心肌梗死患者SIRT1基因启动子基因分析及功能测定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     冠心病(CAD)是一种主要由冠状动脉血管壁粥样硬化所引起,由遗传和环境因素及两者之间相互作用引起的多基因疾病,而心肌梗死是冠心病的一种限制性表型,包括ST抬高型心肌梗死、非ST抬高型心肌梗死。目前,国内外通过对候选基因、连锁分析、全基因组关联研究(GWAS)等确定与心肌梗死相关联的基因及基因位点有十多个,但是其在心肌梗死中遗传因素及致病的分子机制仍不清楚。SIRT1是一种依赖NAD±的组蛋白去乙酰化酶,参与了体内许多生理功能的调节,包括众多基因转录、能量代谢、炎症反应、氧化应激以及细胞衰老过程的调节等,尤其在糖代谢、脂代谢、调节胰岛素分泌中发挥着重要的作用。SIRT1还可以通过去乙酰化自噬相关蛋白(ATG)和叉头框蛋白转录因子(FOXOs)诱导自噬,在心肌梗死病人中发现自噬减少。此外,SIRT1也参与调节血管内皮和动脉粥样硬化的形成。因此,我们假设SIRT1可能参与心肌梗死的发病。
     目的
     1)通过对心肌梗死病人进行SIRT1基因启动子的遗传学分析,明确SIRT1基因启动子基因变异与心肌梗死的关系。
     2)通过荧光素酶报告基因载体系列pGL3测定SIRT1功能,检测其功能变化,为进一步从基因水平预测心肌梗死的发病风险,并作为预防和治疗靶位点提供理论基础。
     方法
     1)PCR法扩增SIRT1基因启动子DNA序列,测序后分析各组SIRT1基因启动子序列变化情况。
     2)应用pMDR19-T载体扩增SIRT1突变基因,将SIRT1突变基因插入到pGL3-Basic载体,同pRL-TK载体共转染HEK-293细胞,分别测萤火虫荧光素酶和海肾荧光素酶的量,计算其比值,观察SIRT1基因功能变化。
     结果
     1)基因分析发现六个单核苷酸多态性(SNPs)和14DNA序列变异被确定。其中,五种异常杂合变异体(g.69643743Ins, g.69643840Ins, g.69643903G>C, g.69644235G>C and g.69644353G>T)在五个MI患者中被发现,但是在对照组没有异常。此外,在三个MI患者发现一个SNP(g.69643707A>C, rs35706870),但在对照组中没有。与此相反,五个异常杂合变异体(g.69643672G>A, g.69644226C>T, g.69644278A>G, g.69644408G>A and g.69644408G>T)只在对照组中被确认。其余的单核苷酸多态性和序列变异在MI患者和对照组中均被发现,其频率相似。
     2)心肌梗死患者中SIRT1突变基因功能与正常人比较差异有统计学意义(p<0.05),而健康对照组中SIRT1突变基因功能与正常人比较差异无统计学意义(p>0.05)
     3)心肌梗死患者中SIRT1基因启动子的功能发生了变化,突变后其功能可以减弱亦可以增强。
     结论
     总之,我们认为,在心肌梗死患者中被确定的基因变异,可能导致SIRT1基因启动子转录活性的改变,从而导致SIRT1功能水平的变化,成为心肌梗死发病机制的一个危险因素。
Background
     Coronary artery disease is a common complex disease that is caused by interactions of environmental and genetic factors. Myocardial infarction (MI) is a restrictive phenotype of coronary artery disease. To date, a group of genes and genetic loci have been associated to MI. However, the genetic causes and underlying molecular mechanisms for MI remain largely unknown. SIRT1, one of highly conserved NAD-dependent class III deacetylases, has been involved in several cellular processes and implicated in human diseases. SIRT1is involved in cell survival and differentiation, genomic stability, transcription, metabolism, stress response and aging. Clinically, SIRT1has been implicated in inflammation, obesity, type2diabetes, cardiovascular diseases, neurodegenerative disease and cancer. Autophagy is one of major cellular degradative pathways, which plays important roles in lipid metabolism. SIRT1has been shown to induce autophagy by deacetylating autophagy-related (ATG) proteins (ATG5and ATG7) and forkhead box O transcription factors (FOXOs). In addition, SIRT1also regulates endothelial angiogenesis and atherosclerosis. Recent studies have shown that SIRT1deacetylates autophagy-related genes, and the expressions of autophagic genes are altered in MI patients. Accordingly, we hypothesized that SIRT1may be linked to the MI pathogenesis.
     Objective
     1) Investigating the relation between the variants of SIRT1gene promoter and myocardial infarction by analyzing the genetic analysis of SIRT1promoter in myocardial infarction patients.
     2) Detecting the SIRT1function and identifing its function changes by determinating the luciferase reporter gene vector series of pGL3. It could provide a theoretical basis for predicting the risk of myocardial infarction at the genetic level and open the door for novel treatment and prevention strategies for myocardial infarction.
     Methods
     1) Genomic DNAs were extracted from peripheral leukocytes. SIRT1gene promoter sequence was amplified by using polymerase chain reaction. The SIRT1gene promoter was analyzed by direct sequencing.
     2) The SIRT1mutant gene was amplified with the pMDR19-T vector and then inserted into the pGL3-Basic Vector. The pGL3-Basic Vector with SIRT1mutant gene and PRL-TK vector together were contransfected to HEK-293. The amount of firefly luciferase and renilla luciferase were measured, and then its ratio was calculated, in order to observing the functional change of SIRT1gene promoter.
     Results
     1) The results showed that six single-nucleotide polymorphisms and14sequence variants were identified. Among these, five novel heterozygous variants (g.69643743Ins, g.69643840Ins, g.69643903G>C, g.69644235G>C and g.69644353G>T) and one single-nucleotide polymorphism (rs35706870) were identified in MI patients, but in none of controls. Moreover, five novel heterozygous variants (g.69643672G>A, g.69644226C>T, g.69644278A>G, g.69644408G>A and g.69644408G>T) were only found in controls. The rest variants were found in MI patients and controls with similar frequencies.
     2) The difference between the SIRT1mutant gene in myocardial infarction and normal subjects was statistically significant (p<0.05). However, comparing to the normal SIRT1, the SIRT1mutant genes in healthy control was not statistically significant (p>0.05).
     3) The function of SIRT1gene is changed in myocardial infarction patients, compared to the normal control; the viariation of SIRT1can be weakened or be enhanced.
     Conclusion
     Taken together, the variants identified in MI patients may alter the transcriptional activities of SIRT1gene promoter, which may change SIRT1levels, contributing to the MI pathogenesis as a risk factor.
引文
[1].Mathers CD,Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS.2006,3(11):442.
    [2].Yang X, So WY, Kong AP, et al.Development and validation of a total coronary heart disease risk score in type 2 diabetes mellitus. Am J Cardiol,2008,101(5):596-601.
    [3].Rinkuniene E, Petrulioniene Z, Laucevicius A, et al.Prevalence of conventional risk factors in patients with coronary heart disease. Medicina (Kaunas),2009,45(2):140-146.
    [4].S. Kathiresan, D. Srivastava, Genetics of human cardiovascular disease. Cell. 2012,148:1242-1257.
    [5].K. Musunuru, S. Kathiresan, Genetics of coronary artery disease, Annu. Rev. Genomics. Hum. Genet 2010,11:91-108.
    [6].H. Schunkert, J. Erdmann, N.J. Samani. Genetics of myocardial infarction:a progress report. Eur. Heart J.2010,31:918-925.
    [7].R.A. Frye, Characterization of five human cDNAs with homology to the yeast SIRT2 gene: sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity, Biochem. Biophys. Res. Commun. 1999,260:273-279.
    [8].S Voelter-Mahlknecht, U Mahlknecht. Cloning, chromosomal characterization and mapping of the NAD-dependent histone deacetylases gene sirtuin 1. Int. J. Mol. Med.2006,17:59-67.
    [9].T. Finkel, C.X. Deng, R. Mostoslavsky. Recent progress in the biology and physiology of sirtuins. Nature.2009,460:587-591.
    [10].M.C. Haigis, D.A. Sinclair. Mammalian sirtuins:biological insights and disease relevance. Annu. Rev. Pathol.2010,5:253-295.
    [11].Y Horio, T. Hayashi, A. Kuno, R. Kunimoto. Cellular and molecular effects of sirtuins in health and disease. Clin. Sci. (Lond.) 2011,121:191-203.
    [12].R.H. Houtkooper, E. Pirinen, J. Auwerx. Sirtuins as regulators of metabolism and health span. Nat. Rev. Mol. Cell Biol.2012 13:225-238.
    [13].Dryden S C,Nahhas F A,Nowak J E,et al.Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle [J].Mol Cell Biol.2003,23(9):3173-3185.
    [14].Prozorovski T, Schulze-Topphoff U, Glumm R, et al. Sirtl contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol.2008;10:385-94.
    [15].M.C. Haigis, D.A. Sinclair, Mammalian sirtuins:biological insights and disease relevance, Annu. Rev. Pathol.2010,5:253-295.
    [16].Y. Horio, T. Hayashi, A. Kuno, R. Kunimoto, Cellular and molecular effects of sirtuins in health and disease. Clin. Sci. (Lond.) 2011,121:191-203.
    [17]. R.H. Houtkooper, E. Pirinen, J. Auwerx, Sirtuins as regulators of metabolism and health span, Nat. Rev. Mol. Cell Biol.2012,13:225-238.
    [18].G. Afshar, J.P. Murnane, Characterization of a human gene with sequence homology to Saccharomyces cerevisiae SIR2. Gene.1999,234,161-168.
    [19].S. Nemoto, M.M. Fergusson, T. Finkel. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science.2004,306:2105-2108.
    [20].L.G. Noriega, J.N. Feige, C. Canto, et al. CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep.2011, 12:1069-1076.
    [21].Y. Shimoyama, Y. Mitsuda, Y. Tsuruta,, et al. SIRTUIN 1 gene polymorphisms are associated with cholesterol metabolism and coronary artery calcification in Japanese hemodialysis patients. J. Ren. Nutr.2012,22:114-119.
    [22].Vaquero A, Scher M, Lee D, et al. Human SirTl interacts with histone H1 and promotes formation of facultative heterochromatin. Molecular cell.2004; 16:93-105.
    [23].Sinclair DA, Oberdoerffer P. The ageing epigenome: damaged beyond repair? Ageing Res Rev.2009;8:189-98.
    [24].M. Tanno, A. Kuno, T. Yano, et al., Induction of manganese superoxide dismutase by nuclear translocation and activation of SIRT1 promotes cell survival in chronic heart failure. J. Biol. Chem.2010,285:8375-8382.
    [25].C.J. Chen, W. Yu, Y.C. Fu, et al. Resveratrol protects cardiomyocytes from hypoxia-induced apoptosis through the SIRT1-FoxO1 pathway, Biochem. Biophys. Res. Commun.2009,378:389-393.
    [26].N.R. Sundaresan, V.B. Pillai, M.P. Gupta, Emerging roles of SIRT1 deacetylase in regulating cardiomyocyte survival and hypertrophy. J. Mol. Cell. Cardiol.2011, 51:614-618.
    [27].M. Tanno, A. Kuno, Y. Horio, et al. Emerging beneficial roles of sirtuins in heart failure, Basic Res. Cardiol.2012,107:273-280
    [28].陈丽函,王伟,傅玉才等.白藜芦醇对缺血再灌注心肌细胞凋亡及沉寂信息调节因子2表达的影响.中国临床康复,2006,10:69-71.
    [29].H.L. Cheng, R. Mostoslavsky, S. Saito, et al., Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. USA.2003,100:10794-10799.
    [30].M.W. McBurney, X. Yang, K. Jardine, et al., The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis.Mol. Cell. Biol.2003,23:38-54.
    [31].R.R. Alcendor, S. Gao, P. Zhai, et al., Sirtl regulates aging and resistance to oxidative stress in the heart. Circ. Res.2007,100:1512-1521.
    [32].T. Kawashima, Y. Inuzuka, J. Okuda, et al., Constitutive SIRT1 overexpression impairs mitochondria and reduces cardiac function in mice. J. Mol. Cell.Cardiol. 2011,51:1026-1036.
    [33].B. Ravikumar, S. Sarkar, J.E. Davies, et al., Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev.2010,90:1383-1435.
    [34].B. Levine, G. Kroemer, Autophagy in the pathogenesis of disease. Cell 2008,132:27-42.
    [35].B. Levine, N. Mizushima, H.W. Virgin, Autophagy in immunity and inflammation. Nature.2011,469:323-335.
    [36].N. Hariharan, Y. Maejima, J. Nakae, et al.Deacetylation of FoxO by Sirt1 Plays an Essential Role in Mediating Starvation-Induced Autophagy in Cardiac Myocytes. Circ. Res.2010,107:1470-1482.
    [37].I.H. Lee, L. Cao, R. Mostoslavsky, et al. A role for the NAD-dependent deacetylase Sirtl in the regulation of autophagy, Proc. Natl. Acad. Sci. U. S. A. 2008,105:3374-3379.
    [38].M. Shibata, K. Yoshimura, H. Tamura, et al., LC3, a microtubule-associated proteinlA/B light chain3, is involved in cytoplasmic lipid droplet formation, Biochem. Biophys. Res. Commun.2010,393:274-279.
    [39].H. Kanamori, G. Takemura, K. Goto, et al., Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion, Am. J. Physiol. Heart Circ. Physiol.2011,300:H2261-2271.
    [40].B. Razani, C. Feng, T. Coleman, et al. Autophagy links inflammasomes to atherosclerotic progression, Cell. Metab.2012,15:534-544.
    [41]. G. Wu, L. Liu, J. Huang, et al, Alterations of autophagic-lysosomal system in the peripheral leukocytes of patients with myocardial infarction, Clin. Chim. Acta. 2011,412:1567-1571.
    [42].M. Potente, L. Ghaeni, D. Baldessari, et al, SIRT1 controls endothelial angiogenic functions during vascular growth, Genes Dev.2007,21:2644-2658.
    [43].Bothig S. WHO MONICA Projective: objective and design. Int J Epidemiol.1989,18:29-37.
    [44].Mattagajasingh I, Kim CS, Naqvi A, et al. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxidesynthase. Proc Nat1A cad Sci USA2007; 104:14855-14860
    [45].Wallerath T, Deckert G, Temes T et al. Resveratrol, apolyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation 2002:106:1652—1658.
    [46].周爽,陈厚早,万言珍,等.长期能量限制增加去乙酰化酶SIRT1表达和降低小鼠血管的衰老[J].基础医学与临床,2010,30(11):1158-1162.
    [47].陈厚早,张祝琴,韦玉生,等.去乙酰化酶SIRT1的研究进展[J].中国医学科学院报,2007,29:441-447.
    [48].Bordone L, Cohen D, Robinson A, et al. SIRT1 transgenic mice show phenotypes resemb ling calorie restr iction[J]. Aging Cell,2007,6:759-767.
    [49].Chen D, Steele A D, Lindquist S, et al. Increase in activity during calorie restriction requires Sirtl[J]. Science,2005,310:1641-1651.
    [50].Homayoun V, Scott K D, Elinor N E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell,2001,107(2):149-159
    [51].Isabelle G, Sheetal K, Kelly G, et al. Vascular Smooth Muscle Cell Sirtuin 1 Protects Against DNA Damage and Inhibits. Circulation, published online December 7,2012;
    [52].A. Zhang, H. Wang, X. Qin, S. Pang, B. Yan, Genetic analysis of SIRT1 gene promoter in sporadic Parkinson's disease, Biochem. Biophys. Res. Commun. 2012;422:693-696.
    [53].J. Shan, S. Pang, H. Wanyan, W. Xie, X. Qin, B. Yan, Genetic analysis of the SIRT gene promoter in ventricular septal defects, Biochem. Biophys. Res. Commun. (2012) in press.
    [54].Yorimitsu T, Klionsky DJ. Autophagy:molecular machinery for self-eating. Cell Death Differ 2005,12:1542-1552
    [55].Axe EL, Walker SA, Manifava M, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 2008,182:685-701
    [56].Tasdemir E, Maiuri MC, Galluzzi L, et al. Regulation of autophagy by cytoplasmic p53.Nat Cell Biol 2008,10 (6):676-87
    [57].Jeong HK, Moo RK, etal. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity[J]. Cell.2007,28(10):227-290.
    [59].Hou, X. et al. SIRT1 regulates hepatocyte lipid metab olism through activat ing AMP-activated protein kinase. J. Biol. Chem.2008,283:20015-20026
    [60].Banks, A.S. et al. (2008) SirTl gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab.2008,8:333-341.
    [61]. Singh R, Kaushik S, Wang Y, et al, Autophagy regulates lipid metabolism, Nature.2009,458:1131-1135.
    [62].Qiao, L. and Shao, J. SIRT1 regulates adiponectin gene expression through Foxol-C/enhan cer-binding protein alpha transcriptional compl ex. J. Biol. Chem. 2006,281:39915-39924
    [63].Erion, D.M. et al. SirTl knock down in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats. Proc. Natl.Acad. Sci. U. S. A.2009,106:11288-11293
    [64].Z Gerhart-Hines, J T Rodgers, O Bare, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha.EMBO J.2007,26:1913-1923.
    [65]. Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1 alpha and SIRT1, Nature.2005,434:113-118.
    [66]. A. Planavila, R. Iglesias, M. Giralt, et al. Sirtl acts in association with PPARa to protect the heart from hypertrophy, metabolic dysregulation, and inflammation, Cardiovasc. Res.2011,90:276-284.
    [67]. Iyer A, Fairlie DP, Prins JB, et al. Infl ammatory lipid mediators in adipocyte function and obesity. Nat Rev Endocrinol.2010;6:71-82.
    [68].Rajendrasozhan S, Yang SR, Kinnula VL, et al. SIRT1 an antiinfl ammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary dis-ease. Am J Respir Crit Care Med.2008;177:861-70.
    [69]. Yoshizaki T, Milne JC, Imamura T, et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol.2009;29:1363-74
    [70].Yoshizaki T, Schenk S, Imamura T, et al. SIRT1 inhibits infl ammatory pathways in mac-rophages and modulates insulin sensitivity. Am J Physiol Endocrinol Metab.2010;298:E419-28
    [71].Yeung F, Hoberg JE, Jones DR, Frye RA, et al. Modulation of NF-[kappa]B-dependent transcription and cell survival by the SIRT1 deacetylase.EMBO.2004; 23:2369-2380.
    [72]. Yoshizaki T, Milne J C, Imamura T, et al. Sirtl exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol.2009,29: 1363-1374.
    [73].Brunet A, Sweeney L B, Sturgill J F, et al. Stress dependent regulation of foxo transcription factors by the sirtl deacetylase. Science,2004,303:2011-2015.
    [74].Yang X, So WY, Kong AP, et al. Development and validation of a total coronary heart disease risk score in type 2 diabetes mellitus. Am J Cardiol.2008,101(5):596-601
    [75].Rinkuniene E, Petrulioniene Z, Laucevicius A, et al. Prevalence of conventional risk factors in patients with coronary heart disease.Medicina.2009,45(2):140-146
    [76].Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol.2005;6:298-305.
    [77].Grundy SM. Drug therapy of the metabolic syndrome:minimizing the emerging crisis in polypharmacy. Nat Rev Drug Discov.2006;5:295-309.
    [78].Steppan CM, Lazar MA. The current biology of resistin. J Intern Med. 2004;255:439-47.
    [79].Meier U, Gressner AM. Endocrine regulation of energy metabolism:review of pathobiochemical and clinical chemi-cal aspects of leptin, ghrelin, adiponectin, and resistin. Clin Chem.2004;50:1511-25.
    [80].Nakahata Y, Sahar S, Astarita G, et al Circadian control of the NAD+salvage pathway by CLOCK-SIRT1. Science.2009;324:654-7.
    [81].Sniderman AD,Furberg CD.Age as a modifiable risk factor for cardiovascular disease.Lancet.2008,371 (9623):1547-1549.
    [82]. Alcendor R R,Gao S,Zhai P,et al.Sirtl regulates aging and resistance to oxidative stress in the heart. CircRes.2007,100(10):1512-1521
    [83].Cardio-Sis Study Group. Randomized study of traditional versus aggressive systolic blood pressure control (Cardio-Sis):rationale, design and characteristics of the study population. Hum Hypertens.2008,22(4):243-251
    [84].Harley CR,Gandhi S,Blasetto J, et al.Low-density lipoprotein cholesterol(LDL-C) levels and LDL-C goal attainment among elderly patients treated with rosuvastatin compared with other statins in routine clinical practice. Geriatr Pharmacother.2007,5(3):185-194
    [85].Csdszdr A. Hypertriglyceridemia, the coronary heart disease risk marker solved. Acta Physiol Hung.2005,92(2):109-120
    [86].Walker, A.K. et al. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev.2010,24,1403-1417
    [1]Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS.2006,3(11):442.
    [2]Yang X, So WY, Kong AP, et al. Development and validation of a total coronary heart disease risk score in type 2 diabetes mellitus[J].Am J Cardiol.2008,101(5):596-601
    [3]Rinkuniene E, Petrulioniene Z, Laucevicius A, et al.Prevalence of conventional risk factors in patients with coronary heart disease[J].Medicina (Kaunas).2009,45(2):140-146
    [4]S. Kathiresan, D. Srivastava, Genetics of human cardiovascular disease. Cell.148 (2012) 1242-1257.
    [5]K. Musunuru, S. Kathiresan, Genetics of coronary artery disease, Annu. Rev. Genomics. Hum. Genet 2010,11,91-108.
    [6]H. Schunkert, J. Erdmann, N.J. Samani, Genetics of myocardial infarction:a progress report, Eur. Heart J.2010,31,918-925.
    [7]Frye RA. Characterization of five human cDNAs with homology to the yeast Sir2 gene:Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransfer-ase activity.Biochem Biophys Res Commun.1999; 260 273-279
    [8]S. Voelter-Mahlknecht, U. Mahlknecht, Cloning, chromosomal characterization and mapping of the NAD-dependent histone deacetylases gene sirtuin 1, Int. J. Mol. Med.2006,17,59-67.
    [9]T. Finkel, C.X. Deng, R. Mostoslavsky, Recent progress in the biology and physiology of sirtuins, Nature.2009,460,587-591.
    [10]M.C. Haigis, D.A. Sinclair, Mammalian sirtuins:biological insights and disease relevance, Annu. Rev. Pathol.2010,5,253-295.
    [11]Y. Horio, T. Hayashi, A. Kuno, R. Kunimoto, Cellular and molecular effects of sirtuins in health and disease, Clin. Sci. (Lond.) 2011,121,191-203.
    [12]R.H. Houtkooper, E. Pirinen, J. Auwerx, Sirtuins as regulators of metabolism and health span, Nat. Rev. Mol. Cell Biol.2012 13,225-238.
    [13]G. Afshar, J.P. Murnane, Characterization of a human gene with sequence homology to Saccharomyces cerevisiae SIR2. Gene.1999,234,161-168.
    [14]S. Nemoto, M.M. Fergusson, T. Finkel, Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science.2004,306,2105-2108.
    [15]L.G. Noriega, J.N. Feige, C. Canto, et al, CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep.2011, 12,1069-1076.
    [16]Y. Shimoyama, Y. Mitsuda, Y. Tsuruta, K. Suzuki, N. Hamajima, T. Niwa, SIRTUIN 1 gene polymorphisms are associated with cholesterol metabolism and coronary artery calcification in Japanese hemodialysis patients, J. Ren. Nutr. 2012,22,114-119.
    [17]Imai S, Armstrong CM, Kaeberlein M, Guarente L.Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403:795-800.
    [18]Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A.2000;97:5807-11.
    [19]Smith JS, Brachmann CB, Celic I, Kenna MA, Muhammad S, Starai VJ, et al. A phylogenetically conserved NAD-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci U S A.2000;97:6658-63.
    [20]Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem.2004;73:417-35.
    [21]Rogina B, Helfand SL. Sir2 mediates longevity in the fl y through a pathway related to calorie restriction. Proc Natl Acad Sci U S A.2004; 101:15998-6003.
    [22]Dryden S C, Nahhas F A, Nowak J E, et al. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle [J ]. Mol Cell Biol.2003,23(9):3173-3185
    [23]Prozorovski T, Schulze-Topphoff U, Glumm R, Baumgart J, Schroter F, Ninnemann O, et al. Sirtl contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol.2008;10:385-94.
    [24]Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. Human SirTl interacts with histone H1 and promotes formation of facultative heterochromatin. Molecular cell.2004; 16:93-105.
    [25]Sinclair DA, Oberdoerffer P. The ageing epigenome:damaged beyond repair? Ageing Res Rev.2009;8:189-98.
    [26]Lomb DJ, Laurent G, Haigis MC. Sirtuins regulate key aspects of lipid metabolism. Biochim Biophys Acta.2010; 1804:1652-7.
    [27]Kim C, Park J, Kang E, Ahn C, Cha B, Lim S, et al. Comparison of body fat composition and serum adiponectin levels in diabetic obesity and non-diabetic obesity. Obesity (Silver Spring).2006; 14:1164-7
    [28]Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A.2004; 101:6659-63.
    [29]Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science. 2000;289:2126-8.
    [30]Chen D, Steele AD, Lindquist S, Guarente L. Increase in activity during calorie restriction requires Sirtl. Science.2005;310:1641.
    [31]Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C, et al. SirTl regulates energy metabolism and res-ponse to caloric restriction in mice. PloS One.2008;3:e1759.
    [32]Cohen DE, Supinski AM, Bonkowski MS, Donmez G, Guarente LP. Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes Dev.2009; 23:2812-7.
    [33]Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, et al. A role for the NAD-dependent deacetylase Sirtl in the regulation of autophagy. Proc Natl Acad Sci U S A.2008;105:3374-9
    [34]Salminen A, Kaarniranta K. Regulation of the aging process by autophagy. Trends Mol Med.2009; 15:217-24.
    [35]Goligorsky MS. SIRTing out the link between autophagy and ageing. Nephrol Dial Transplant.2010;25:2434-6
    [36]Hwang JW, Chung S, Sundar IK, Yao H, Arunachalam G, McBurney MW, et al. Cigarette smoke-induced autophagy is regulated by SIRT1-PARP-1-dependent mechanism:implication in pathogenesis of COPD. Arch Biochem Biophys. 2010;500:203-9.
    [37]Kaushik S, Singh R, Cuervo AM. Autophagic pathways and metabolic stress. Diabetes Obes Metab.2010;12 Suppl 2:4-14.
    [38]Rodriguez-Navarro JA, Cuervo AM. Autophagy and lipids:tightening the knot. Semin Immunopathol.2010;32:343-53.
    [39]Bordone L, Cohen D, Robinson A, Motta MC, van Veen E, Czopik A, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell.2007;6:759-67.
    [40]Banks AS, Kon N, Knight C, Matsumoto M, Gutierrez-Juarez R, Rossetti L, et al. SirT1 gain of function increases energy effi ciency and prevents diabetes in mice. Cell Metab.2008;8:333-41
    [41]Pfl uger PT, Herranz D, Velasco-Miguel S, Serrano M, Tschop MH. Sirtl protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci U S A.2008;105:9793-8.
    [42]Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444:337-42.
    [43]Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochon-drial function and protects against metabolic disease by acti-vating SIRT1 and PGC-lalpha. Cell.2006;127:1109-22.
    [44]Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature.2007;450:712-6.
    [45]Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, et al. Sirt1 promotes fat mobiliza-tion in white adipocytes by repressing PPAR-gamma. Nature.2004;429:771-6.
    [46]Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science.2005;310:314-7.
    [47]Guarente L. Sirtuins as potential targets for metabolic syndrome. Nature. 2006;444:868-74.
    [48]Hagopian K, Ramsey JJ, Weindruch R. Infl uence of age and caloric restriction on liver glycolytic enzyme activities and metabolite concentrations in mice. Exp Gerontol.2003;38:253-66.
    [49]Chen D, Bruno J, Easlon E, Lin SJ, Cheng HL, Alt FW, et al. Tissue-specifi c regulation of SIRT1 by calorie restric-tion. Genes Dev.2008;22:1753-7.
    [50]Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, et al. AMPK regulates energy expenditure by modulating NAD metabolism and SIRT1 activity. Nature.2009;458:1056-60.
    [51]Canto C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab.2010; 11:213-9.
    [52]Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, et al. Adiponectin and AdipoRl regulate PGC-1 alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature.2010;464:1313-9.
    [53]Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-lalpha and SIRT1. Nature.2005;434:113-8.
    [54]Escande C, Chini CC, Nin V, Dykhouse KM, Novak CM, Levine J, et al. Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steato-sis in mice. J Clin Invest.2010;120:545-8.
    [55]Herranz D, Munoz-Martin M, Canamero M, Mulero F, Martinez-Pastor B, Fernandez-Capetillo O, et al. Sirtl improves healthy ageing and protects from metabolic syn-drome-associated cancer. Nat Commun.2010;1:1-8.
    [56]Beher D, Wu J, Cumine S, Kim KW, Lu SC, Atangan L, et al. Resveratrol is not a direct activator of SIRT1 enzymeactivity. Chem Biol Drug Des.2009;74:619-24.
    [57]Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRTl. J Biol Chem.2010;285:8340-51.
    [58]Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365:1415-28.
    [59]Hedley AA, Ogden CL, Johnson CL, Carroll MD, Curtin LR, Flegal KM. Prevalence of overweight and obesity among US children, adolescents, and adults, 1999-2002. JAMA.2004;291:2847-50.
    [60]Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol.2005;6:298-305.
    [61]Steppan CM, Lazar MA. The current biology of resistin. J Intern Med. 2004;255:439-47.
    [62]Meier U, Gressner AM. Endocrine regulation of energy metabolism:review of pathobiochemical and clinical chemi-cal aspects of leptin, ghrelin, adiponectin, and resistin. Clin Chem.2004;50:1511-25.
    [63]Koo, S.H. et al. The CREB coacti vator TORC2 is a key regulator of fasting glucose metabolism. Nature.2005,43,1109-1111
    [64]Puigse rver, P.et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PG C-lalpha interaction. Nature.2003,423,550-555
    [65]Erion, D.M.et al. Preven tion of hepati c stea tosis and hepatic insulin resistance by knockdow n of cAMP response element-binding protei n. Cell Metab.2009,10, 499-506
    [66]Rodgers, J.T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1 alpha and SIRT1. Nature.2005,434,113-118
    [67]Nie, Y. et al. STAT3 inhibition of gluconeogenesis is downregulated by SirT1. Nat. Cell Biol.2009,11,492-500
    [68]Rodgers, J.T. and Puigse rver, P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuinl. Proc. Natl. Acad. Sci. U. S. A.2007,104, 12861-12866
    [69]Erion, D.M. et al. SirTl knock down in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats. Proc. Natl. Acad. Sci. U. S. A.2009,106,11288-11293
    [70]Liu, Y. et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature.2008,456,269-273
    [71]Chen, D. et al. Tissue-specific regulation of SIRT1 by calorie restriction.Gen es Dev.2008,22,1753-1757
    [72]Purush otham, A. et al. Hep atocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab.2009, 9,327-338
    [73]Hou, X. et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J. Biol. Chem.2008,283,20015-20026
    [74]Hashimoto, T.et al. Defect in peroxisome proliferator-activated receptor alpha-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. J. Biol. Chem.2000,275,28918-28928
    [75]Banks, A.S. et al. SirTl gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab.2008,8,333-341
    [76]Escande, C.et al. Deleted in breast cancer-1 regulat es SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice. J. Clin. Invest. 2010,120,545-558
    [77]Pfluger, P.T. et al. Sirtl protects agains t high-fat diet-induced metabolic damage. Proc. Natl. Acad. Sci. U. S. A.2008,105,9793-798
    [78]Savage, D.B. et al. Disorder ed lipid metabolism and thepathogenesis of insulin resistance. Physiol. Rev.2007,87,507-520
    [79]Erion, D.M. and Sh ulman, G.I. Diacylglycerol-mediated insulin resistance. Nat. Med.2010,16,400-402
    [80]Samuel, V.T. et al. Lipid-induced insulin resistance: unraveling the mechanism. Lancet.2010,375,2267-2277
    [81]Shulman, G.I. Cellular mechanisms of insulin resistance. J.Clin. Invest.2000,106, 171-176
    [82]Yamauchi, T. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med.2002,8, 1288-1295
    [83]Ponugoti, B.et al. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J. Biol. Chem. (in press), http://www.jbc.org/cgi/doi/10.1074/jbc.M110.122978
    [84]Walker, A.K. et al. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev.2010,24, 1403-1417
    [85]Li X, Zhang S, Blander G,et al. SIRT1 deacetylates and positively regulates the nuclear receptor LXR[J].Mol Cell.2007,28(1):91-106
    [86]Kim, J.Y. et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest.2007,117,2621-2637
    [87]Qiao, L. and Shao, J. SIRT1 regulates adiponectin gene expression through Foxol-C/enhan cer-binding protein alpha transcriptional compl ex. J. Biol. Chem. 2006,281,39915-39924
    [88]Isabelle Gorenne, Sheetal Kumar, Kelly Gray, Nichola Figg, Haixiang Yu, John Mercer and Martin Bennett.Vascular Smooth Muscle Cell Sirtuin 1 Protects Against DNA Damage and Inhibits. Circulation, published online December 7, 2012;
    [89]周爽,陈厚早,万言珍,等.长期能量限制增加去乙酰化酶SIRT1表达和降低小鼠血管的衰老[J].基础医学与临床,2010,30(11):1158-1162.
    [90]陈厚早,张祝琴,韦玉生,等.去乙酰化酶SIRT1的研究进展[J].中国医学科学院报,2007,29:441-447.
    [91]BORDONE L, COHEN D, ROBINSON A, et al. SIRT1 transgenic mice show phenotypes resemb ling calorie restr iction[J]. Aging Cell.2007,6:759-767.
    [92]CHEN D, STEELE A D, LINDQUIST S, et al. Increase in activity during calorie restriction requires Sirtl[J]. Science.2005,310:1641.
    [93]Homayoun Vaziri, Scott K Dessain, Elinor Ng Eaton, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell.2001,107(2):149-159
    [93]朱玉,杨菊红,王楠,等.自发性2型糖尿病大鼠腹主动脉SIRT1的表达及二甲双胍的干预研究.天津医科大学学报,2010,16:455-458.
    [95]Cardeflini M, MetIghiniM, MartelliE, et al. TIMP- 3 is reduced in atherosclemtie plaques from subjects with type 2 diabetes and increased by SirTl. Diabetes,2009,58:2396
    [96]Suganami T, Ogawa Y. Adipose tissue macrophages:their role in adipose tissue remodeling. J Leukoc Biol.2010;88:33-9.
    [97]Iyer A, Fairlie DP, Prins JB, Hammock BD, Brown L. Infl ammatory lipid mediators in adipocyte function and obesity. Nat Rev Endocrinol.2010;6:71-82.
    [98]Rajendrasozhan S, Yang SR, Kinnula VL, Rahman I. SIRT1 an antiinfl ammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary dis-ease. Am J Respir Crit Care Med.2008;177:861-70.
    [99]Yoshizaki T, Milne JC, Imamura T, Schenk S, Sonoda N, Babendure JL, et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol.2009;29:1363-74.
    [100]Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA.et al.Modulation of NF-[kappa]B-dependent transcription and cell survival by the SIRT1 deacetylase.EMBO J 2004; 23:2369-2380.
    [101]Schug TT, Xu Q, Gao H, Peres-da-Silva A, Draper DW, Fessler MB, et al. Myeloid deletion of SIRT1 induces inflam-matory signaling in response to environmental stress. Mol Cell Biol.2010;30:4712-21.
    [102]Barish GD, Downes M, Alaynick WA, Yu RT, Ocampo CB, Bookout AL, et al. A nuclear receptor atlas:macrophage activation. Mol Endocrinol. 2005; 19:2466-77.
    [103]Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23-35.
    [104]Shoelson S E, Lee J, Goldfene A B. Inflammation and insulin resistance[J]. Clin Invest.2006,116:1793-1801.
    [105]Arkan M C, Hevener A L, Greten F R, et al. IKK-beta links inflammation to obesity-induced insulin resistance[J]. Nat Med.2005,11:191-198.
    [106]Shoelson S E, Lee J, Yuan. Inflammation and the IKK beta/ikappa B/NF-kappa B axis in obesity-and diet-induced insulin resistance [J]. Int J Obes Relat Metab Disord.2003,27(3):49-52.
    [107]Yoshizaki T, Milne J C, Imamura T, et al. Sirtl exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes[J]. Mol Cell Biol.2009,29: 1363-1374.
    [108]Brunet A, Sweeney L B, Sturgill J F, et al. Stress dependent regulation of foxo transcription factors by the sirtl deacetylase[J]. Science.2004,303:2011-2015.
    [109]Yorimitsu T, Klionsky DJ. Autophagy:molecular machinery for self-eating. Cell Death Differ.2005; 12:1542-1552.
    [110]B. Ravikumar, S. Sarkar, J.E. Davies, et al. Regulation of mammalian autophagy in physiology and pathophysiology, Physiol. Rev.90 (2010) 1383-1435.
    [111]Tasdemir E, Maiuri MC, Galluzzi L, et al. Regulation of autophagy by cytoplasmic p53.Nat Cell Biol.2008; 10 (6):676-87
    [112]Jeong HK, Moo RK, etal. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity[J]. Cell,2007,28(10):227-290.
    [113]R. Singh, S. Kaushik, Y. Wang, et al., Autophagy regulates lipid metabolism,326 Nature.2009,458,1131-1135.
    [114]M. Shibata, K. Yoshimura, H. Tamura, et al., LC3, a microtubule-associated proteinlA/B light chain3, is involved in cytoplasmic lipid droplet formation, Biochem. Biophys. Res. Commun.2010,393,274-279.
    [115]H. Kanamori, G. Takemura, K. Goto, et al., Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion, Am. J. Physiol. Heart Circ. Physiol.2011,300, H2261-2271.
    [116]陈丽函,王伟,傅玉才,等.白藜芦醇对缺血再灌注心肌细胞凋亡及沉寂信息调节因子2表达的影响.中国临床康复,2006,10:69-71
    [117]Yeung F, Hoberg JE, Ramsey CS, et al. Mammalian SIRT1 limits replicative life span in response to crolnic genotoxic stress[J]. CellMetab.2005,2(1):67-73
    [118]R.R. Alcendor, S. Gao, P. Zhai, et al., Sirtl regulates aging and resistance to oxidative stress in the heart, Circ. Res.2007,100,1512-1521.
    [119]T. Kawashima, Y. Inuzuka, J. Okuda, et al., Constitutive SIRT1 overexpression impairs mitochondria and reduces cardiac function in mice, J. Mol. Cell.Cardiol. 2011,51,1026-1036.
    [120]R.R. Alcendor, L.A. Kirshenbaum, S. Imai, S.F. Vatner, J. Sadoshima, Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes, Circ. Res. 2004,95,971-980.
    [121JC.J. Chen, W. Yu, Y.C. Fu, X. Wang, J.L. Li, W. Wang, Resveratrol protects cardiomyocytes from hypoxia-induced apoptosis through the SIRTl-FoxO1 pathway, Biochem. Biophys. Res. Commun.2009,378,389-393.
    [122]N.R. Sundaresan, V.B. Pillai, M.P. Gupta, Emerging roles of SIRT1 deacetylase in regulating cardiomyocyte survival and hypertrophy, J. Mol. Cell. Cardiol.2011, 51,614-618.
    [123]M. Tanno, A. Kuno, T. Yano, et al., Induction of manganese superoxide dismutase by nuclear translocation and activation of SIRT1 promotes cell survival in chronic heart failure, J. Biol. Chem.2010,285,8375-8382
    [124]Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005;308:1043-5.
    [125]Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab.2007;6:414-21.
    [126]Wijnen H. Circadian rhythms. A circadian loop as SIRTs itself. Science. 2009;324:598-9.
    [127]Doi M, Hirayama J, Sassone-Corsi P. Circadian regulator CLOCK is a histonc acetyltransferase. Cell.2006; 125:497-508.
    [128]Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science. 2009;324:654-7.
    [129]Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science.2009;324:651-4.
    [130]Kim JE, Chen J, Lou Z. DBC1 is a negative regulator of SIRT1. Nature. 2008; 451:583-6.
    [131]Yang Y, Fu W, Chen J, Olashaw N, Zhang X, Nicosia SV, et al. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol.2007;9:1253-62.
    [132]Sasaki T, Maier B, Koclega KD, Chruszcz M, Gluba W, Stukenberg PT, et al. Phosphorylation regulates SIRT1 function. PloS One.2008;3:e4020.
    [133]Kang H, Jung JW, Kim MK, Chung JH. CK2 is the regulator of SIRT1 substrate-binding affi nity, deacetylase activity and cellular response to DNA-damage. PloS One.2009;4:e6611.
    [134]Sniderman AD, Furberg CD. Age as a modifiable risk factor for cardiovascular disease [J].Lancet.2008,371 (9623):1547-1549.
    [135]Rosamond W, Flegal K, Furie K, et al. Heart disease and stroke statistics- 2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee [J].Circulation.2008,117 (4):e25-el46.
    [136]Cacciapuoti F, Marfella R, Paolisso G. Is the aging heart similar to the diabetic heart Evaluation of LV function of the aging heart with tissue Doppler imaging [J ]. Aging Clin Exp Res.2009,21(1):22-26.
    [137]Minamino T, Komuro I. Vascular cell senescence:contribution to atherosclerosis [J].Circ Res,2007,100:15-26.
    [138]Alexander RW. Hypertention and the pathogenesis of atheroscleros is Oxidative stress the mediation of arterial inflammatory response:a new perspective[J]. Hypertension.1999,25(5):155-161.
    [139]Chen J, Cohen ML, Lerner AJ, et al. DNA damage and cell cycle events implicate cerebellar dentate nucleus neurons as targets of Alzheimer's dis-ease. Mol Neurodegener.2010,5:60.
    [140]Pinlaor S, Hiraku Y, Yongvanit P, et al. iNOS-dependent DNA damage via NF-kappaB expression in hamsters infected with Opisthorchis viverrini and its suppression by the antihelminthic drug praziquantel. Int J Cancer.2006,119: 1067-1072.
    [141]Wnek SM, Kuhlman CL, Camarillo JM, et al. Interdependent genotoxic mechanisms of monomethylarsonous acid:Role of ROS-induced DNA damage and poly(ADP-ribose) polymerase-1 inhibition in the malignant transformation of urothelial cells. Toxicol Appl Pharmacol.2011.
    [142]Salminen A, Huuskonen J, Ojala J, et al. Activation of innate immunity system during aging: NF- kB signaling is the molecular culprit of inflamm- aging [J] Ageing Res Rev.2008,7:83-105.
    [143]Alcendor RR, Gao S, Zhai P, et al. Sirtl regulates aging and resistance to oxidative stress in the heart [J]. CircRes.2007,100(10):1512-1521
    [144]Chae HD,Broxmeyer HE. SIRT1 deficiency downregulates PTEN/JNK/FOXO1 pathway to block reactive oxygen species-induced apoptosis in mouse embryonic stem cells. Stem Cells Dev.2011,20:1277-1285.
    [145]Yang Y, Hou H, Hailer EM, et al.Suppression of FOXOI activity by FHL2 through SIRTI-mediated deacetylation. EMBO J.2005,24:1021-1032.
    [146]CsiszarA, LabinskyyN, JimenezR,et al. Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging:role of circulating factors and SIRT1. Mech Ageing Dev.2009,130:518-527.