虎杖苷对非酒精性脂肪肝保护作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     非酒精性脂肪肝(nonalcoholic fatty liver disease, NAFLD)是指除外酒精和其他明确的损肝因素所致的,以弥漫性肝细胞大泡性脂肪变为主要特征的临床病理综合征,包括单纯性脂肪肝以及由其演变的脂肪性肝炎(NASH)、肝纤维化和肝硬化。各种原因使肝内脂肪堆积超过5%或肝活检中发现单位肝细胞有1/3以上有脂肪滴被称为脂肪肝。在脂肪肝中,非酒精性脂肪肝占80%。
     NAFLD发病率在不同国家也各有不同,其发病率在不同国家也各有不同,目前西方国家约为20-30%,亚太地区约为12%~24%;儿童发病率约2.6%,肥胖儿童可达52.8%。随着我国经济条件的改善,人民生活水平不断提高,饮食结构、工作的环境及方式的改变,NAFLD发病率明显增加,而且有年轻化趋势。资料显示在我国上海市和广东省NAFLD患病率分别已达到15.4%、11.7%。有资料显示在排除其他肝病后,NAFLD通常是无症状转氨酶升高的最主要原因,约占90%。单纯性脂肪肝(NAFL)有12-40%患者在8-13年内进展为NASH,后可发展为肝硬化,与其他肝病引起的肝硬化患肝癌危险性无明显差异。此外,还与肥胖、2型糖尿病、高动脉压症、高脂血症等代谢综合征密切相关。NAFLD已经成为病毒性肝炎之后第二大慢性肝病,实行肝移植的第三大适应症。NAFLD的总死亡率比普通人显著增高。防治本病已成为全球普遍关注的医学和社会问题。
     NAFLD病机不甚明了,大多数学者较为认可的有“二次打击”学说,“初次打击”主要为胰岛素抵抗,各种病因所致NAFLD几乎普遍存在胰岛素抵抗现象。胰岛素抵抗通过促使外周脂解增加和高胰岛素血症引起肝细胞脂肪储积,并诱致对内外性损害因子敏感性增高;二次打击主要为反应性氧化代谢产物增多,导致脂质过氧化及其异常细胞因子的作用,进而引起坏死、甚至进展性肝纤维化。最近研究显示,调节肝细胞调节脂质代谢平衡的主要是核转录因子PPAR-α和SREBP-1c,分别促进脂肪的氧化和合成,其信号途径与两次次打击各个环节均有密切的联系,关于其调控的机制成为众医家研究的热点。目前世界范围内尚无疗效确切,安全稳定的治疗NAFLD的药物,研发通过化学合成或从中草药中寻找干预PPAR-α和SREBP-1c信号途径,降低脂质合成,达到治疗目的药物成为热点。
     非酒精性脂肪肝属中医“肥胖”“胁痛”“黄疸”等病范畴。多由过食肥甘厚味,湿热蕴藉中焦,湿热阻滞,气机受阻,气血运行不畅,而瘀血内生。病理关键在“湿(痰)”“热”“瘀”。虎杖功能清热、利湿、破瘀,作用于NAFLD关键病理因素,自古为中医家治疗“肥胖”“胁痛”“黄疸”等病的要药,虎杖苷为中药虎杖的主要活性成分之一,资料显示在降脂、保护肝细胞等方面有一定效果,本实验旨在用现代分子生物学手段系统观察其疗效,并深入探讨其可能的作用靶点,为临床更确切广泛使用虎杖提供科学依据,为从中草药中开发治疗NAFLD药物作探索性研究。
     目的
     1观察虎杖苷对非酒精性脂肪肝早期大鼠的影响,包括在体重、肝重、肝细胞脂肪变、肝功能、血脂代谢的影响。
     2、研究虎杖苷治疗非酒精性脂肪肝的可能作用机制,包括氧化应激、胰岛素抵抗、肿瘤坏死因子-α(TNF-α)以及过氧化物酶体增殖激活物受体-α(PPAR-a),固醇调节元件结合蛋白-1c (SREBP-1c)、肝X受体-α(LXR-α)、蛋白及基因表达的影响。
     方法:
     雄性SPF级SD大鼠44只,体重200±10g,正常喂养1周后,完全随机法分为2组,正常组对照(A,8只)和模型组(M,36只),组间大鼠体重差异无显著性(P>0.05)。正常组给予标准饲料,模型组给予高脂饲料(88%标准饲料+10%猪油+2%胆固醇)喂养,自由饮水和进食,动物房保持安静,自然采光,温度25℃左右,喂养持续8周,分别从正常对照组和空白模型组随机挑选一只,取肝脏做病理切片,证实非酒精性脂肪肝形成。再将模型组完全随机法分为5组:空白模型组(B)、虎杖苷高剂量组(C1)、虎杖苷中剂量组(C2)、虎杖苷低剂量组(C3)、非诺贝特组(D),每组7只。
     8周后,A组、B组予以生理盐水灌胃,1ml/100kg.d, C1、C2、C3分别以160mg/kg.d、80mg/kg.d、40mg/kg.d虎杖苷混悬液灌胃,D组以100mg/kg.d非诺贝特混悬液灌胃。持续4周。第12周末取大鼠血清及肝组织样本,称体重,肝湿重,计算肝指数,全自动生化仪测定血清谷丙转氨酶(ALT)、谷草转氨酶(AST)、甘油三酯(TG)、胆固醇(TC)、低密度脂蛋白(LDL-C)、高密度脂蛋白(HDL-C),游离脂肪酸(FFA);酶法测定空腹血糖(FBG);放免法检测血清空腹胰岛素(FIN),计算胰岛素抵抗指数(IRI),胰岛素敏感指数(ISI);对肝组织进行病理学检查,HE染色观察其脂肪变程度;酶联免疫法(ELISA)检测血清肿瘤坏死因子α(TNF-α);蛋白免疫印迹法(western blotting)检测PPAR-α、LXR-α、SREBP-1c蛋白表达;实时荧光定量(real-time PCR)检测PPAR-α、LXR-α、SREBP-1c基因表达。
     计量资料结果以x±s表示,两组间比较采用t-test。多组间比较采用One way ANOVA,首先对数据进行方差齐性检验,方差齐则用LSD法进间两两比较,如果数据方差不齐,则采用Welch法进行方差分析,应用Dunnett T3法进行两两比较。等级资料资料采用Kruskal-Wallis H非参数检验进行分析,P<0.05为有显著性差异。所有数据采用SPSS 13.0软件包进行统计分析。
     结果
     第一部分:虎杖苷对非酒精性脂肪肝药效研究
     1.根据肝脏病理状态,可见弥漫性肝细胞大泡样脂肪变,无明显炎症、坏死及纤维化,NAFLD大鼠早期单纯性脂肪肝阶段模型复制成功。
     2.与空白模型组相比,虎杖苷高剂量组体重明显减低(P<0.01),增长速度较慢,肝脏体减小,肝湿重减轻,肝指数明显降低(P<0.01)。肝脏病理显示,虎杖苷高、中剂量组大鼠肝细胞脂肪沉积明显减少(P<0.01),肝细胞形态、排列均明显好转。
     3.与空白模型组相比,虎杖苷高、中剂量组大鼠血清ALT明显降低(P<0.01,P<0.05),虎杖苷高剂量组明显优于非诺贝特组(P<0.05);虎杖苷高、中剂量组大鼠血清TG降低(P<0.01, P<0.05);虎杖苷高剂量组大鼠血清TC、LDL-C降低(P<0.05, P<0.01), HDL-C升高(P<0.01)。虎杖苷各剂量组均能降低FFA(P<0.01)。
     第二部分:虎杖苷治疗NAFLD部分机制研究
     1.与正常对照组比较,空白模型组大鼠总抗氧化能力(T-AOC)、超氧化物岐化酶(SOD)、谷胱甘肽-S转移酶(GST)明显减低(P<0.01),与空白模型组比较,虎杖苷高、中剂量组均能增高肝组织T-AOC、SOD、GST,同时降低肝组织MDA(P<0.01),其中虎杖苷高剂量组提高肝脏抗氧化能力效果均优于非诺贝特组(P<0.01)。
     2.与正常对照组比较,空白模型组大鼠空腹血糖(FBG)、空腹胰岛素(FIN)明显增高(P<0.01),IRI增高,ISI明显降低(P<0.01, P<0.05)。与空白模型组比较,虎杖苷高、中剂量组及非诺贝特组能降低FBG、FIN(P<0.01, P<0.05),减低胰岛素抵抗指数(IRI),增高胰岛素敏感指数(ISI) (P<0.01, P<0.05),其中虎杖苷高剂量效果均明显优于优于非诺贝特组(P<0.01, P<0.05)。虎杖苷低剂量各指标与空白模型组无差异(P>0.05)。虎杖苷高、中剂量组在降低IRI,增加ISI效果优于虎杖苷低剂量组(P<0.01)。
     3.与正常对照组比较,空白模型组大鼠血清TNF-α明显高于(P<0.01),与空白模型组相比,虎杖苷高、中剂量组及非诺贝特组均能明显降低血清TNF-α含量(P<0.01),虎杖苷高剂量组效果明显优于虎杖苷中、低剂量组(P<0.01, P<0.01)。但与非诺贝特组无显著差异(P>0.05)。虎杖苷低剂量组与不能显著降低血清TNF-α含量,与空白模型组无显著差异(P>0.05)。
     4.与正常组比较,空白模型组大鼠PPAR-α蛋白及基因表达明显降低(P<0.01),SREBP-1c、LXR-α蛋白及基因表达升高(P<0.01),与空白模型组比较,虎杖苷高、中剂量组均能明显降低大鼠肝脏SREBP-1c、LXR-α蛋白及基因表达,明显优于非诺贝特组(P<0.01);虎杖苷各组PPAR-α蛋白及基因表达与空白模型组无显著差异(P>0.05),非诺贝特能显著增加PPAR-α蛋白及基因表达,与空白模型组及虎杖苷各剂量组存在显著差异(P<0.01)。
     结论
     1.虎杖苷能减轻NAFLD大鼠体重,减轻肝脏肿大及肝脏湿重。显示虎杖苷有一定的减肥作用,通过减轻内脏脂肪堆积达到治疗NAFLD。
     2.虎杖苷能减少血清FFA,降低血清TG、TC、LDL-C,增加HDL-C,纠正血脂紊乱。同时虎杖苷能减少NAFLD单纯性脂肪肝阶段肝细胞脂质沉积,从而减轻脂肪对肝细胞造成的水肿、缺氧以及炎症。可能机制是通过减少进入肝细胞游离脂肪酸,从而降低肝脏甘油三酯合成,减轻过量FFA的毒性作用,逆转肝脏脂肪沉积,改善肝功能,保护肝细胞。
     3.虎杖苷能增强体内抗氧化能力,减少脂质过氧化,减轻肝脏炎症及脂肪肝进展。虎杖苷可通过减少循环中血清FFA,减少肝细胞FFA的摄入,从而减轻线粒体氧化负荷,改善线粒体β氧化,减少活性氧及自由基的产生。
     4.虎杖苷降低循环中TNF-α的含量,改善胰岛素抵抗,减少脂肪组织分解及循环中FFA的释放,减轻肝细胞脂质沉积。
     5.虎杖苷能下调脂质合成因子SREBP-1c、LXR-α蛋白及基因的表达,减少脂质合成。
Background
     Nonalcoholic fatty liver disease (NAFLD) is a clinical syndrome characterized by excessive fat storing in liver and hepatic cellular degeneration,without alcohol over ingestion. NAFLD consists of a spectrum of liver disease, ranging from simple steatosis to non-alcoholic steatohepatitis(NASH),fibrosis,eirrhosis.When weight of fat in liver exceed 5% of the liver or 1/3 above of liver cells have steatosis in liver biopsy,the liver is called fatty liver. Non-alcoholic fatty liver disease account for 80% of all the fatty liver.
     Morbidity of NAFLD is different in different countries, about 10%~24% in western country,but in Asian and Pacific regions the number is 12%-24%. In obesity incidence in patients the morbidity is 57.5%~74%. Incidence of children is about 2.6 %, while in those overweight the numbe can reach 52.8%.With the improvement of the standard of living, the change of the eating habits,more and more people are suffering nonalcoholic fatty liver(NAFLD) in china. Data shows in China, NAFLD prevalence has reached 15.4%,11.7% respectively in Shanghai and guangdong provinces. It appears that obesity is concerned with the cause of NAFLD. And there is a tendency of young. NAFLD is the most medium cause of liver dysfunction, accounting for 90%.The spectrum of NAFLD ranges from simple fatty liver (hepatic steatosis), with benign prognosis, to a potentially progressive form, nonalcoholic steatohepatitis (NASH), which may lead to liver fibrosis and cirrhosis, resulting in increased morbidity and mortality. WHO estimated that at least two million patients will develop cirrhosis due to hepatic steatosis in the years to come. Longitudinal cohort studies have demonstrated that those patients with cirrhosis have a similar risk to develop hepatocellular carcinoma as those with other causes of cirrhosis. All features of the metabolic syndrome, including obesity, type 2 diabetes, arterial hypertension, and hyperlipidemia (in the form of elevated triglyceride [TG] levels) are associated with NAFLD/NASH. NAFLD has become the third most important indication for liver transplantation. Total mortality of NAFLD significantly higher than normal. Prevention NAFLD has become a global attention as a medical and social problems.
     Pathogenesis of NAFLD is not very clear until now, "two hits" theory is approved by most medical scientists."first hit"is insulin resistance(IR).NAFLD almost exist insulin resistance. Insulin resistance lead liver cells to fatty degeneration through increasing lipolysis, in the meantime, sensitiity of damage factor inside and outside is rose."second hit"is lipid peroxidation caused by exceed lipid peroxide(LPO) and some cytokine. the "second hit"leads liver cells to inflammation,necrosis, fibrosis. Recent research suggests that PPAR-αand SREBP-1c is the main regulating factor to balance lipid synthesis and decomposition. Signaling pathways of PPAR-αand SREBP-1c closely linked to two hits. their regulation mechanisms become the hot spot being researched by most medical scientists. At the present time,there is no special drug to cure NAFLD, physicians focus on developing drug can decreace liver lipidosages by regulating signaling pathways of PPAR-αor/and SREBP-1c, especially from Chinese herbal medicine.
     There is no NAFLD in chinse tradional medicine, NAFLD is equivalent to Chinese "obesity""hypochondriac pain""jaundicet".According to TCM theory, intake excessive energy caused dampness-heat stagnating in spleen, dampness-heat in middle jiao, then qiji is blocked by dampness and heat, with the passing of time blood stasis is induced. To sum up,dampness, heat and blood stasis are the key for NAFLD.Giant Knotweed Rhizome,as a common herb,have the function of clearing heat, promoting diuresis,removing blood stasis. It can deal with most key Pathological factors,for that, Giant Knotweed Rhizome is used to treat obesity,hypochondriac pain or jaundicet.Polydatin is one of the main active ingredients Giant Knotweed Rhizome.Data shows that polydatin can decreace fat accumulation in liver, protective liver cell, etc. The experiment aims to observe the systematic effect of polydatin on NAFLD,and make further reseach the mechanism. The conclusion of this experiment provide more scientific basis for using Giant Knotweed Rhizome in clinic,and the author expect to explore a drug for treating NAFLD from Chinese herbal medicine
     Objectives
     Using the model of NAFLD recognized by the world and linking to the evolution of modern research of NAFLD,we observed the body weight,liver wet weight,the liver index,hepatic tissue pathology,Liver function,blood lipid,FFA,oxidative stress,TNF-αand hepatic tissue expression of PPAR-a, SREBP-lc and LXR-a protein and mRNA by the technique of pathology, biochemistry and molecular biology in the research.The aim of this investigation was to evaluate the efficacy and the poteintial mechanisms of the polydatin on the experiment nonalcoholic fatty liver disease(NAFLD) induced by high fat forage.
     Methods
     Forty-four clean graded male SD(Sprague Dawley) rats,weight 200±10g,were fed 1W normally,then were randomly divided into 2 groups,namely normal control group(A,n=8),model group(M,n=36), The normal control group had being fed with ordinary forage,while the rest with high fat forage(88% ordinary forage+10% lard+ 2% cholesterin) for 8w. After 8W,two rats were randomly choosed from each group,we observed samples of liver tissue sections that stained with HE method by light microscope to confirm NAFLD model rats replicated successfully.Then,the model group were randomly divided into 5 groups,namely blank model group(B,n=7),PD groups:low dosage,medium dosage,high dosage (C1,C2,C3, n=7, respectively) and Fenofibrate Tablets group(D,n=7). The forage of the normal control group don't change, the rest group were fed with high fat forage unceasingly. Since then, we poured PD Suspension liquid into stomach of rats of C1、C2、C3 groups,160mg/kg/d、80mg/kg/d、40mg/kg/d qd separately;the rats of D group are poured suspension of Fenofibrate tablet into stomach, 100mg/kg/d,qd;the rats of A and B group are poured isotonic nachloride into stomach,1 ml/100g.d,qd. At the end of twelve week of the experiment,all rats were fasted for 12h,then were killed after being narcotized with chloraldurat to leave over serum and hepatic tissue rapidly according to routine, which is fasted by formalin,packed with paraffin, sectioed,stained with HE,evaluated the degree of hepatic steatosis and inflammation under the optical microscope. Then reckoned liver index,to detect the content of serum ALT,AST,TC,TG,LDL,HDL,FPG、FIN、TNF-α. We leave over hepatic tissue to make 10% liver homogenate at 4℃for detecting content of T-AOC、SOD、GST、MDA, detected the protein expression of PPAR-α、LXR-α、SREBP-1c by Western blotting. The expression levels of PPAR-amRNA、LXR-amRNA、SREBP-1cmRNA were determined by real time quantitative RT-PCR.
     The data were analyzed with SPSS 13.0:Measurement data is expressed as the mean±SD(x±s). Differences between two group were analysed using unpaired Student'd-test,and on-way ANOVA for multiple comparisons. During ANOVA, data were tested via homogeneity test for variance first, if variance is homogenous, data were analyzed by on-way ANOVA, and groups were compared by LSD; if not, data would be analyzed by Dunnett T3 method after data tested via welch for vatiance.Rank data were analyzed by Kruskal-Wallis non-Parametric test. P<0.05. was considered significant.
     Results
     The experiment I is to study the effect of PD on NAFLD.
     1.According to the hepatic tissue pathology and the state of hepatic function of rats,we succeeded in replicating the models of rats with NAFLD.
     2.Compared with the blank model group,the body weight and the liver index of PD high dosage (C1) group decrease significantly(P<0.01).During the experiment, weight of PD high dosage group grows slower, liver volume decreases.Liver wet weight and liver index decreased significantly (P<0.01). Hepatic pathology revealed, high polygoni cuspidati glycosides in rats, the fat deposition in liver cells reduced significantly (P< 0.01). Liver cell morphology, arrangement are improved significantly.
     3. Compared with the blank model group,the serum ALT of the PD high-dosage group and PD medium dosage group decreased significantly (P<0.01, P<0.05), and the effect of improving liver function is superior than fenofibrate group (P<0.05). High, medium polygoni cuspidati nucleoside dosage group of serum TG reduce rat (P< 0.01, P<0.05). Serum TC,LDL-c of the PD high dosage group and PD medium dosage group reduced significantly (P<0.05, P<0.01), at the same time HDL-C increased (P<0.01). FFA of Each PD group reduced markedly (P<0.01).
     The second part:Research of partly mechanisms of polydatin on nonalcoholic fatty liver disease
     1.Compared with the normal control group, T-AOC, SOD, GST of the blank model rats significantly reduced (P<0.01), the liver tissue T-AOC, SOD, GST of PD high and medium dosage group all are heighten(P<0.01), while reducing liver tissue MDA compared with blank model group(P<0.01). Liver anti-oxydation ability of PD high dosage group is more effective than fenofibrate group (P<0.01).
     2.Compared with the normal control group, FBG FIN of the blank model rats are notably higher (P<0.01), the IRI increased, and ISI are lower (P<0.01, P<0.05). Compared with blank model group, FBG、FIN、IRI of PD high dosage group,medium dosage group and fenofibrate reduced (P<0.01, P<0.05), at the same time there ISI heighten (P<0.01, P<0.05), including effect of PD high dosage is better than fenofibrate group (P<0.01, P<0.05). While each index of PD low dosage is no differences with blank model group (P>0.05). PD High and medium is more effective than PD low dosage group (P<0.01).
     3.Compared with the normal control group, serum TNF-αof the blank model rats increased significantly (P<0.01).Compared with blank model group, PD high and medium dosage group and fenofibrate group significantly reduced (P<0.01), PD high dosage group is obviously superior to medium and low dosage groups (P<0.01, P<0.01),but compared with fenofibrate group,there are no difference(P>0.05). PD low dosage group can not reduce serum TNF-αcontent, there are no significant differences from the blank model group (P>0.05).
     4.Compared with the normal control group, The expression of SREBP-1c,LXR-αprotein of the blank model rats increased significantly (P<0.01). while the expression of PPAR-a protein decresced. Compared with blank model group, the expression of SREBP-1c、LXR-αprotein PD high and medium dosage group significantly reduced (P<0.01), the two group are more effective than fenofibrate and PD low group(P<0.01). But the expression of PPAR-a protein was higher than the blank model group(P<0.01), The expression of PPAR-a protein of PD groups are no differences from the blank model group (P>0.05).
     Conclusions
     1.Polydatin can decrease significantly the body weight, improve hepatomegaly, reduce liver wet weight and the liver index. The experiment hints:to reduce the abdomen fat may be one of the mechanism of polydatin in the treatment of nonalcoholic fatty liver.
     2.Polydatin can reduce serum TG, TC,LDL-C and ALT,while increase HDL-C, and it shows that polydatin can correct blood disorder and keep the liver cells intact. According to the pathological polydatin can reduce the fat deposition in the hepatocyte of NAFLD rats,when there are in the stage of simple fatty liver (hepatic steatosis), thus reduce fat cause Swelling of liver cells and hypoxia and inflammation.The possible mechanism for polydatin to reverse liver fat deposits, improve liver function and protect liver cells is reducing free fatty acids flowing into the liver cells, to reduce excess synthesis of liver triglycerides and its toxicity.
     3.Polydatin can enhance the anti-oxidization ability, reduce lipid peroxidation. Polydatin reduce liver cell free fatty acids flowing into the liver cells, reduce oxidatie load of mitochondrial, thereby improve (3-oxidation, reduce Ros and free radicals.
     4.Polydatin can reduce TNF-a in blood, and improve insulin resistance. Polydatin reduces lipoclasis, and FFA released from fat tissue, through which Polydatin reduces the at deposits of liver cells.
     5.Polydatin can cut lipid synthesis factor SREBP-lc, LXR-a protein and gene expression,through decreacing expression of SREBP-lc, polydatin reduce lipid synthesis, which may be an key mechanism for polydatin to treat NAFLD.
引文
[1]中华医学会肝病学分会脂肪肝和酒精性肝病学组.非酒精性脂肪性肝病诊疗指南.中华肝脏病杂志,2006,14:161-163.
    [2]黄春明,李瑜元.非酒精性脂肪肝的流行病学.现代消化及介入诊疗.2009.14(4):233-237.
    [3]Farrell GC,Chitturi S,Lau GK,et al;Asia-Pacific Working Party on NAFLD.Guidelines for the assessment and management of non-alcoholic fatty liver disease in the Asia-Pacific region:executive summary.JGastroenterol Hepatol,2007,22:775-777.
    [4]Villanova N,Moscatiello S,Ramilli S,et al.Endothelial dysfunction and cardiovascular risk profile in nonalcoholic fatty liver disease.Hepatology,2005, 42:473-480.
    [5]Brea A,Mosquera D,Martin E,et al,Nonalcoholic fatty liver disease is associated with carotid atherosclerosis:ta case-control study.Arterioscler Thromb Vase Biol,2005,25:1045-1050.
    [6]Medina J,Fernadez-Salazar LI,Garcia B,et al.Approach to the pathogenesis and treatment of non alcoholics teato-hepatitis[J].Diabetes Care,2004,27:2057.
    [7]Medina J,Fernadez-Salazar LI,Garcia B,et al.Approach to the pathogenesis and treatment of non alcoholics teatohepatitis[J].Diabetes Care,2004,27:2057.
    [8]Feldstein AE,Canbay A,Angulo P,et al.Hepatocyte ap-optosis and fas expression are prominent features of hu-man nonalcoholic steatohepatitis [J]. Gastroenterology, 2003,125:437.
    [9]Saile B,Matthes N,El Armouche H,et al.The bcl,NF-kappaB and p53/p21WAF1 systems are involved in spon-taneous apoptosis and in the anti-apoptotic effect of TGF-beta or TNF-alpha on activated hepatic stellatecells[J].Eur J Cell Biol,2001,80:554.
    [10]Liou I,Kowdley KV.Natural history of nonalcoholic steato-hepatitis [J].J Clin Gastroenterol,2006,40:S 11.
    [11]Baranova A,Gowder SJ,Schlauch K,et al.Gene expres-sion of leptin,resistin,and adiponectin in the white adi-pose tissue of obese patients with non-alcoholic fatty liver disease and insulin resistance [J].Obes Surg,2006,16:1118.
    [12]Aygun C,Senturk O,Hulagu S,et al.Serum levels of hep-atoprotective peptide adiponectin in non-alcoholic fattyliver disease [J].Eur J Gastroenterol Hepatol, 2006,18:175.
    [13]Bahcecioglu A,Yalniz M,Ataseven H,et al.Levels of ser-um hyaluronic acid,TNF-alpha and IL-8 in patients with nonalcoholic steatohepatitis[J]. Hepato gastroenterology,2005,52:1549.
    [14]Gonzalez-Quintela A,Dominguez-Santalla MJ,Perez LF,et al.Influence of acute alcohol intake and alcoholwith-drawal on circulating levels of IL-6,IL-8,IL-10 and IL-12[J].Cytokine,2000,12:1437.
    [15]Dorman RB,Gujral JS,Bajt ML,et al. Generation andfunctional signifi cance of CXC chemokines for neutro-phil-induced liver injury during endotoxemia[J]. Am J Physiol Gastrointest Liver Physiol,2005,288:G880.
    [16]Shimizu S,Ugi S Protein-tyrosine phosphatase 1Bas new activator for hepatic lippgenesis via sterol regulatory element-binding protein-1 gene express.J biol Chem,2003,278(12):43095-43101.
    [17]江苏新医学院.中药大辞典[M].上海:上海科学技术出版社,2005:1329.
    [18]洪照友,高毅,詹兴海.中药虎杖对大鼠肝脏缺血性损伤保护的形态学观察[J].世界华人消化杂志,2000,8(2):162.
    [19]朱立贤,金征宇白藜芦醇苷对高脂血症大鼠血脂、一氧化氮及一氧化氮合酶的影响.中药药理与临床2005,21(3):16-17.
    [20]朱立贤,金征宇.白藜芦醇苷对高脂血症大鼠血脂代谢的影响及其抗氧化作用.中成药[J].2006,28(2):260-270.
    [21]莫志贤,邵红霞.白藜芦醇苷体外对过氧化氢导致小鼠肝细胞损伤的保护作用[J].中国药理学通报,2000,16(5):519-521.
    [22]周建军.虎杖中二苯乙烯类化合物药理作用研究的进展[J].西北药学,2000,15(2):86.
    [23]黄兆胜,王宗伟,刘明平,等.虎杖苷对损伤原代培养大鼠肝细胞的保护作用[J].中国药理学通报,1998,14(6):543-545.
    [24]田京伟,杨建雄.白藜芦醇苷的体外抗氧化活性.中草药.2001,32(10):918-920.
    [25]黄兆胜,王宗伟,刘明平等.虎杖苷对CCl4损伤原代培养大鼠肝细胞的保护作用[J].中国药理学通报.1998,14(6)543-545.
    [1]中华肝脏病学会脂肪肝和酒精性肝病血组.非酒精性脂肪肝并的诊断标准.中华肝脏病杂志.2003,11:73.
    [2]London RM,George J.Pathogenesis of NASH:animal models.Clin Liver Dis 2007;11:55-74,viii.
    [3]鲁晓岚,罗金燕,胡长根.三种大鼠脂肪肝模型的比较.胃肠病和肝病杂志,2005,14(3):243-248.
    [4]钟岚,范建高,王国良,等.肥胖、脂血症性脂肪性肝炎模型的建立.实验动科学与管理,2000,17(2):16-20.
    [5]Sass DA,Chang P,Chopra KB.Nonalcoholic fatty liver disease:a clinical review.Dis Sci,2005,50(1):171-180.
    [6]Wu X, Zhang L, Gurley E, et al. Prevention of free fatty acid-induced hepatic lipotoxicity byl8beta-glycyrrhetinic acid through lysosomal and mitochondrial pathways. Hepatology,2008,47:1905-1915.
    [7]程琦,许树长,张志强,等.大鼠非酒精性脂肪性肝炎模型的制备.同济大学学报(医学版),2005,26:12-14.
    [8]徐正婕,范建高,王国良,等.高脂饮食致大鼠非酒精性脂肪性肝炎肝纤维化模型.世界华人消化杂志,2002,10:392-396.
    [9]Lee JH,Rhee PL,Lee JK,Lee KT,Kim JJ,KohK C,P a i k S W,R h e e J C,C h o i K W.Roleof.hyperinsulinemia and glucose intolerance in thepathogenesis of nonalcoholic fatty liver in patients with normal body weight.Korean J Intern Med 1998;13:12-14.
    [10]徐卫,石娜,金蝾.血脂水平与脂肪肝关系的调查.现代预防医学2004;31:424
    [11]范建高.非酒精性脂肪性肝病的临床流行病学研究.中华消化杂志,2002,22:106-107.
    [12]邹玲梅.脂肪肝患者胰岛素抵抗的临床观察.淮海医药2004;22:375-376.
    [13]刘迎并,闫自强.脂代谢异常与脂肪肝相关性分析.实用医技杂志2004;11:496-497.
    [14]蔡葵,何玉怡.非酒精性脂肪肝与脂代谢紊乱及胰岛素抵抗的关系.实用医技 杂志2006;13:2636-2637.
    [15]Choi SS,Diehl AM.Hepatic triglyceride synthesisand nonalcoholic fatty liver disease.Curr Opin Lipidol 2008; 19:295-300.
    [16]孟群,沈颖.高密度脂蛋白的研究进展.国外医学生理、病理科学与临床分册2001;21:411-413.
    [17]Yuan L,Ziegler R,Hamann A.Metformin modulates in-sulin post receptor signaling transduction in chronicallyinsulin treated Hep G2 cells[J]. Acta Pharmacol Sin,2003,24(1):55.
    [18]J.D. Horton, J.L. Goldstein and M.S. Brown, SREBPs:activators of the comlete program of cholesterol and fatty acid synthesis in the liver, J Clin Invest 109 (2002), pp.1125-1131.
    [19]Mosaburo Kainuma, Makoto Fujimoto, Nobuyasu Sekiya,et a.l Cholesterol-fed rabbit as a uniquemodel of nonalco-holic, nonobese, non-insulin-resistant fatty liver disease with characteristic fibrosis[J]. JGastroentero,l 2006,41:971-980.
    [20]Fernandez-Checajc,Colella,Garcia-Ruizc,Adenosyl-L-methionine mitochondrial reduce dglutathion deleption in alcoholic lidisease.Alcohol,2002,27(3):179-183.
    [21]Huang XD,Fan Y,Zhang H,et al.Serum leptin and soluble leptin receptor in non-alcoholic fatty liver disease.World J Gastroenterol,2008,14:2888-2893.
    [1]Hayashi S,Yasui H,Sakurai H.Essential role of singlet oxygen species in cytochrome P450-dependent substrate oxygenation by rat liverm icrosomes[J].D rug Metab pharmacokinet,2005,20(1):14223.
    [2]曾民德.葡萄糖毒性、脂肪毒性与非酒精性脂肪性肝病[J].中华肝脏病杂志,2005,13(2):81-82.
    [3]Angulo P.Nonalcoholic fatter liver disease.N Engl J Med,2002,346 (16):1221-1231.
    [4]Perre-Carreas M,Del Hoyo P,Martin,et al.defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatoherpatitis. Hepatology.2003; 38:999-1007
    [5]Marra F,Gastaldelli A,Svegliati Baroni G,et al.Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis.Trends Mol Med,2008,14:72-81.
    [6]Medina J,Fernadez-Salazar LI,Garcia B,et al.Approach to the pathogenesis and treatment of non alcoholics teato-hepatitis[J].Diabetes Care,2004,27:2057.
    [7]Clark JM,Diehl AM.Defining nonalcoholic fattyliver disease:implications for epidemiologic studies.Gastroenterology,2003; 124:248.
    [8]Sanyal AJ,Campbell-sargent C,Mirshahi F,etal.Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gasteroenterology, 2001,12(5):1183-1192.
    [9]AnguloP.Nonalcoholic fatter liver disease.N Engl J Med,2002,346(16):1221-1231.
    [10]Leclereq ZA,Farrel GC,Field J,etal.CYP2E1 and CYP4A as microsomal catalysts of lipidperoxides in murine nonalcoholic steatohepatitis.J Clin invest, 2000,105(8):1067-1075.
    [1]李光伟,潘孝红,Lillioja,等.检测人群胰岛素敏感性的一项新指标.中华内科杂志,1993,32,(11):656-660.
    [2]李光伟,胡华英,杨文英,等.胰岛素抵抗、胰岛素分泌功能对2型糖尿病发生的影响.中华内科杂志,1998,37(9):600-604.
    [3]Sanyal AJ,Camp bell-Sargent C,Mirshahi F,et al. Nonalco holicsteato hepati tis:association of insulin resistance and mitochondrial abnormalities.Gast roe nterology,2001,120(5):1183-11921.
    [4]Marchesini QB rizi M,B ianchi Qet al.Nonalcoholic fatty liver disease:a feature of the metabolic syndrome.Diabetes,2001,50:1844-1850.
    [5]李秀钧主编.代谢综合征——胰岛素抵抗综合征.第2版.北京:人民卫生出版社,2007.42-45.
    [6]蔡葵,何玉怡.非酒精性脂肪肝与脂代谢紊乱及胰岛素抵抗的关系.实用医技杂志2006;13:2636-2637.
    [7]Ueki K,Kondo T,Tseng YH,et all Cent ral role of suppressors of cytokine signaling proteins in hepatic steatosis,insulin resistance,and the metabolic syndrome in the mouse. Proc Natl Acad Sci USA,2004,101(28):10422-10427.
    [8]Xiaolin yang a,Per-Anders Jansson A,Ivan Nagaev a,etal.Evidence of impai rd a dipogenesis in insulin resistance.Biochem Biofhys ResComm,2004,4:10 45.
    [9]Facchini FS,Hua NW,Stoohs RA.Effect of iron depletion in carbohydrate-in tolerant patients with clinical evidence of nonalcoholic fatty liver disease.G astroenterology,2002,12(2):931.
    [10]Halse R,Pearson SL,Mccormack JG,etal.Effect of tumor necrosis factor-a on insulin action in cultured human muscle cells.Diabetes,2001,52(5):1102.
    [11]Facchini FS,Hua NW,Stoohs RA.Effect of iron depletion in carbohydrate-in tolerant patients with clinical evidence of nonalcoholic fatty liver disease.G astroenterology,2002,12(2):931.
    [12]Liou I,Kowdley KV.Natural history of nonalcoholic steato-hepatitis[J].J Cli n Gastroenterol,2006,40:S11.
    [13]Baranova A,Gowder SJ,Schlauch K,et al.Gene expression of leptin,resistin,a nd adiponectin in the white adi-pose tissue of obese patients with non-alco holic fatty liver disease and insulin resistance [J].Obes Surg,2006,16:1118.
    [14]Aygun C,Senturk O,Hulagu S,et al.Serum levels of hep-atoprotective peptid e adiponectin in non-alcoholic fattyliver disease [J].Eur J Gastroenterol He patol,2006,18:175.
    [15]Crespo J,Cayon A,Fernandez-Gil P,et al.Gene expression of tumor necrosis factor alpha and TNF-receptors,p55 and p75,in nonalcoholic steatohepatitis patients.Hepatology,2001,34:1158-1163.
    [16]Ohrsuka H,Koiwa M,Hacsugaya A,et aL.Relationship between serum TNF activity and insulin resistance in dairy cows affected with naturally occurri ng fatty liver.J Vet Med Sci,2001,63:1021-1025.
    [17]Dorman RB,Gujral JS,Bajt ML,et al. Generation and functional signifi canc e of CXC chemokines for neutro-phil-induced liver injury during endotoxe mia[J]. Am JPhysiol Gastrointest Liver Physiol,2005,288:G880.
    [1]Livak KJ,Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method [J]. Methods,2001,25 (4): 402-408.
    [2]Dentin R,Girard J,Postic C.Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-lc):two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie 2005; 87:81-86.
    [3]张晓燕,陈丽红,管又飞.PPAR家族及其与代谢综合征的关系[J].生理学进展.2005,36(1):6-12
    [4]Guan Y,Breyer MD.Targeting peroxisome proliferators activated receptors (PPARs) in kidney and urologic disease [J].Minerva Urol Nefor,2002,54:65-79.
    [5]Guan Y,Breyer MD. peroxisome proliferators activated receptors (PPARs):novel therapeutic targets in renal disease.Kidney Int,2001,60:14-30
    [6]范建高,方继伟,陆元善等.高脂饮食非酒精性脂肪性肝病大鼠肝脏成脂基因表达增强.中华消化杂志.2006,26(5):320-323.
    [7]Horton JD, Goldstein JL, Brown MS. SREBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109:1125-1131.
    [8]Lu TT, Repa JJ, Mangelsdorf DJ. Orphan nuclear receptors as eLiXiRs and FiXeRs of sterol metabolism. J Biol Chem 2001; 276:37735-37738.
    [9]Repa JJ, Liang G, Ou J, et al. Regulation of mouse sterol regulatory element binding protein-lc gene (SREBP-lc) by oxysterol receptors, LXR[alpha] and LXR[beta]. Genes Dev 2000; 14:2819-2830.
    [1]中华医学会肝脏病学分会脂肪肝和酒精性肝病学组.非酒精性脂肪性肝病诊断标准[J].实用肝脏病杂志,2007,10(1):1.
    [2]范建高.非酒精性脂肪肝的临床流行病学研究[J].中华消化杂志.2002,22(2):106-107.
    [3]王雁翔,王灵台,高月求,等.脂肪肝中医证型流行病学调查及其中医病因病机初探[J].中国中西医结合杂志,2005,25(2):126-130.
    [4]周琪,刘鉴.李军教授从痰瘀论治脂肪肝临床经验探要[J].实用中医内科杂志,2008,22(1):15-16.
    [5]石倩玮.苏涟教授治疗脂肪肝经验和特色[J].云南中医学院学报,2008,3(1):48-51.
    [6]胡义扬.加强脂肪肝的中医药治疗研究[J].中国中西医结合杂志,2007,27:293-294.
    [7]叶放,赵文霞.中医对非酒精性脂肪肝的研究现状[J].中国中西医结合消化杂志,2003,11(1):60-63.
    [8]魏华凤,季光,邢练军.脂肪肝辨证分型规律的初步研究[J].辽宁中医杂志,2002,29(11):655-656.
    [9]杨智海.刘吉善治疗非酒精性脂肪肝的临床经验[J].光明中 医,2008,23(12):1925-1926.
    [10]刘敏,李佳明.非酒情性脂肪肝(NAFLD)辨治体会1中国社区医师,2005,7(121):48
    [11]付静,杨素珍.中西医结合治疗非酒精性脂肪肝的临床观察1中国中西医结合急救杂志,2004,11(3):185
    [12]苏经格.四君子汤加味治疗非酒精性脂肪肝临床观察1中国医药学报,2004,19(8):494-495
    [13]朱小区,曹家麟.温肾升阳汤治疗非酒精性脂肪肝35例1实用中西医结合临床,2004,4(4):44
    [14]范小芬,邓银泉.非酒精性脂肪肝血液流变学变化与中医证型关系[J].浙江中医杂志,2002,37(6):262-263.
    [15]邓银泉,范小芬.非酒精性脂肪肝胰岛素抵抗与中医证型的关系[J].浙江中医杂志,2001,36(9):395.
    [16]邓银泉,范小芬.非酒精性脂肪肝肝纤维化指标与中医证型的关系[J].中国中西医结合杂志,2001,21(9):652-653.
    [17]叶蕾.非酒精性脂肪肝肝纤维化指标与中医辨证分型相关性探讨[J].北京中医药大学学报,2004,11(2):15-17.
    [18]朱瑾,朱学葵.脂肪肝568例B超检查与中医辨证分型关系探讨[J].浙江中西医结合杂志,2003,13(3):160.
    [19]刘文全,商红叶,张琴1辨证与辨病结合治疗非酒精性单纯性脂肪肝133例疗效观察1新中医,2005,37(9):43-44.
    [20]刘晓平.脂肪肝中医辨治四法[J].中西医结合肝病杂志,2005,15(5):306-307.
    [21]纪桂元.脂肪肝的中医分期论治初探[J].陕西中医,2008,29(1):72-73.
    [22]唐方荣.柴胡疏肝散加减治疗脂肪肝62例临床观察[J].四川中医,2008,26(4):82-83.
    [23]聂丹丽,杨成志,崔大江,等.小陷胸汤化裁治疗非酒精性脂肪肝临床研究[J]. 中国中医急症,2005,14(2):116-119.
    [24]杨德全.龙胆泻肝汤结合穴位贴敷疗法治疗重度脂肪肝50例[J].光明中医,2008,23(3):306-307.
    [25]苏经格.四君子汤加味治疗非酒精性脂肪肝临床观察[J].中国医药学报,2004,19(8):49.
    [26]邓达荣.疏肝健脾化痰法治疗非酒精性脂肪肝75例临床研究[J].国医论坛,2008,23(1):17-18.
    [27]谢跃藩.健脾活血消脂汤治疗脂肪肝35例临床观察[J].新中医,2000,32(5):18.
    [28]唐红敏,张建伟,王佩芳.祛脂护肝汤加减治疗非酒精性脂肪肝58例[J].中国临床医学,2003,10(4):587-588.
    [29]卑其新.益肾调脂护肝汤治疗脂肪肝46例[J].实用中医药杂志,2004,20(2):65.
    [30]龚建中.张晓一治疗脂肪肝经验[J].湖北中医杂志,2005,27(1):22-23.
    [31]崔颖,杨新莉.卢秉久教授治疗脂肪肝经验撷菁[J].实用中医内科杂志,2008,22(2):13-14.
    [1]Horton JD. Sterol regulatory element binding proteins(SREBPs):transcription alactivators of lipid synthesis1Biochem Soc Trans,2002,30(Pt6):1091-1095
    [2]Tontonoz P,KimJ B,Graves RA, et al. ADD1:a novel helix-loop-helix transcription factor associated with adipocyte determination anddifferentiation [J].Mol. Cell. Biol.,1993,13(4):4753-4759.
    [3]Radhakrishnan A,Sun LP,Kwon HJ,et al.Direct binding of cholesterolto the purified membrane region of SCAP:mechanism for a sterol-sensing domain[J]. Mol Cell,2004,15 (8):259-268.
    [4]Espenshade PJ,Li WP,Yabe D.Sterols block binding of COPII proteins to SCAP, thereby controlling SCAP sorting in ER[J].Proc Natl Acad Sci USA, 2002,99 (15):11694-11699.
    [5]Nohturfft A.,Yabe D,Espenshade P,et al.Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes [J].Cell,2000, 102(11):315-323.
    [6]Brown MS,Goldstein JL.A proteolytic pathway that controls the cholesterol ontent of membranes,cells,and blood[J].Proc Natl Acad Sci USA,1999,96(20): 11041-11048.
    [7]Osborne TF.Sterol regulatory element-binding proteins (SREBPs):key regulators of nutritional homeostasis and insulin action [J].JBiol Chem,2000, 275(2):32379-32382.
    [8]McPherson R,Gauthier A. Molecular regulation of SREBP function:the Insig-SCAP connection and isoform2specificmodulation of lipid synthesis1 Biochem Cell Biol,2004,82(1):201-211.
    [9]Kim JB,Sarraf P,Wright M,Yao KM,Mueller E,Solanes G,Lowell BB, Spiegelman B:Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J Clin Invest 1998;101 (11):1-9.
    [10]Bizeau ME,MacLean PS,Johnson GC,Wei Y:Skeletal muscle sterol regulatory element binding protein-lc decreases with food deprivation and increases with feeding in rats. J Nutr 2003; 133(4):1787-1792.
    [11]Commerford SR,Peng L,Dube JJ,O'Doherty RM:In vivo regulation of SREBP-lc in skeletal muscle:effects of nutritional status, glucose, insulin, and leptin. Am J Physiol Regul Integr Comp Physiol 2004;287(19):R218-R227.
    [12]Foretz M,Pacot C,Dugail I,Lemarchand P,Guichard C,Le Liepvre X,Berthelier-Lubrano C,Spiegelman B, Kim JB,Ferre P,Foufelle F:ADD1/ SREBP-lc is required in the activation of hepatic lipogenic gene expression by glucose. Mol Cell Biol 1999; 19(1):3760-3768.
    [13]Ducluzeau PH,Perretti N,Laville M,Andreelli F,Vega N,Riou JP,Vidal H: Regulation by insulin of gene expression in human skeletal muscle and adipose tissue. Evidence for specific defects in type 2 diabetes. Diabetes 2001;50 (4):1134-1142.
    [14]Sewter C,Berger D,Considine RV,Medina G,Rochford J,Ciaraldi T,Henry R, Dohm L,Flier JS,O'Rahilly S,Vidal-Puig AJ:Human obesity and type 2 diabetes are associated with alterations in SREBP-1 isoform expression that are reproduced ex vivo by tumor necrosis factor-alpha.Diabetes 2002;51 (2):1035-1041.
    [15]Shimomura I, Bashmakov Y, Ikemoto S, Horton JD, Brown MS, Goldstein JL: Insulin selectively increases SREBP-lc mRNA in the livers of rats with streptozotocin-induced diabetes. Proc Natl Acad Sci USA 1999;96 (10):13656-13661.
    [16]Azzout-Marniche D,Becard D,Guichard C,Foretz M,Ferre P,Foufelle F:Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes. Biochem J 2000;350 (25):389-393
    [17]Fleischmann M,Iynedjian PB:Regulation of sterol regulatory-element bindingprotein-1 gene expression in liver:role of insulin and protein kinase B/cAkt.Biochem J 2000;349 (6):13-17.
    [18]Matsumoto M,Ogawa W,Akimoto K,Inoue H,Miyake K,Furukawa K,Hayashi Y, Iguchi H,Matsuki Y,Hiramatsu R,Shimano H,Yamada N,Ohno S,Kasuga M,Noda T:PKClambda in liver mediates insulin-induced SREBP-lc expressi on and determines both hepatic lipid content and overall insulin sensitivity. J Clin Invest 2003;112(1):935-944.
    [19]Taniguchi CM,Kondo T,Sajan M,Luo J,Bronson R,Asano T,Farese R,Cantley LC,Kahn CR:Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKClambda/zeta. Cell Metab 2006; 10 (3):343-353.
    [20]Steffensen KR,Gustafsson JA:Putative metabolic effects of the liver X receptor (LXR). Diabetes 2004;53(suppll):S36-S42.
    [21]Peet DJ, Turley SD,Ma W, Janowski BA,Lobaccaro JM,Hammer RE, Mangelsdorf DJ:Cholesterol and bile acid metabolism are impaired in mice lackingthe nuclear oxysterol receptor LXR alpha.Cell 1998;93 (10):693-704.
    [22]Repa JJ,Liang G,Ou J,Bashmakov Y,Lobaccaro JM, Shimomura I,Shan B, Brown MS,Goldstein JL,Mangelsdorf DJ:Regulation of mouse sterol regulatoryelement-binding protein-lc gene (SREBP-lc) by oxysterol receptors, LXRalpha and LXRbeta.Genes Dev 2000;14(2):2819-2830.
    [23]Schultz JR,Tu H,Luk A,Repa JJ,Medina JC,Li L,Schwendner S,Wang S, Thoolen M,Mangelsdorf DJ,Lustig KD,Shan B:Role of LXRs in control of lipogenesis. Genes Dev 2000; 14(7):2831-2838.
    [24]Laffitte BA,Chao LC, Li J,Walczak R,Hummasti S,Joseph SB,CastrilloA,Wilpitz DC,Mangelsdorf DJ,Collins JL,Saez E,Tontonoz P: Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc Natl Acad SciUSA 2003;100(15):5419-5424.
    [25]Tobe K, Suzuki R, Aoyama M, et al. Increased expressionof the sterol regulatory element binding protein binding pro2tein (SREBP)21c gene in insulin receptor substrate-2 (2P2)mouse liver[J]. J Biol Chem,2001 276:38337-38340.
    [26]26 Shomomura I,Bashmakov Y,Horton GD,et al.Increased levels of nuclear SREBP-lc associated with fatty liver in two mouse models of diabetes mellitus [J].J Biol Chem,1999,274 (8):30028-30032.
    [27]Soukas A,Cohen P,Socci N D,et al. Leptin-specific pat2 terns of gene expression in white adipose tissue [J].Genes Dev,2000,14 (2):963-980.
    [28]Tobe K,Suzuki R.Leptin,troglitazone,and the expressing of sterol regulatory element-binding proteins in liver and pancreatic islets.Proe Nati Acad Sci USA,2000,97(15):8536-8541.
    [29]Ruiz-Cortes ZT,Martel-Kennes Y.Biphasic effects of lepin in porcine granulose cells.Biol Reprot,2003,68 (10):789-796.
    [30]Nogalska A,Sucajtys E,Swierczynski J,et al.Leptin decreases lipogenic enzyme gene expression through modification of SREBP-lc gene expression in WAT of ageing rats.Metabolism,2005,54(8):1041-1047.
    [31]Tim CMA Schreuder,Bart J Verwer,Carin MJ van Nieuwkerk,et al. Nonalcoholic fatty liver disease:An overview of current insights in pathogenesis, diagnosis and treatment.World J Gastroenterol 2008 April 28; 14(16):2474-2486.
    [32]Horton JD,Goldstein JL,Brown MS.SREBPs activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest,2002, 109(9):1125-1131.
    [33]Pittas AG,Joseph NA,Greenberg AS.Adipocytokines and insulin resistance. J Clin Endocrinol Metab,2004,89(2):447-452.
    [34]Ueki K,Kondo T,Tseng YH,Kahn CR.Central role of suppressors of cytokine signaling proteins in hepatic steatosis,insulin resistance,and the metabolic syndrome in the mouse.Proc Natl Acad Sci USA,2004,101(28):10422-10427.
    [35]Ide T,Shimano H,YahagiN,et al.SREBPs suppress IRS-2-mediated insulin signalling in the liverl Nat Cell Biol,2004,6(4):3512-3571.
    [36]Knight BL,Hebbachi A,Hauton D,etal.A role for PPARa in the control of SREBP activity and lipid synthesis in the liver.Biochem J,2005,389(2): 413-421.
    [37]Shimizu S,Ugi S Protein-tyrosine phosphatase 1Bas new activator for hepatic lippgenesis via sterol regulatory element-binding protein-1 gene express. Jbiol Chem,2003,278(12):43095-43101.
    [38]SekiyaM,YahagiN,Matsuzaka T,et al.Polyunsaturated,fatty acids ameliorate hepatic steatosis in obese mice by SREBP-1 suppression1 Hepatology,2003,38 (6):1529-15391.
    [39]Gniuli D, Rosa G, Manco M, Scarfone A, Vega N,etal.Changes in fat mass influence SREBP-1c and UCP-2 gene expression in formerly obese subjects. Obes Res.2005,13(3):567-73.