新型变压器式可控电抗器技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可控电抗器作为一种常见的交流柔性输电设备,在无功调节、电压稳定以及电力负载特性改善等各方面有着广泛的用途。本文在总结国内外有关可控电抗器技术、以及本项目组研究成果的基础上,提出了一种新型的变压器式“混合调节型”可控电抗器方案。该电抗器在性能与成本上都有着比较大的优势。本文注重工程实用,主要围绕单相并联型电抗器,对其工作模型、控制方法、以及样机设计、应用作了全方面的分析和介绍,并以试验对其进行了验证。文章的主要内容包括:
     对本项目组已有的“基于磁通补偿的可控电抗器”技术进行了总结,解决了应用中多个控制绕组与单个控制绕组统一性的问题。在此基础上,进行概念拓展,提出了通过“线性二端口网络”端口的控制得到可控电抗的一般性原理,探讨了这类电抗器的设计原则。
     引入“分级调节”与“连续调节”结合的观点,提出了一种新型的变压器式“混合调节型”可控电抗器方案,给出了理论分析和实现方法;解决了开关投切实现电抗“分级调节”在工程实现上的一些关键性问题。与原有的电抗器方案相比,它具有成本更低、性能更为优越的特点。
     提出了新型可控电抗器本体的设计和实现方法。并借助ANSYS软件,成功设计出一套单相额定电压6kV、容量630kVA的电抗器样机,并通过参数实测进行了验证。
     针对该电抗器的PWM逆变器控制系统进行了深入研究分析。文中以常见的三角载波电流控制技术为基础,建立了控制系统的模型,对它的稳定运行条件、功率平衡等方面进行了详细的研究;提出了适合的两种控制方案:电流、直流电压双闭环控制,直流电压不控的“自然电流控制”,分析了它们的可行性、工作特点以及使用条件;最后,根据运行特点,提出了逆变器主电路相关参数的设计原则和方法。
     通过对样机的试验验证了文中提出的新型电抗器理论、设计、运行方案的正确性和可行性,同时,证明该电抗器具有良好的运行性能,能够充分满足电抗值或容量大范围连续可调,并且具有控制精度高、谐波输出少,响应速度快等优点。
     介绍了项目开发中已进行的一些主要工作,解决了可控电抗器应用于“自动调谐型消弧线圈”的一些关键性问题:对消弧线圈装置启动和退出故障补偿的判据设置、初始电抗设定等应用事项提出了新的见解;提出了一种改进型的电网对地电容的检测方案及数据处理算法,在传统方案的基础上提高了实时性、准确性,使其实现更为简便;介绍了已有样机开发基础及试验研究情况,并以试验结果证实文中新型可控电抗器的优越性。
Controllable reactors (CR) are general FACTS (Flexible AC Transmission System) apparatus, which have been widely used for regulating reactive power, stabilizing voltage and improving the electrical load character in the power system. In this dissertation, based on the comprehensively summarizing of the present development reactance-controlled techniques and the existing research productions of ourselves project team, a novel CR of transformer type is brought up, which has more advanced performances and costs less. Emphasizing the practice, over-all analysis and introduction for a single-phase shunt apparatus is provided on model establishing, control strategies, prototype designing and application, which verified by the experiment results at the same time. For detail, the original researches of the author are listed as following:
     Generalizing and deepening of "CR based on transformer magnetic flux compensation" is supplied. The consistency of multiple-windings and single-winding structure for this CR is discussed; and common reactance-adjusting principle by control of "linear two-port network" is provided.
     By combination of "stepping" and "infinitive" regulating, a novel hybrid controllable reactor of transformer type is proposed. The principle and operating analysis is provided; as well as some key problems about reactance stepping regulated with switches are settled. The comparison between the old and new CR technique is offered, which approves that the former have less cost and far more outstanding performance.
     Designing calculation and realization approaches for the reactor entity of the new CR are discussed; and with the aiding of ANSYS software, a single-phase rated 6kV, 630kVA prototype is designed successful, and the expected and measuring values of the impedance parameters are approximate.
     Embedded analysis for the PWM (Pulse width modulation) inverter-control system of the apparatus is provided. First, based on the conventional triangular carrier current control method for voltage source inverter, the model of the control system is established, and the stability and power balance of it is studied. Then, two control strategies for the system are brought up: close loop control for both current and DC side voltage, also the close loop control for only current, meanwhile, feasibility, operating characters and working conditions of control strategies are analyzed. Last, the determinations of main circuit parameters for the control system are provided.
     The experiment for the prototype verify the feasibility of the whole theoretical analysis, designing and operating schemes, as well as the excellent characteristics of the novel controllable reactor such as high control accuracy, little harmonic, fast response, wide continuous-adjusting range, etc.
     Some work of the engineering development for the CR applying in automatic tuning ASC (arc-suppression coil) is introduced. Some new opinions are offered about ASC devoting and exiting operation, value setting of initial reactance, etc: a novel method for measuring capacitive current and distinguishing high-resistance grounding of distributing network is presented, together, a adapting signal signal-processing algorithm is put forward, comparing to the traditional schemes, the new method has merits such as more real-time, accurate, and convenient. The researching progress of prototype is reported, and the experiment results declare the superiority of the new controllable reactor technology too.
引文
[1]刘黎明.柔性交流输电系统中电力电子装置运行特性分析及实验研究.博士学位 论文.华中科技大学,2006.
    [2]G(u|¨)ntherBeck, DusanPovh, Dietmar Retzmann等.全球大停电的经验教训.中国电力,2007, 40(10): 75-81.
    [3]李乃湖,李扬,陈珩.灵活交流输电技术在互联电网中的应用.中国电力,1995,(4): 2-5
    [4]赵良炳,马维新,陈建业.传统交流输电系统与灵活输电系统.电网技术,1995,19(1): 62-66
    [5]Hingorani,N. G.. Flexible AC transmission. IEEE Spectrum.,April 1993,30(4):40-45.
    [6]张建成,黄立培,陈志业.飞轮储能系统及其运行控制技术研究.中国电机工程学报,2003, 23(3):108-111.
    [7]张莉,邹积岩,郭莹,等.40V混合型超级电容器单元的研制.电子学报,2004,32(8): 1254-1255.
    [8]Akagi H.,Sato H..Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system. IEEE Trans on Power Elect.,2005,17(1):109-116.
    [9]R.Natesan, G.Radman.Effects of STATCOM, SSSC,UPFC on Voltage Stability. 2004 Proceedings of the Thirty-Sixth Southeastern Symposium on System Theory,Atlanta, Georgia, USA, 14~(th)-16~(th), March 2004:546-550.
    [10]Zhang X. P.,Xue C. F.,Godfrey K. P.. Modeling of the synchronous series compensator (SSSC) in three-phase Newton power flow. IEE Proceedings on Generation, Transmission and Distribution, 2004,151(4):486-494.
    [11]Wang H. F.,A unified model for analysis of FACTS devices in damping power system oscillations, Ⅲ,Unified Power flow controller. IEEE Trans. on Power Delivery, 2000,15(3): 978-983.
    [12]Sen K. K.. SSSC-static synchronous series compensator: theory, modeling, and applications. IEEE Trans. on Power Delivery, 1998,13(1):241-246.
    [13]Gyugyi L, Schauder C. D.,San K. K.. Static synchronous series compensator: a solid-state approach to the series compensation of transmission line. IEEE Trans. on Power Delivery, 1997,12(1):404-417.
    [14]周晓渊.电力系统电压稳定分析和控制研究.博士学位论文.浙江大学,2006.
    [15]邓隐北.藉可控电抗器降低长距离输电线路的功率损耗.河南电力,2008, (1):17-22.
    [16]何大愚.柔性交流输电技术和用户电力技术的新进展.电力系统自动化,1999,23(6):8-13.
    [17]李刚,程时杰,文劲宇,等.利用柔性功率调节器提高电力系统稳定性.中国电机工程学报, 2006, 26(23): 1-6.
    [18]杜继伟,王胜刚.静止无功补偿器对电力系统性能改善的综述.继电器,2007,35(22): 82-85.
    [19]Hingorani, N.G. “Introducing Custom Power”, IEEE Spectrum,June,1995.
    [20]H.R. Puente,E.V. Larsen. Energization of large shunt reactor near static Var compensators and HVDC converters. IEEE Trans. on Power Delivery, 1989,4(1):629-636.
    [21]Thorvaldsson B,Arnlov B,Saethre E, et al.Joint Operation HVDC/SVC. Prceedings of 6~(th) International Conference on AC and DC Transmission,London,1996:281-284.
    [22]郑宏,李卫玲,魏荣宗.电气化铁道无功治理的可控电抗器应用研究.电力电子技术,2004, 38(6):39-41.
    [23]Gyugyi L. Fundamentals of Thyristor-Controlled Static Var Compensators in Electric Power System Applications. IEEE Special Publication 87~(th) 0187-5-PWR,Application of Static Var Systems for System Dynamic Performance,1987:8-27.
    [24]姜齐荣,谢小荣,等.电力系统并联补偿——结构、原理、控制与应用.北京:机械工业出版社,2004.
    [25]Ghosh A.,Ledwich G. Modeling and control of thyristor controlled series compensators. Proceedings of IEE-Generation,Transmission and Distribution,1995,142(1): 297-304.
    [26]Andrey N. B.,Serguei V. S..An improvement of AC electrical energy transmission system with series compensation by implementation of Controllable Shunt Reactors.2003 IEEE Bologna PowerTech Conference, June 23-26,Bologna, Italy.
    [27]Helbing S. G.. Investigation of an advanced form of series compensation. IEEE Trans. on Power Delivery, 1994, 9(2).
    [28]吴敬儒,徐永禧.我国特高压交流输电发展前景.电网技术,2005, 29(3):1-4.
    [29]许伟,陈水明,何金良.1000kV交流输电线路的故障激发过电压研究.电网技术,2005,29(21): 10-13.
    [30]Tavares M. C.,Portela C. M..Transmission system parameters optimization sensitivity analysis of secondary arc current and recovery voltage. IEEE Trans. on Power Delivery, 2004,19: 1464-1471.
    [31]Hasibar R. M.,Legate A. C.,Brunke L,et al. The application of high-speed grounding switches for single-pole reclosing on 500kV power systems. IEEE Trans on PAS,1981,100(4): 1512-1515.
    [32]陈柏超,陈维贤.特高压可控电抗器及其大幅度限压问题.高电压技术,1995,21(2): 11-13
    [33]S.S.Choi,B.H.Li,D.M. Vilathgamuva. Dynamic Voltage Restoration with Minimum Energy Injection.IEEE Trans. Power Systems, 2000,15(1).
    [34]Lamoree J.,Mueller D.,Vineti P.,et al. Voltage Sags Analysis Case Studies. IEEE Trans. on Industry Applications,1994,30(4).
    [35]王兆安,刘进军.电力电子装置谐波抑制及无功补偿技术的进展.电力电子技术,1997,(1):100-10.
    [36]朱鹏程,李勋,康勇等.统一电能质量控制器控制策略研究.中国电机工程学报,2004,24(8): 67-73
    [37]Takashi Yazawa, Eriko Yoneda, et al.Design and test result of 6.6kV high-Tc superconducting fault current limiter. IEEE Trans on Applied Superconductivity,2001,11(1):2511-2514
    [38]Slade P G, Wu J L, Stacey E J,et al.The Utility requirements for a distribution fault current limiter. IEEE Trans.on Power Delivery, 1992,7(2):507-515.
    [39]Sugimoto S,Kida J, Arita H, et al.Principle and characteristics of a fault current limiter with series compensation. IEEE Trans. on Power Delivery, 1996,11(3):842-847
    [40]Salama M. M. A.,Temraz H.,Chikhani A. Y.,et al. Fault-current limiter with thyristor-controlled impedance (FCL-TCI). IEEE Trans. on Power Delivery, 1993,8(3):1518-1528
    [41]阎治安,程少华,李利,等.可控电抗器及其在异步电动机软起动中的应用.防爆电机,2008, 43(5): 26-28.
    [42]尹忠东,程行斌,刘虹.可控电抗器在电网电容电流自动补偿中的应用.高电压技术,1996, 22(3): 85-87.
    [43]陈柏超.新型可控饱和电抗器理论及应用.武汉水利电力大学出版社,1999.
    [44]张宇.基于磁通控制的大容量可调电抗器研究.硕士学位论文.华中科技大学,2005.
    [45]牟宪民,王建赜,纪延超,等.可控电抗器现状及其发展.电气应用,2006, 25(4):1-4.
    [46]P. C. Sen, P. P. Biringer, R. S. Segsworth.Thyristor controlled single phase variable inductor. IEEE Trans. Magnetics, 1967,3 (3):240-245.
    [47]S.B. Dewan, R. S. Segsworth, M.S.Mckinney. A DC Controlled Reactor Using Thyristors. IEEE Trans. ON Magnetics, 1969,5(3):342-346.
    [48]周勤勇,郭强,卜广全,班连庚.可控电抗器在我国超/特高压电网中的应用.中国电机工程学报,2007, 27(7):1-6.
    [49]余梦泽,陈柏超,曹志煌,等.110 kV并联可控电抗器及其应用.电力系统自动化,2008,32(3): 87-91.
    [50]DOLGOPOLOV A. G.,DOLGOPOLOV S. G.,ZAITSEV A. I.,et al. Industrial operation of a controllable three-phase shunting reactor (110 kV, 25 000 kVA) at the Permenergo Kudymkar substation. Russian Electrical Engineering, 2003,74 (1):29-34.
    [51]国内首台交流有级可控电抗器.电器工业,2007,第3期:47页.
    [52]许实章.电机学.北京:机械工业出版社,1995.
    [53]史常青,黄文新,自耦调压器用作可调电抗的方法,实验室研究与探索,1999 第4期:84-85.
    [54]李锋,傅正财,江秀臣等.调匝式消弧线圈的自动调谐.上海交通大学学报,1996,30(1):70-77.
    [55]S. Sugimoto,S. Neo, H. Arita, J. Kida. Thyristor Controlled Ground Fault Current Limiting System for Ungrounded Power Distribution Systems. IEEE Transaction on Power Delivery, 1996,11(2): 940-945.
    [56]李景禄,林玉怀,陈忠仁,等.ZXB系列自动跟踪补偿消弧装置.电网技术,1998,22(2): 77-79.
    [57]田铭兴,励庆孚,王曙鸿.磁饱和式可控电抗器的等效物理模型及其数学模型.电工技术学报,2002, 17(4): 18-21.
    [58]Torbj(o|¨)rn W.,Sven H.,and Stefan V. Magnetic Circuit for a Controllable Reactor. IEEE Trans. ON Magnetics, 2006, 42(9):2196-2200.
    [59]蔡宣三.自励式可控饱和电抗器.电力电子,2007年第6期:8-10.
    [60]Cai xu. A new arc-suppression coil with magnetic bias and its characteristics analysis Electrical Machines and Systems,2003. ICEMS 2003. Sixth International Conference,9-11 Nov. 2003,Vo12,Page(s): 903-906.
    [61]Oka H,Biringer P.Control characteristic analysis of a ferrite orthogonal core.IEEE Transactions on Magnetics, 1990, 26(5): 2888-2893.
    [62]Ichinokura O,Jinzenji T, Tajima K.A new variable inductor for var compensation.IEEE Transactions on Magnetics,1993,29(6): 3225-3227.
    [63]Nakamura K.,Ichinokura O.,Maeda M.,et al.Analysis of orthogonal-core type linear variable inductor and application to var compensator. IEEE Transactions on Magnetics,2000,36(5): 3565-3567.
    [64]吴利仁,谭征,李建红.磁阀式可控电抗器损耗测量.变压器,2006, 43(4):36-37.
    [65]谷永刚,肖国春,王兆安.晶闸管投切电容器技术的进展.高压电器,2003, 39(2):49-52.
    [66]刘艳村,鲁铁成,文习山,等.基于TSC控制技术的快速响应自动消弧装置.电力系统自动化,2004, 28(20): 88-93.
    [67]李民族,朱国荣,刘晓东,等.新型可控电抗的潮流调节方法.中国电机工程学报, 2001,21(4): 56-59.
    [68]P. Parihar, G. G. Karady.Characterization of a Thyristor Controlled Reactor. Electric Power Systems Research, 1997, (41):141-149.
    [69]Leonard J.B.,Robert H. L. Stability and harmonic in thyristor controlled reactor.IEEE Trans. on Power Delivery, 1990, 5 (2):1175-1181.
    [70]Hua Jin, Giza Gobs, Luiz Lopes. An Efficient Switched-Reactor-Based Static Var Compensator. IEEE Trans. on Industry application, 1994, 30(4): 998-1005.
    [71]K.-H. Chu, C. Pollock. PWM-controlled series compensation with low harmonic distortion. IEE Proc.-Gener. Trunsm. Distrih.,1997, 144 (6):555-563.
    [72]李达义,陈乔夫,贾正春.基于磁通可控的可调电抗器的新原理.中国电机工程学报,2003,23(2):116-120.
    [73]S. Funabiki,T. Himei. Design procedure of firing angles for harmonic reduction in a thyristor-controlled reactor by asymmetrical firing control. IEE Proceedings,Vol.132,Pt. C,No. 5,1985,pp. 257-264.
    [74]尹忠东,张建华,肖湘宁,等.模块化无谐波可控硅控制电抗器的研究.高电压技术,2005, 31(12):52-54.
    [75]田翠华,陈柏超.低谐波双级饱和磁控电抗器研究.电工技术学报,2006, 21(1) 116-121.
    [76]牟宪民,王建赜,胡泰,等.新型单相低谐波饱和式可控电抗器.电力自动化设备,2007, 27(7):17-20.
    [77]纪飞峰,Mansoor,解大,等.有源电力滤波器与直流偏磁式静止无功补偿器综合补偿系统的研究.中国电机工程学报,2006, 26(18):77-83.
    [78]徐玉琴,陈志业,李鹏.晶闸管投切电容式消弧线圈的设计与应用研究.电力系统自动化,2001, 28(7): 38-41.
    [79]常思哲,杨学昌,闫兴中.查表式可控硅投切电容消弧线圈的研制.高电压技术,2004, 30(4): 11-13.
    [80]刘海涛,张卫星,刘瑜,等.变压器式可控电抗器的控制绕组无功容量分析.电力系统及其自动化学报,2006, 18(6): 70-72.
    [81]陆国庆,姜新宇,欧阳旭东,等.高短路阻抗变压器式自动快速消弧系统.电 网技术,2000, 24(7): 25-28.
    [82]Liu Zhichen, Chen Hongyan, Yu Zhihao. Harmonic Analysis of Arc Suppression Coil Based on Transformer with High Short Circuit Impedance. 2002 International Conference on Power System Technology, PowerCon 2002,Vol. 1,Oct. 2002:130-133.
    [83]H.K. Patel,G.K. Dubey. Harmonic reduction in the static VAR compensator by sequence control of transformer taps. IEE Proceedings, Vol. 130,Pt. C,No.6,1983,pp. 300-305.
    [84]Mingxing Tian, Qingfu Li,and Qunfeng Li. A Controllable Reactor of Transformer Type. IEEE Transactions on Power Delivery, 2004, 19(4): 1718-1726.
    [85]周腊吾.新型特高压可控电抗器的理论与应用.博士学位论文.湖南大学,2008.
    [86]田铭兴,励庆孚.多并联支路型可控电抗器支路参数计算.电工技术学报,2005,20(11): 16-19
    [87]盛建科,陈乔夫,熊娅俐等.基于磁通可控的新型自动调谐消弧线圈.电工技术学报,2005, 20(2):88-93.
    [88]李达义.基于基波磁通补偿的串联混合型有源滤波器研究.博士学位论文.华中科技大学,2005年.
    [89]丁洪发,朱庆春.混合变压器式可控电抗器及其仿真.继电器,2005, 33(10):25-30.
    [90]要焕年,曹梅月.论城乡中压电网的中性点接地方式.电力设备,2001,2(3): 5-21.
    [91]要焕年,曹梅月.电力系统谐振接地.北京:中国电力出版社,2000.
    [92] Burke J,Marshall M.Distribution System Neutral Grounding. IEEE. 2001.
    [93]中华人民共和国电力行业标准DL/T 1057-2007:《自动跟踪补偿消弧线圈成套装置技术条件》.
    [94]黄鲟,唐忠,曹斌勇.配电网电容电流测量方法的比较与应用.湖南电力,2006,26(4): 56-57.
    [95]曾祥君,于永源,尹项根,等.基于注入信号法的消弧线圈自动调谐新技术.电力系统自动化,2000, 24(9):38-41.
    [96]李玲玲,孙鹤旭,王晓宏.谐振接地电力网自动调谐的新方法.中国电机工程学报, 2003,23(6):77-80
    [97]Li D,Chen Q,Jia Z, et al. A Novel Active Power Filter With Fundamental Magnetic Flux Compensation. IEEE Transactions on Power Delivery, 2004, 19(2): 799-805
    [98]盛建科,陈乔夫,熊娅俐,等.高压大容量磁通可控型可调电抗器的技术与实验.高电压技术,2006, 32(4).
    [99]盛建科.基于磁通控制的可调电抗理论及其在消弧线圈中的应用研究.博士学位论文.华中科技大学,2005.
    [100]Cheng Lu, Chen Qiaofu, Zhang Yu, et al. The principle of a novel Arc-suppression coil and its implementation. CES/IEEE 5th International Power Electronics and Motion Control Conference, IPEMC 2006.
    [101]Marian P K, Luigi M. Current control techniques for three-phase voltage-source PWM converters: A survey. IEEE Trans on Industrial Electronics, 1998,45(5):691-703
    [102]Yu Zhang, Qiaofu Chen, Lu Cheng. A high-power controllable reactor Based on transformer magnetic flux compensation. Proceeding of International Conference on Electrical Machines and Systems 2007, Oct. 8-11,Seoul,Korea: 1286-1290.
    [103]颜秋容,陈崇源.电路理论——端口网络与均匀传输线.武汉:华中理工大学,1997.
    [104]毕娟,邱文阁.线性二端口网络互易条件.华北水利水电学院学报,2003, 24(2):30-33.
    [105]Yu Zhang, Qiaofu Chen, Jun Tian. A novel controllable reactor of transformer type.Proceeding of International Conference on Electrical Machines and Systems 2008,Oct. 16-18,Wuhan, China.
    [106]C.B.瓦修京斯基[苏].变压器的理论与计算.北京:机械工业出版社,1988.
    [107]邓雨荣,顾南峰,李明贵.500 kV并联电抗器单投切试验研究.1999,第2期:10-14.
    [108]李召家,黎东升.真空断路器投切并联电抗器试验研究.广东电力,2003, 16(4):29-33.
    [109]田铭兴,励庆孚.多绕组变压器的多边形等值电路模型.西安交通大学学报,2004, 38(6): 637-640.
    [110]李湘生,陈乔夫.变压器的理论计算与优化设计.武汉:华中理工大学出版社,1990
    [111]田铭兴,励庆孚.变压器式可控电抗器的限流电抗计算和仿真.西安交通大学学报,2004, 38(8):820-813
    [112]Xiaosong Li, Qiaofu Chen, Jianbo Sun, et al. Analysis of Magnetic Field and Circulating Current for HTS Transformer windings, IEEE Trans.on AS,2005,15(3) 3808-3813.
    [113]Hiroshi Yanaguchi,Teruo Kataka, Hiroki Matsuoka et al. Magnetic Field and Electricaomagnetic Force Analysis of 3-Phase Air-Core Superconducting Power Transformer. IEEE Trans.on As, 2001,11(1): 1490-1493.
    [114]Thorns L.Baldwin, John I.Ykema, Cliff L.Allen, et al,“Design Optimization of High-Temperature Superconducting Power Transformers”,IEEE Tran.On AS,2003,13(2):2344-2347.
    [115]孙明礼,胡仁喜.ANSYS 10.0电磁学有限元分析实例指导教程.北京,机械工业 出版社,2007.
    [116]Malesani L,Mattavelli P,Tomasin P. High-performance hysteresis modulation technique for active filters. IEEE Trans Power Electronics, 1997,12(5):876-884.
    [117]Malesani L,Mattavelli P,Tomasin P. Improved constant-frequency hysteresis current control of VSI inverters with simple feedforward bandwidth prediction. IEEE Trans. Industry Applications, 1997, 33 (5):1194-1202.
    [118]RahmanK M, RezwanM, Choudhury M A et al. Variable-band hysteresis current controllers for PWM voltage-source inverters. IEEE Trans Power Electronics,1997, 12(6): 964-970.
    [119]戴朝波,林海雪.电压源型逆变器三角载波电流控制新方法.中国电机工程学报,2002,22(2): 99-102.
    [120]Van Der Broeck H W, Skudelny H C,Stanke G V.Analysis and realization of a pulse-width modulator based on voltage space vectors. IEEE Trans Industry Applications,1998,24(1):142-150
    [121]Ambroic V, Fiser R, Nedeljkovic D. Direct current control-a new current regulation principle. IEEE Trans Power Electronics, 2003,18(1):495-503
    [122]S. Buso,L. Malesani, and P. Mattavelli.Comparison of Current Control Techniques for Active Filter Applications. IEEE Transactions on Industrial Electronics, 1998,45(5): 722-729.
    [123]B.G.Gu, K. Nam. Theoretical minimum DC-link capacitance in PWM converterinverter systems. IEE Proc.-Electr. Power Appl.,2005,152(1): 81-88
    [124]Pedro Verdelho,G. D. Marques. DC Voltage Control and Stability Analysis of PWM-Voltage-Type Reversible Rectifiers. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,1998,45(2):263-273.
    [125]罗世国,侯振程.有源滤波器直流侧电压闭环控制的稳定性研究.重庆大学学报,1994,17(3):60-68.
    [126]L. Xu, V. G. Agelidis, and E.Acha.Development considerations of DSP-controlled PWM VSC-based STATCOM. IEE Proc-Electr. Power Appl.,vol.148,no.5,pp.449-455,September 2001.
    [127]H. M. Kojabadi,Bin Yu, I. A. Gadoura, Liuchen Chang, and Mohsen Ghribi,. A Novel DSP-Based Current-Controlled PWM Strategy for Single Phase Grid Connected Inverters. IEEE Transactions on Power Electronics, 2006, 21(4): 985-993.
    [128]张崇巍,张兴.PWM整流器及其控制.北京,机械工业出版社,2005.
    [129]赵金,徐金榜,罗泠,等.新可逆PWM整流器主电路参数设计仿真.华中科技大学学报(自然科学版),2004, 32(2):38.
    [130]谢运祥,朱立新,唐中琦.有源滤波器输出电感值的选取方法.华南理工大学学报(自然科学版),2000, 28(9):73-76
    [131]马晓军,刘文华,王仲鸿.新型同步补偿器直流侧储能电容值的选取方法.中国电机工程学报,2000, 20(10):31-35.
    [132]曾祥君,尹项根,于永源,等.基于注入变频信号法的经消弧线圈接地系统控制与保护新方法.中国电机工程学报,2000, 20(1):29-36.
    [133]张宇,陈乔夫,程路,等.检测配电网电容电流及辨识高阻接地的新方法.电力系统自动化,2008, 32(8):83-87.
    [134]张宇,陈乔夫,谢冰若,等.扫频检测电网对地电容的改进型方法.电网技术,2008,32(17):40-45.