BMP信号通路在多潜能干细胞向前脂肪细胞定向中作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肥胖的产生是由于脂肪细胞体积增大和数目增多。其中,脂肪细胞数目增多则是由于脂肪组织中多潜能干细胞向前脂肪细胞定向的增多,后者在一定的环境因素作用下分化为成熟的脂肪细胞。从多潜能干细胞发育成为脂肪细胞是一个多步骤的过程,包括多潜能干细胞向前脂肪细胞定向、前脂肪细胞增殖、生长抑制及终末分化。以前的研究主要集中于从前脂肪细胞到成熟脂肪细胞的过程,对于如何从干细胞以及多潜能干细胞向前脂肪细胞定向研究甚少。
     Tang等研究表明BMP-4促进C3H10T1/2多潜能干细胞向前脂肪细胞定向,但是其下游机制并不明确,并且对于其它在多潜能干细胞向前脂肪细胞定向过程发挥作用的细胞因子了解很少。在本课题中,我们观察了BMP家族另一成员BMP-2对多潜能干细胞向前脂肪细胞定向过程的影响,并且重点研究了BMP-2和BMP-4共同参与的信号转导通路在促进多潜能干细胞向前脂肪细胞定向的作用机制,弥补了这一部分研究的空白。
     在研究中,我们发现BMP-2可促进C3H10T1/2多潜能干细胞向前脂肪细胞定向,并且按照标准脂肪细胞分化方案诱导后,已定向的前脂肪细胞可分化为成熟脂肪细胞,细胞由成纤维形态变为圆形,胞浆内聚集甘油三酯,脂肪细胞特异性蛋白质脂肪酸结合蛋白(422/aP2)表达。BMP-2因此成为被发现的除BMP-4以外能够促进多潜能干细胞向前脂肪细胞定向的又一重要细胞因子。
     为了进一步研究BMP信号通路在多潜能干细胞向前脂肪细胞定向过程中作用机制,我们观察了不同类型BMP受体对多潜能干细胞向前脂肪细胞定向的作用。首先,我们检测了C3H10T1/2多潜能干细胞内各种类型BMP受体mRNA表达水平。结果表明C3H10T1/2细胞表达BMPR-ⅠA和BMPR-Ⅱ,而BMPR-ⅠB不表达。这一结果暗示了BMP-2或BMP-4N能是通过BMPR-ⅠA发挥功能。然后,我们构建了含有持续激活BMPR-ⅠA、BMPR-ⅠB和激酶部位缺失的BMPR-ⅠA(可竞争抑制BMPR-ⅠA活性)基因的质粒,利用逆转录病毒表达系统将持续激活的BMPR-ⅠA、BMPR-ⅠB和激酶部位缺失的BMPR-ⅠA基因导入C3H10T1/2多潜能干细胞,结果表明持续激活BMPR-ⅠA和BMPR-ⅠB的细胞不需BMP诱导,直接经MDI诱导后可分化为脂肪细胞,而激酶部位缺失的BMPR-ⅠA显著抑制了BMP-2或BMP-4引起的多潜能干细胞向前脂肪细胞定向。这一系列结果证实了BMP-2和BMP-4促进多潜能干细胞向前脂肪细胞定向是通过BMPR-ⅠA实现的。
     BMP受体主要可激活两条重要的信号通路,即Smad和p38 MAPK信号通路。我们检测了BMP-2和BMP-4处理分裂期的C3H10T1/2多潜能干细胞后下游信号通路激活情况,Smad和p38 MAPK信号通路均可被BMP-2和BMP-4激活。目前少量文献报导,BMP还可激活Ras/ERK信号通路。
     为了进一步明确BMP在多潜能干细胞向前脂肪细胞定向中作用机制,我们使用特异性化学抑制剂抑制某些信号分子活性和/或利用RNA干扰方法下调特定蛋白质,观察了Smad、p38 MAPK和ERK信号通路对BMP引起的多潜能干细胞向前脂肪细胞定向的影响。我们利用RNA干扰手段下调了C3H10T1/2多潜能干细胞内共介导Smad即Smad4的蛋白水平,从而阻断磷酸化的调节性Smad(R-Smads,Smad1/Smad5/Smad8)与之形成复合物进入细胞核内发挥功能,达到阻断BMP/Smad信号通路的目的。结果显示下调Smad4蛋白水平能明显抑制BMP-2或BMP-4引起的多潜能干细胞向前脂肪细胞定向。同时,我们还研究了p38 MAPK和ERK信号通路在其中发挥的作用。我们分别使用p38 MAPK化学抑制剂SB203580和ERK激酶MEK1的化学抑制剂PD98059预先处理C3H10T1/2多潜能干细胞,再给予细胞BMP处理,经MDI诱导后,我们发现SB203580明显抑制多潜能干细胞向脂肪细胞分化,而PD98059对此没有影响,表明p38 MAPK信号通路参与了BMP引起的多潜能干细胞向前脂肪细胞定向,而ERK信号通路在其中发挥的作用不是很明显。为排除药物副作用,我们合成了p38 RNAi,结果表明p38下调以后BMP引起的多潜能干细胞向前脂肪细胞定向被部分抑制。另外,当我们在C3H10T1/2多潜能干细胞内共同转染了Smad4和p38 RNAi时,BMP引起的多潜能干细胞向前脂肪细胞定向几乎被完全抑制。综合这些数据,我们得出了以下结论:BMP-2和BMP-4促进C3H10T1/2多潜能干细胞向前脂肪细胞定向依赖Smad和p38 MAPK两条信号通路,与ERK信号通路无关。
     Smad和p38 MAPK信号通路激活后究竟调节什么基因的变化而导致多潜能干细胞向前脂肪细胞定向呢?为了更深入的研究,我们对BMP处理前后的细胞进行了基因芯片检测,发现了一系列基因的改变,其中最为显著的是bHLH家族成员Id3的变化,至于这一系列变化基因的作用有待进一步研究。
The increase of adipose tissue mass associated with obesity is due in part to an increase in the number of adipocytes (hyperplasia). This hyperplasia results from the recruitment of pluripotent stem cells present in the vascular stroma of adipose tissue. These stem cells have the capacity to undergo commitment to adipose, muscle, bone or cartilage lineages.
     The development of mesenchymal stem cells into terminally differentiated adipocytes can be divided into four stages: lineage commitment, preadipocyte proliferation, growth arrest and terminal differentiation. Many of the key players in the latter phases of the adipocyte development program, i.e., mitotic clonal expansion and terminal differentiation, have been well characterized. However, little is known about the factors/genes that trigger the commitment process. The goal of our research is to define the role of BMP signaling pathway during the commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage.
     In this article, we firstly report that bone morphogenetic protein 2 (BMP-2), as well as BMP-4, can induce the commitment of C3H10T1/2 cells to preadipocytes that, when subjected to an adipocyte differentiation protocol (MDI), develop into cells of the adipocyte phenotype.
     BMPs exhibit their biological effects through the sequential activation of two types of transmembrane receptors, namely BMPR-I and BMPR-II, which possess intrinsic serine/threonine kinase activity. BMPR-I is composed of many subtypes, of which BMPR-IA and BMPR-IB are downstream of BMP-2 and BMP-4. In this article, we examined the expression of BMP receptors in C3H10T1/2 stem cells by RT-PCR. Data show that C3H10T1/2 cells express BMPR-IA and BMPR-II but not BMPR-IB.
     A variety of studies indicate that BMPR-IA and BMPR-IB may transmit different signals during the specification and differentiation of mesenchymal lineages. To investigate the role of BMPR-IA and BMPR-IB in the BMP-2 or BMP-4 signaling pathways in C3H10T1/2, we constructed constitutively active BMPR-IA (Ca-BMPR-IA), constitutively active BMPR-IB (Ca-BMPR-IB), dominant-negative BMPR-IA (DN-BMPR-IA) plasmids and then transferred them into C3H10T1/2 by using a retroviral system. The results showed that C3H10T1/2 cells that overexpressed Ca-BMPR-IA and Ca-BMPR-IB underwent differentiation into adipocyes after MDI induction, while overexpression of DN-BMPR-IA decreased the proportion of adipocyte induced by BMP-2 or BMP-4 and subsequent MDI. Since BMPR-IB is absent in this cell line, above data show that BMP-2 or BMP-4 induces the commitment of C3H10T1/2 stem cells to the adipocyte lineage through BMPR-IA.
     To define which signal pathway in the downstream of BMP-2 or BMP-4 is responsible for the commitment process, we blocked Smad, p38 MAPK and ERK pathway by specific chemical inhibtors and/or RNA interference. We found SB203580, a chemical inhibitor of p38 MAPK, inhibited the commitment of C3H10T1/2 stem cells to the adipocyte lineage induced by BMP-2 or BMP-4, and p38 Stealth ? RNAi also decreased the proportion of adipocyte induced by BMP and MDI. PD98059, a chemical inhibitor of MEK1, kinase of ERK, did not have influence on the commitment process. We also found that Smad4 Stealth ? RNAi reduced the proportion of adipocyte induced by BMP and MDI. And the inhibitory effect could be enhanced by co-transfection with Smad4 and p38 RNAi remarkably. So, we conclude that both Smad and p38 MAPK pathways are required for the commitment of C3H10T1/2 stem cells to the adipocyte lineage induced by BMP-2 or BMP-4, while ERK is not involved in the process.
     Taken together, our study identified BMP-2 and BMP-4 induced the commitment of C3H10T1/2 stem cells to the adipocyte lineage through BMPR-IA and its downstream signal molecules—Smad, p38 were responsible for this process.
引文
1. Mokdad AH, Bowman BA, Ford ES, Vinicor F, Marks JS, Koplan JP. The continuing epidemics of obesity and diabetes in the United States. Jama, 2001, 286:1195-1200.
    
    2. Kopelman PG. Obesity as a medical problem. Nature, 2000,404(6778): 635-643.
    
    3. Faust IM, Johnson PR, Stern JS , Hirsch J. Diet-induced adipocyte number increase in adult rats: a new model of obesity. Am J Physiol, 1978, 235(3): E279-286.
    
    4. Hirsch J and Batchelor B. Adipose tissue cellularity in human obesity. Clin Endocrinol Metab, 1976, 5(2):299-311.
    
    5. Shepherd PR, Gnudi L, Tozzo E, Yang H, Leach F , Kahn BB. Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J Biol Chem, 1993,268(30): 22243-22246.
    
    6. Yu ZK, Wright JT and Hausman GJ. Preadipocyte recruitment in stromal vascular cultures after depletion of committed preadipocytes by immunocytotoxicity. Obesity Res, 1997, 5(1):9-15
    
    7. Young HE, Mancini ML, Wright RP, Smith JC, Black AC Jr, Reagan CR , Lucas PA. Mesenchymal stem cells reside within the connective tissues of many organs. Dev Dyn. 1995,202:137-144.
    
    8. Bowers RR and Lane MD. A role for bone morphogenetic protein-4 in adipocyte development. Cell Cycle.2007, 6(4):385-389.
    
    9. Mandrup S, Lane MD. Regulating adipogenesis. J Biol Chem. 1997, 272(9):5367-5370.
    
    10. Lin FT, Lane MD. CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program. Proc Natl Acad Sci U S A. 1994, 91(19):8757-8761.
    
    11. MacDougald OA, Lane MD. Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem. 1995, 64:345-373.
    
    12. Christy RJ, Yang VW, Ntambi JM, Geiman DE, Landschulz WH, Friedman AD, Nakabeppu Y, Kelly TJ, Lane MD. Differentiation-induced gene expression in 3T3-L1 preadipocytes: CCAAT/enhancer binding protein interacts with and activates the promoters of two adipocyte-specific genes. Genes Dev. 1989, 3(9): 1323-1335.
    
    13. Reznikoff, KA, Brankow DW, Heidelberger C. Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division. Cancer Res. 1973, 33(12):3231-3238.
    
    14. Taylor SM, Jones PA. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell. 1979, 17(4):771-779.
    
    15. Pinney DF, Emerson CP Jr. 10T1/2 cells: an in vitro model for molecular genetic analysis of mesodermal determination and differentiation. Environ Health Perspect. 1989,80:221-227.
    
    16. Konieczny SF, Emerson CP Jr. 5-Azacytidine induction of stable mesodermal stem cell lineage lineages from 10T1/2 cells: evidence for regulatory genes controlling determination. Cell. 1984, 38(3):791-800.
    
    17. Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell.1987, 51(6):987-1000.
    
    18. Hogan BL. Bone morphogenetic proteins in development. Curr Opin Genet Dev.1996,6(4):432-438.
    
    19. Hogan BL. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 1996, 10(13):1580-1594.
    
    20. Liu A, Niswander LA. Bone morphogenetic protein signalling and vertebrate nervous system development. Nat Rev Neurosci. 2005, 6(12):945-954.
    
    21. Ahrens M, Ankenbauer T, Schroder D, Hollnagel A, Mayer H, Gross G. Expression of human bone morphogenetic proteins-2 or -4 in murine mesenchymal progenitor C3H10T1/2 cells induces differentiation into distinct mesenchymal cell lineages. DNA Cell Biol. 1993,12(10):871-880.
    
    22. Wang EA, Israel DI, Kelly S and Luxenberg DP. Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells. Growth factors, 1993, 9(1):57-71.
    
    23. Date T, Doiguchi Y, Nobuta M, Shindo H. Bone morphogenetic protein-2 induces differentiation of multipotent C3H10T1/2 cells into osteoblasts, chondrocytes, and adipocytes in vivo and in vitro. J Orthop Sci. 2004, 9(5):503-508.
    
    24. Shea CM, Edgar CM, Einhorn TA, Gerstenfeld LC. BMP treatment of C3H10T1/2 mesenchymal stem cells induces both chondrogenesis and osteogenesis. J Cell Biochem. 2003,90(6): 1112-1127.
    
    25. Tang QQ, Otto TC, Lane MD. Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci U S A. 2004 , 101(26):9607-9611.
    
    26. Bowers RR, Kim JW, Otto TC, Lane MD. Stable stem cell commitment to the adipocyte lineage by inhibition of DNA methylation: role of the BMP-4 gene. Proc Natl Acad Sci U S A. 2006,103(35):13022-13027.
    
    27. zur Nieden NI, Kempka G, Rancourt DE, Ahr HJ. Induction of chondro-, osteo-and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev Biol. 2005, 5:1.
    
    28. Sottile V, Seuwen K. Bone morphogenetic protein-2 stimulates adipogenic differentiation of mesenchymal precursor cells in synergy with BRL 49653 (rosiglitazone). FEBS Lett. 2000, 475(3):201-204.
    
    29. Hata K, Nishimura R, Ikeda F, Yamashita K, Matsubara T, Nokubi T, Yoneda T. Differential roles of Smad1 and p38 kinase in regulation of peroxisome proliferator-activating receptor gamma during bone morphogenetic protein 2-induced adipogenesis. Mol Biol Cell. 2003, 14(2):545-555.
    
    30. Chan GK, Miao D, Deckelbaum R, Bolivar I, Karaplis A, Goltzman D. Parathyroid hormone-related peptide interacts with bone morphogenetic protein 2 to increase osteoblastogenesis and decrease adipogenesis in pluripotent C3H10T 1/2 mesenchymal cells. Endocrinology. 2003, 144(12):5511-5520.
    
    31. Skillington J, Choy L, Derynck R. Bone morphogenetic protein and retinoic acid signaling cooperate to induce osteoblast differentiation of preadipocytes. J Cell Biol. 2002, 159(1):135-146.
    
    32. ten Dijke P, Yamashita H, Sampath TK, Reddi AH, Estevez M, Riddle DL, Ichijo H, Heldin CH, Miyazono K. Identification of type I receptors for osteogenic protein-1 and bone morphogenetic protein-4. J Biol Chem. 1994,269(25): 16985-16988.
    
    33. Kawabata M, Chytil A, Moses HL. Cloning of a novel type II serine/threonine kinase receptor through interaction with the type I transforming growth factor-beta receptor. J Biol Chem. 1995,270(10):5625-5630.
    
    34. Attisano L, Wrana JL, Cheifetz S, Massague J. Novel activin receptors: distinct genes and alternative mRNA splicing generate a repertoire of serine/threonine kinase receptors. Cell. 1992, 68(1):97-108.
    
    35. Rosenzweig BL, Imamura T, Okadome T, Cox GN, Yamashita H, ten Dijke P, Heldin CH, Miyazono K. Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc Natl Acad Sci U S A. 1995, 92(17):7632-9636.
    
    36. Yamashita H, ten Dijke P, Franzen P, Miyazono K, Heldin CH. Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-beta. J Biol Chem. 1994, 269(31):20172-20178.
    
    37. ten Dijke P, Miyazono K, Heldin CH. Signaling via hetero-oligomeric complexes of type Ⅰ and type Ⅱ serine/threonine kinase receptors.Curr Opin Cell Biol.1996,8(2):139-145.
    38.Gilboa L,Nohe A,Geissend(o|¨)rfer T,Sebald W,Henis YI,Knaus P.Bone morphogenetic protein receptor complexes on the surface of live cells:a new oligomerization mode for serine/threonine kinase receptors.Mol Biol Cell.2000,11(3):1023-1035.
    39.Nohe A,Hassel S,Ehrlich M,Neubauer F,Sebald W,Henis YI,Knaus P.The mode of bone morphogenetic protein(BMP) receptor oligomerization determines different BMP-2 signaling pathways.J Biol Chem.2002,277(7):5330-5338.
    40.Wrana JL,Attisano L,Wieser R,Ventura F,Massague J.Mechanism of activation of the TGF-beta receptor.Nature.1994,370(6488):341-347.
    41.Massague J.TGF-beta signal transduction.Annu Rev Biochem.1998,67:753-791.
    42.王茸影,易静。骨形成蛋白调控成骨分化的信号机制。生命科学。2005,17(1):34-39
    43.Chen D,Ji X,Harris MA,Feng JQ,Karsenty G,Celeste AJ,Rosen V,Mundy GR,Harris SE.Differential roles for bone morphogenetic protein(BMP) receptor type IB and IA in differentiation and specifica-tion of mesenchymal precursor cells to osteoblast and adipocyte lineages.J Cell Biol.1998,42(1):295-305.
    44.Kaps C,Hoffmann A,Zilberman Y,Pelled G,H(a|¨)upl T,Sittinger M,Burmester G,Gazit D,Gross G.Distinct roles of BMP receptors Type IA and IB in osteo-/chondrogenic differentiation in mesenchymal progenitors(C3H10T1/2).Biofactors.2004,20(2):71-84.
    45.Nohe A,Keating E,Knaus P,Petersen NO.Signal transduction of bone morphogenetic protein receptors.Cell Signal.2004,16(3):291-299.
    46.Heldin CH,Miyazono K,ten Dijke P.TGF-beta signalling from cell membrane to nucleus through SMAD proteins.Nature.1997,390(6659):465-471.
    47.Massague J,Wotton D.Transcriptional control by the TGF-beta/Smad signaling system.EMBO J.2000,19(8):1745-1754.
    48.Miyazono K,Miyazawa K.Id:a target of BMP signaling.Sci STKE.2002,2002(151):PE40.
    49.Iwasaki S,Iguchi M,Watanabe K,Hoshino R,Tsujimoto M,Kohno M.Specific activation of the p38 mitogen-activated protein kinase signaling pathway and induction of neurite outgrowth in PC12 cells by bone morphogenetic protein-2.J Biol Chem. 1999,274(37):26503-26510.
    
    50. Guicheux J, Lemonnier J, Ghayor C, Suzuki A, Palmer G, Caverzasio J. Activation of p38 mitogen-activated protein kinase and c-Jun-NH2-terminal kinase by BMP-2 and their implication in the stimulation of osteoblastic cell differentiation. J Bone Miner Res. 2003, 18(11):2060-2068.
    
    51. Engelman JA, Lisanti MP, Scherer PE. Specific inhibitors of p38 mitogen-activated protein kinase block 3T3-L1 adipogenesis. J Biol Chem. 1998, 273(48):32111-32120.
    
    52. Engelman JA, Berg AH, Lewis RY, Lin A, Lisanti MP, Scherer PE. Constitutively active mitogen-activated protein kinase kinase 6 (MKK6) or salicylate induces spontaneous 3T3-L1 adipogenesis. J Biol Chem. 1999, 274(50):35630-35638.
    
    53. Wang XZ, Ron D. Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science. 1996, 272(5266): 1347-1349.
    
    54. Beck SE, Carethers JM. BMP suppresses PTEN expression via RAS/ERK signaling. Cancer Biol Ther. 2007, 6(8):1313-1317.
    
    55. Student AK, Hsu RY, Lane MD. Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes. J Biol Chem. 1980, 255(10):4745-50.
    
    56. Tang QQ and Lane MD. Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev.1999, 13(17): 2231-2241.
    
    57. Fajas L. Adipogenesis: a cross-talk between proliferation and cell differentiation. Ann Med. 2003, 35(2):79-85.
    
    58. Hanamura H, Urist MR. Osteogenesis and chondrogenesis in transplants of Dunn and Ridgway osteosarcoma cell culture. Am J Pothol. 1978, 91(2):277-298.
    
    59. Winnier G, Blessing M, Labosky PA, Hogan BL. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 1995 , 9(17):2105-2116.
    
    60. Asahina I, Sampath TK, Hauschka PV. Human osteogenic protein-1 induces chondroblastic, osteoblastic, and/or adipocytic differentiation of clonal murine target cells. Exp Cell Res. 1996, 222(1):38-47.
    
    61. Tang QQ, Otto TC, Lane MD. CCAAT/enhancer-binding protein beta is required for mitotic clonal expansion during adipogenesis. Proc Natl Acad Sci U S A. 2003, 100(3):850-855.
    62. Zhang JW, Tang QQ, Vinson C, Lane MD. Dominant-negative C/EBP disrupts mitotic clonal expansion and differentiation of 3T3-L1 preadipocytes. Proc Natl Acad Sci U S A.2004, 101(1):43-47.
    
    63. Tang QQ, Otto TC, Lane MD. Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc Natl Acad Sci U S A. 2003, 100(1):44-49.
    
    64. Hoodless PA, Haerry T, Abdollah S, Stapleton M, O'Connor MB, Attisano L, Wrana JL. MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell. 1996, 85(4):489-500.
    
    65. Akiyama S, Katagiri T, Namiki M, Yamaji N, Yamamoto N, Miyama K, Shibuya H, Ueno N, Wozney JM, Suda T. Constitutively active BMP type I receptors transduce BMP-2 signals without the ligand in C2C12 myoblasts. Constitutively active BMP type I receptors transduce BMP-2 signals without the ligand in C2C12 myoblasts.
    
    66. Chen D, Ji X, Harris MA, Feng JQ, Karsenty G, Celeste AJ, Rosen V, Mundy GR, Harris SE. Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J Cell Biol. 1998,142(1):295-305.
    
    67. Maeno M, Ong RC, Suzuki A, Ueno N, Kung HF. A truncated bone morphogenetic protein 4 receptor alters the fate of ventral mesoderm to dorsal mesoderm: roles of animal pole tissue in the development of ventral mesoderm. Proc Natl Acad Sci U S A. 1994, 91(22): 10260-10264.
    
    68. Suzuki A, Thies RS, Yamaji N, Song JJ, Wozney JM, Murakami K, Ueno N. A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc Natl Acad Sci U S A. 1994, 91(22): 10255-10259.
    
    69. Namiki M, Akiyama S, Katagiri T, Suzuki A, Ueno N, Yamaji N, Rosen V, Wozney JM, Suda T. A kinase domain-truncated type I receptor blocks bone morphogenetic protein-2-induced signal transduction in C2C12 myoblasts. J Biol Chem. 1997,272(35):22046-52202.
    
    70. Dewulf N, Verschueren K, Lonnoy O, Moren A, Grimsby S, Vande Spiegle K, Miyazono K, Huylebroeck D, Ten Dijke P. Distinct spatial and temporal expression patterns of two type I receptors for bone morphogenetic proteins during mouse embryogenesis. Endocrinology. 1995, 136(6):2652-2663.
    1.Kershaw EE and Filter JS.Adipose tissue as an endocrine organ.J Clin Endocrinol Metab.2004,89:2548-2556
    2.Young HE,Mancini ML,Wright RP,Smith JC,Black AC Jr,Reagan CR,Lucas PA.Mesenchymal stem cells reside within the connective tissues of many organs.Dev Dyn.1995,202:137-144.
    3.Reznikoff,KA,Brankow DW,Heidelberger C.Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division.Cancer Res.1973,33(12):3231-3238.
    4.Taylor SM,Jones PA.Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine.Cell.1979,17(4):771-779.
    5.Pinney DF,Emerson CP Jr.10T1/2 cells:an in vitro model for molecular genetic analysis of mesodermal determination and differentiation.Environ Health Perspect.1989,80:221-227.
    6.Konieczny SF,Emerson CP Jr.5-Azacytidine induction of stable mesodermal stem cell lineage lineages from 10T1/2 cells:evidence for regulatory genes controlling determination.Cell.1984,38(3):791-800.
    7.Davis RL,Weintraub H,Lassar AB.Expression of a single transfected cDNA converts fibroblasts to myoblasts.Cell.1987,51(6):987-1000.
    8.Sabourin LA,Rudnicki MA.The molecular regulation of myogenesis.Clin Genet.2000,57(1):16-25.
    9.Hanamura H,Urist MR.Osteogenesis and chondrogenesis in transplants of Dunn and Ridgway osteosarcoma cell culture.Am J Pothol.1978,91(2):277-298.
    10.Hogan BL.Bone morphogenetic proteins in development.Curr Opin Genet Dev.1996,6(4):432-438.
    11.Ahrens M,Ankenbauer T,Schr(o|¨)der D,Hollnagel A,Mayer H,Gross G.Expression of human bone morphogenetic proteins-2 or-4 in murine mesenchymal progenitor C3H10T1/2 cells induces differentiation into distinct mesenchymal cell lineages.DNA Cell Biol.1993,12(10):871-880.
    12.Wang EA,Israel DI,Kelly S and Luxenberg DP.Bone morphogenetic protein-2causes commitment and differentiation in C3H10T1/2 and 3T3 cells.Growth factors, 1993, 9(1):57-71.
    
    13. 23. Date T, Doiguchi Y, Nobuta M, Shindo H. Bone morphogenetic protein-2 induces differentiation of multipotent C3H10T1/2 cells into osteoblasts, chondrocytes, and adipocytes in vivo and in vitro. J Orthop Sci. 2004, 9(5):503-8.
    
    14. Shea CM, Edgar CM, Einhorn TA, Gerstenfeld LC. BMP treatment of C3H10T1/2 mesenchymal stem cells induces both chondrogenesis and osteogenesis. J Cell Biochem. 2003, 90(6): 1112-1127.
    
    15. Tang QQ, Otto TC, Lane MD. Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci U S A. 2004 , 101(26):9607-9611.
    
    16. Bowers RR, Kim JW, Otto TC, Lane MD. Stable stem cell commitment to the adipocyte lineage by inhibition of DNA methylation: role of the BMP-4 gene. Proc Natl Acad Sci U S A. 2006,103(35):13022-13027.
    
    17. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004, 6(4):483-495.
    
    18. Pairault J, Green H. A study of the adipose conversion of suspended 3T3 cells by using glycerophosphate dehydrogenase as differentiation marker. Proc Natl Acad Sci U S A. 1979, 76(10):513 8-5142.
    
    19. Yeh WC, Bierer BE, McKnight SL. Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells. Proc Natl Acad Sci U S A. 1995 , 92(24): 11086-11090.
    
    20. Reichert M, Eick D. Analysis of cell cycle arrest in adipocyte differentiation. Oncogene. 1999, 8(2):459-466.
    
    21. Tang QQ, Otto TC, Lane MD. Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc Natl Acad Sci U S A. 2003 ,100(1):44-49.
    
    22. Tang QQ, Otto TC, Lane MD. CCAAT/enhancer-binding protein beta is required for mitotic clonal expansion during adipogenesis. Proc Natl Acad Sci U S A. 2003 , 100(3):850-5.
    
    23. Zhang JW, Tang QQ, Vinson C, Lane MD. Dominant-negative C/EBP disrupts mitotic clonal expansion and differentiation of 3T3-L1 preadipocytes. Proc Natl Acad Sci U S A. 2004, 101(1):43-47.
    
    24. Ossipow V, Descombes P, Schibler U. CCAAT/enhancer-binding protein mRNA is translated into multiple proteins with different transcription activation potentials. Proc Natl Acad Sci U S A. 1993,90(17): 8219-8223.
    25. Yeh WC, Cao Z, Classon M, McKnight SL. Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev. 1995, 9(2): 168-81.
    
    26. Tanaka T, Yoshida N, Kishimoto T, Akira S. Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO J. 1997, 16(24):7432-7443.
    
    27. Lin FT, Lane MD. CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program. Proc Natl Acad Sci U S A. 1994, 91(19):8757-8761.
    
    28. Ron D, Habener JF. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 1992 ,6(3):439-453.
    
    29. Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 1994 May, 8(10):1224-1234.
    
    30. Tontonoz P, Graves RA, Budavari AI, Erdjument-Bromage H, Lui M, Hu E, Tempst P, Spiegelman BM. Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPAR gamma and RXR alpha. Nucleic Acids Res. 1994, 22(25):5628-34.
    
    31. Schoonjans K, Watanabe M, Suzuki H, Mahfoudi A, Krey G, Wahli W, Grimaldi P, Staels B, Yamamoto T, Auwerx J. Induction of the acyl-coenzyme A synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the C promoter. J Biol Chem. 1995, 270(33): 19269-19276.
    
    32. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S, Staels B, Auwerx J. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J. 1996,15(19):5336-5348.
    
    33. Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, Koder A, Evans RM. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell. 1999, 4(4):585-595.
    
    34. Kim JB, Wright HM, Wright M, Spiegelman BM. ADD1/SREBP1 activates PPAR gamma through the production of endogenous ligand. Proc Natl Acad Sci U S A. 1998,95(8):4333-4337.
    
    35. Vogel CF, Sciullo E, Park S, Liedtke C, Trautwein C, Matsumura F. Dioxin increases C/EBPbeta transcription by activating cAMP/protein kinase A.J Biol Chem.2004,279(10):8886-8894.
    36.Alihaud G.Molecular mechanisms of adipocyte differentiation.J Endocrinol.1997,155(2):201-202.
    37.Castro-Mu(?)ozledo F,Beltran-Langarica A,Kuri-Harcuch W.Commitment of 3T3-F442A cells to adipocyte differentiation takes place during the first 24-36 h after adipogenic stimulation:TNF-alpha inhibits commitment.Exp Cell Res.2003,284(2):163-172.