH, et al. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J Biol Chem 2002; 277:11019-11025.
    91. Talukdar S, Hillgartner FB. The mechanism mediating the activation of acetyl-coenzyme A carboxylase-alpha gene transcription by the liver X receptor agonist T0-901317. J Lipid Res 2006; 47:2451-2461.
    92. Cha JY, Repa JJ. The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrateresponse element-binding protein is a target gene of LXR. J Biol Chem 2007; 282:743-751.
    93. Grefhorst A, Elzinga BM, Voshol PJ, et al. Stimulation of lipogenesis by pharmacological activation of the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles. J Biol Chem 2002; 277: 34182-34190.
    94. Albers JJ, Cheung MC. Emerging roles for phospholipid transfer protein in lipid and lipoprotein metabolism. Curr Opin Lipidol 2004; 15:255-260.
    95. Cao G, Beyer TP, Yang XP, et al. Phospholipid transfer protein is regulated by liver X receptors in vivo. J Biol Chem 2002; 277:39561-39565.
    96. Koishi R, Ando Y, Ono M, et al. Angptl3 regulates lipid metabolism in mice. Nat Genet 2002; 30:151-157.
    97. Kaplan R, Zhang T, Hernandez M, et al. Regulation of the angiopoietin-like protein 3 gene by LXR. J Lipid Res 2003; 44:136-143.
    98. Inaba T, Matsuda M, Shimamura M, et al. Angiopoietin-like protein 3 mediates hypertriglyceridemia induced by the liver X receptor. J Biol Chem 2003; 278: 21344-21351.
    99. Zhang Y, Repa JJ, Gauthier K, Mangelsdorf DJ. Regulation of lipoprotein lipase by the oxysterol receptors, LXRalpha and LXRbeta. J Biol Chem 2001; 276:43018-43024.
    100. Zhang Y, Mangelsdorf DJ. LuXuRies of lipid homeostasis:the unity of nuclear hormone receptors, transcription regulation, and cholesterol sensing. Mol Interv 2002; 2:78-87.
    101. Chen G, Liang G, Ou J, Goldstein JL, Brown MS. Central role for liver X receptor in insulinmediated activation of Srebp-lc transcription and stimulation of fatty acid synthesis in liver. Proc Natl Acad Sci USA 2004; 101:
    11245-11250.
    102. Hu T, Foxworthy P, Siesky A, et al. Hepatic Peroxisomal Fatty Acid beta-Oxidation Is Regulated by Liver X Receptor alpha. Endocrinology 2005; 146:5380-5387.
    103. Montanaro MA, Gonzalez MS, Bernasconi AM, Brenner RR. Role of liver X receptor, insulin and peroxisome proliferator activated receptor alpha on in vivo desaturase modulation of unsaturated fatty acid biosynthesis. Lipids 2007; 42:197-210.
    104. Abdallah BM, Beck-Nielsen H, Gaster M. Increased expression of 11beta-hydroxysteroid dehydrogenase type 1 in type 2 diabetic myotubes. Eur J Clin Invest 2005; 35:627-634.
    105. Cozzone D, Debard C, Dif N, et al. Activation of liver X receptors promotes lipid accumulation but does not alter insulin action in human skeletal muscle cells. Diabetologia 2006; 49:990-999.
    106. Kase ET, Andersen B, Nebb HI, Rustan AC, Thoresen GH. 22-Hydroxycholesterols regulate lipid metabolism differently than T1317 in human myotubes. Biochim Biophys Acta 2006; 1761:1515-1522.
    107. Kase ET, Wensaas AJ, Aas V, et al. Skeletal muscle lipid accumulation in type 2 diabetes may involve the liver X receptor pathway. Diabetes 2005; 54: 1108-1115.
    108. Cao G, Liang Y, Broderick CL, et al. Antidiabetic action of a liver x receptor agonist mediated by inhibition of hepatic gluconeogenesis. J Biol Chem 2003; 278:1131-1136.
    109. Liu Y, Yan C, Wang Y, et al. Liver X receptor agonist T1317 inhibition of glucocorticoid receptor expression in hepatocytes may contribute to the amelioration of diabetic syndrome in db/db mice. Endocrinology 2006; 147: 5061-5068.
    110. Laffitte BA, Chao LC, Li J, et al. Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc Natl Acad Sci USA 2003; 100:5419-5424.
    111. Commerford SR, Vargas L, Dorfman SE, et al. Dissection of the insulin-sensitizing effect of liver X receptor ligands. Mol Endocrinol 2007; 21: 3002-3012.
    112. Gerin I, Dolinsky VW, Shackman JG, et al. LXRbeta is required for adipocyte growth, glucose homeostasis, and beta cell function. J Biol Chem 2005; 280: 23024-23031.
    113. Stulnig TM, Steffensen KR, Gao H, et al. Novel roles of liver X receptors exposed by gene expression profiling in liver and adipose tissue. Mol Pharmacol 2002; 62:1299-1305.
    114. Grempler R, Gunther S, Steffensen KR, et al. Evidence for an indirect transcriptional regulation of glucose-6-phosphatase gene expression by liver X receptors. Biochem Biophys Res Commun 2005; 338:981-986.
    115. Puigserver P, Rhee J, Donovan J, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 2003; 423: 550-555.
    116. Chakravarty K, Hanson RW. Insulin regulation of phosphoenolpyruvate carboxykinase-c gene transcription:the role of sterol regulatory element-binding protein 1c. Nutr Rev 2007; 65:S47-S56.
    117. Stulnig TM, Oppermann U, Steffensen KR, Schuster GU, Gustafsson JA. Liver X receptors downregulate 1 lbeta-hydroxysteroid dehydrogenase type 1 expression and activity. Diabetes 2002; 51:2426-2433.
    118. Dalen KT, Ulven SM, Bamberg K, Gustafsson JA, Nebb HI. Expression of the insulinresponsive glucose transporter GLUT4 in adipocytes is dependent on liver X receptor alpha. J Biol Chem 2003; 278:48283-48291.
    119. Fernandez-Veledo S, Nieto-Vazquez I, Rondinone CM, Lorenzo M. Liver X receptor agonists ameliorate TNFalpha-induced insulin resistance in murine brown adipocytes by downregulating protein tyrosine phosphatase-1B gene expression. Diabetologia 2006; 49:3038-3048.
    120. Ross SE, Erickson RL, Gerin I, et al. Microarray analyses during adipogenesis: understanding the effects of Wnt signaling on adipogenesis and the roles of liver X receptor alpha in adipocyte metabolism. Mol Cell Biol 2002; 22: 5989-5999.
    121. Efanov AM, Sewing S, Bokvist K, Gromada J. Liver X receptor activation stimulates insulin secretion via modulation of glucose and lipid metabolism in pancreatic beta-cells. Diabetes 2004; 53 Suppl 3:S75-S78.
    122. Zitzer H, Wente W, Brenner MB, et al. Sterol regulatory element-binding protein 1 mediates liver X receptor-beta-induced increases in insulin secretion and insulin messenger ribonucleic acid levels. Endocrinology 2006; 147: 3898-3905.
    123. Loffler M, Bilban M, Reimers M, Waldhausl W, Stulnig T. Blood glucose lowering nuclear receptor agonists only partially normalize hepatic gene expression in db/db mice. J Pharmacol Exp Ther 2006; 316:797-804.
    124. Chisholm JW, Hong J, Mills SA, Lawn RM. The LXR ligand T1317 induces severe lipogenesis in the db/db diabetic mouse. J Lipid Res 2003; 44: 2039-2048.
    125. Choe SS, Choi AH, Lee JW, et al. Chronic activation of liver X receptor induces beta-cell apoptosis through hyperactivation of lipogenesis:liver X receptor-mediated lipotoxicity in pancreatic beta-cells. Diabetes 2007; 56: 1534-1543.
    126. Lund EG, Menke JG, Sparrow CP. Liver X receptor agonists as potential therapeutic agents for dyslipidemia and atherosclerosis. Arterioscler Thromb Vasc Biol 2003; 23:1169-1177.