N,N-二取代甘氨酸四乙酰基葡萄糖酯与半乳糖酯的合成、表征及其生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖类是自然界极为重要的一类天然化合物,糖生物学的研究表明,糖几乎参与所有真核生物的每一个过程,它们的功能是复杂而多样的。糖生物学的发展不断的揭示出糖在生命过程的重要作用。糖类化合物被认为在抗癌、抗炎、抗病毒、糖尿病治疗、免疫调节、免疫疫苗、器官移植等领域都有良好的应用前景。这些前沿的发现极大的激发了学术界和制药业的兴趣。
     糖酯类化合物在医药、食品、日用化妆品、化工及其他行业均有广泛的应用。其中,某些糖酯类化合物具有抗肿瘤、杀菌、抗高血压等生物活性,可作为血管紧张素转换酶(ACE)抑制剂、肿瘤转移抑制剂等。一些活性较高的化合物由于本身存在的毒性和对环境的负面影响以及生物组织难以吸收的特点使其使用受到了限制,而对这种活性功能化合物进行糖基化,将糖分子引入到活性小分子结构中,通过活性测试已证明糖基化后的化合物作为前体药物具有较好的药效。因此,有关糖酯类化合物的合成及其性质的研究已成为人们关注的课题。
     肽在生物体内有重要的作用,其在体内参与多种代谢及调节活动。由于许多肽基蛋白质在生命过程中的突出重要性,有关的科技领域如药物化学、分子免疫学、动物学、农业及食品工业的发展均需要大量各种结构的肽类似物,以便进行结构和活性关系的研究。在世界范围内迄今共有17个ACE抑制剂上市,其中属于N-羧烷基二肽结构类型的有13种。
     本论文采用相转移催化法立体专一性合成了出了13个新型的含有肽键结构的糖酯类化合物,其中包括7种新的N-(N-乙酰基-N-芳氨基乙酰基)-N-芳氨基乙酸β-葡萄糖酯和6种新的N-(N-乙酰基-N-芳氨基乙酰基)-N-芳氨基乙酸β-半乳糖酯。为合成目标分子还合成了21个中间体化合物,并通过IR、~1H NMR、MS及元素分析对中间体及目标分子进行了结构表征,利用谱学技术确证了目标分子的结构均为β-型异构体,并给出了相应的反应机理。对所合成的新型糖酯类化合物进行了抗肿瘤及抗高血压体外生物活性试验,初步生物活性实验结果表明,目标化合物对蛋白酪氨酸磷酸酶α(PTPα)有较弱的抑制活性,部分化合物化合物对α1A肾上腺素受体有极弱的激动活性。这一研究结果为进一步研究此类化合物的合成、生物活性的研究奠定了基础。
Carbohydrates are a kind of very important natural products. Glycobiology studies have shown that sugar participates in every process in all eukaryote, and their roles are complex and diverse. The development of the glycobiology has been revealed its important function in the process of the life. Carbohydrates are considered to have good application prospects in the anti-cancer, anti-inflammatory, anti-virus, diabetes treatment, immune regulation, immune vaccines, organ transplantation and other fields. These discoveries have been stimulated the interest of the academia and the pharmaceutical industry.
     Sugar esters have wide applications in the pharmaceutical, food, daily cosmetics, chemical industry and other field. Among them, some sugar esters have many biological activities such as anti-tumor, sterilization, anti-high blood pressure, and can be used as angiotensin-converting enzyme (ACE) inhibitors, tumor metastasis inhibitors, and so on. Because a great amount of active compounds exist toxicity, negative impact on the environment and the characteristics of difficult absorption to biological tissue, it makes its use to have been limited. But if sugar structure is introduced into this molecular, this glycosylation molecular has good efficacy as precursor drug, which has been proved by the activity test. Therefore, the studies of the synthesis and properties on sugar esters have been a concerned topic. Peptide plays an important role in the biological body. It participates in a variety of metabolisms and regulations in the body. Since many peptide-based proteins have the outstanding importance in the process of the life, relative science and technology fields such as medicinal chemistry, molecular immunology, zoology, agriculture and food industry, require a large number of various structures of peptide analogues in order to study the relationship of the structure and activity. So far, seventeen ACE inhibitors have been commercialized, among them there are thirteen N-carboxyalkyl dipeptides
     In this paper, thirteen novel sugar esters containing the peptide bond have been synthesized by the phase transfer catalysis, including seven new per-acetylatedβ-glucosyl N-(N-acetyl-N-arylglycyl)-N-aryglycines esters and six new per-acetylatedβ-galactosyl N-(N-acetyl-N-arylglycyl)-N-aryglycines esters. In order to synthesize the target compounds, twenty-one relative intermediate compounds were also synthesized. Their structures were characterized by IR, ~1H NMR, MS and elemental analysis. The configuration of the target molecules which areβ-type isomer have been confirmed by the spectroscopic techniques. The mechanism of the esterification reaction is given according to the result.
     The results of the anti-tumor and anti-hypertensive tests in vitro show that the synthesized new sugar esters have weak inhibitory activity to the protein tyrosine phosphataseα(PTPα), partial sugar esters have weak exciting activity to theα1A adrenergic receptor. These results will be the foundation of the further study of the synthesis and biological activity for sugar ester compounds.
引文
[1] 郭振楚.糖类化学[M].北京:化学工业出版社,2005,第一版,1
    [2] Varky, A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology, 1993, 3, 97-130
    [3] Gagneux, P.; Varky, A. Evolutionary considerations in oligosaccharide diversity to biological function Glycobiology, 1999, 9 (8), 747-955
    [4] Alexander, C.; Weymouth, W. The role of carbohydrates in biologically active natural products. Nat.Prod.Rep., 1997,14 (2), 99-110
    [5] Dwek, R. A. Glycobiology: Toward Understanding the Function of Sugars. Chem. Rev., 1996, 96(2), 683-720
    [6] Rademacher, T. W.; Dwek, R. A. Glycobiology. Ann. Rev. Biochem., 1988, 57, 785-838
    [7] Seeberger, P. H.; Werz, D. B. Synthesis and medical applications of oligosaccharides. Nature, 2007,446, 1046-1051
    [8] Thibodeaux, C.; Melancon C.; Liu, H. Unusual sugar biosynthesis and natural product glycodiversification. Nature, 2007, 446,1008-1016
    [9] Scanlan, C.; Offer, J.; Zitzmann, N.; Dwek, R. Exploiting the defensive of HIV-1 for drug and vaccine desing. Nature, 2007, 446, 1038-1045
    [10] Austein, B. M.; Westwood, O. M. R. Protein Targeting and Secretion Oxford, IRL Press, 1991, 85
    [11] Witczak, Z. J.; Nieforth, K. A. M. Carbohydrate in Drug Design Dekker Press, 1997
    [12] Schl(?)ter, A. D.; Rabe, J. P. Dendronized Polymers: Synthesis, Characterization, Assembly at Interfaces, and Manipulation. Angew. Chem. Int. Ed.., 2000, 39 (5), 864-883
    [13] Schnaar, R. L. Complex carbohydrates in drug development. Adv. Pharmacol.(San Diego), 1992, 23, 35-84
    [14] 金城.糖生物学:基因组学和蛋白质组学的延伸,世界科技研究与发展,2001,23(2),31
    [15] Zhang, Z. Y.; Ollmann, I. R.; Wischnat, R.; Wong C. H. Programmable One-Pot Oligosaccharide Synthesis,J. Am. Chem. Soc., 1999,121, 734-753
    [16] Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Automated Solid-Phase Synthesis of Oligosaccharides, Science, 2001,291, 1523-1527
    [17] Axford, J. Glycobiology and medicine: an introduction. Journal of the Royal Society of Medicine, 1997, 90(5): 260-264
    [18] 郭宗儒.药物化学总论[M].北京:中国医药科技出版社,1994,87-88
    [19] Osman, N.; McKenzie, I. F.; Ostenried, K.. Combined transgenic expression of α-galactosidase and α 1,2-fucosyltransferase leads to optimal reduction in the major xenoepitope Galalpha (1,2) Gal. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94 (26): 14677-14682
    [20] 卢睿春,侯振建,刘婉乔.亨氏马尾藻硫酸多糖抗肿瘤活性的研究,海洋科学,1998,(3),63-64
    [21] 周绪斌,宣华,李荣秀.组特异性亲和配基在分离纯化中的应用,中国生化药物杂志,2000,21(6),308-310
    [22] 邱蔚然,高淑红,庄庆祺.核糖在保护心脏功能中的作用,中国生化药物杂志,2000,21(6),319-321
    [23] 付新梅,江涛,王奎旗.糖类对先导化合物的化学修饰及其在药学中的应用,中国海洋 药物,2001,(3,4),54-62
    [24] 张存政,何丹军,骆爱兰.井岗霉素在水稻叶片中的残留分析,南京农业大学学报,2005,28,107-110
    [25] Koontz, J. L.; Marcy, J. E. Formation of natamycin: Cyclodextrin inclusion complexes and their characterization. J. Agric. Food Chem., 2003,57, 7106-7110
    [26] Pham, T. Q.; Pyne, S. G.; Skelton, B. W. Synthesis of carbocyclic hydantocidins via regioselective and diastereoselective phosphine-catalyzed [3+2]-cycloadditions to 5-methylenehydantoins. J. Org. Chem., 2005, 70, 6369-6377
    [27] 连召斌,黄艳,曹玲华.相转移催化法合成七-O-乙酰基-β-麦芽糖基芳香酸酯,应用化学,2003,20(3),287-289
    [28] Junko, S.; Naoya, I.; Takada, S.; Shoji, T. NMR studies of(1→3)-β-D-glucooligosaccharide derivatives. Carbohydr. Res., 1994,261,133-148
    [29] Mikael, E.; Johan, B.; Ekberg, T.; Kihlberg, J. Synthesis of a water-soluble serine-based neoglycolipid which can be covalently linked to solid phases. Carbohydr. Res., 1994, 258, 123-133
    [30] Barbara, D.; Hisao, O.; Cai, S.; Otsuji, E.; Tashiro, K.; Hakomori, S.; Toyokuni, T. Synthesis of multivalent β-lactosyl clusters as potential tumor metastasis inhibitors. Carbohydr. Res., 1993, 245, 175-192
    [31] Nishikana Y.; Okabe M.; et al. Chemical and biochemical seudies on carbohydrate esters. Ⅱ .Antitumor activity of saturated fatty acids and their ester derivatives against Ehrlich ascites carcinoma. Chem. Pharm., Bull. 1976,24, 387
    [32] Hussain, Anwar A.; Truelove, James E. Sympathomimetic compositione containing an ester of 3-[1-hydroxy-2-(methylamino)ethyl]phenyl pivatate hydrochloride. U.S. 3908017 (C.A. 84:43601y)
    [33] Loganathen D.; Trivedi G.K.; Phase-transfer-catalyzed D-glucosylation: Synthesis of benzoylated aryl β-D-glucopyranosides and β-D-glucopyranosyl-substituted cinnamates. Carbohydr. Res., 1987,162, 117
    [34] Somashekar, B. R.; Divakar, S. Lipase catalyzed synthesis of L-alanyl esters of carbohydrates. Enzyme Microb. Technol. 2007, 40, 299.
    [35] Lohith, K.; Divakar, S. Lipase-catalyzed synthesis of 1-phenylalanyl-D-glucose. J. Biotechnol. 2005,117,49.
    [36] Lohith, K.; Vijayakumar, G. R.; Somashekar, B. R.; Divakar, S. Glycosides and Amino Acyl Esters of Carbohydrates as Potent Inhibitors of Angiotensin Converting Enzyme. Eur. J. Med. Chem., 2006, 41, 1059-1072
    [37] 张颖新.芳氨基乙酸衍生物的合成、表征及其生物活性研究,2004,p.47
    [38] 李祥安,孙昌俊,张延良,陈再成,王汝聪.N-乙酰基硫杂普氨酸糖酯衍生物的合成,有机化学,1988,8,224-226
    [39] Valeniekovic,S.; Keglevic, D.; Syntheses and rearrangements of D-glucosyl esters of aspartic acid linked through the 1-or 4-carboxyl group~(*1). Carbohydr. Res., 1976, 47, 35-48
    [40] 刘惠英,付沙莉, 杨振海.葡苷化合物作为植物生长调节剂的探索,武汉大学学报,1992,(2),73-77.
    [41] 刘惠英,杨振海,陈勇.萘环羧酸化合物四乙酰葡萄糖酯的合成及生物活性研究,武汉大学学报,1997,(4),417
    [42] 刘明国,付莎莉,刘惠英.邻羧基苯甲酰二茂铁四乙酰葡萄糖酯的合成及其抗贫血活性, 应用化学,1998,15(1),107-109
    [43] 刘明国,普开发.PTC法合成5-芳基-2-呋喃甲酸四乙酰葡萄糖酯,有机化学,2000,20(2),198-201
    [44] 陈洪,戴志群,曲凡歧等.M,N-二(邻硝基苯氨基乙基)甘氨酸糖酯的合成,高等学校化学学报,1999,20(11),1725-1728
    [45] 陈洪,黄思庆,李新发.取代苯并咪唑苯氧乙酸糖酯的合成,武汉大学学报,2001,47(6),693-696
    [46] 赵瑾,宋金勇,王超杰.4-N-茄呢基氨基苯甲酸糖酯的合成,有机化学,2003,23(7),714-716
    [47] 王超杰,宋金勇,赵瑾.二元酸茄呢醇乳糖和麦芽糖酯和成绩生理活性测试研究,有机化学,2003,23(10),1102-1106
    [48] Watanabe K A.; Reichman U.; Horota K. Nucleosides. 110. Synthesis and antiherpes virus activity of some 2'-fluoro-2'-deoxyarabinofuranosylpyrimidine nucleosides, J. Med. Chem., 1979, 22,21-24
    [49] 赵国志,毕直隶.中碳链脂肪酸单甘酯制取及其在医药品中应用,粮食与油脂,2001,12,3-5
    [50] Thormar, H.; Hilmarsson, H. The role of microbicidal lipids in host defense against pathogens and their potential as therapeutic agents. Chem. Phys. Lipids, 2007, 750 (1), 1-11
    [51] Cerdan, L. E.; Medina, R. A.; Gimenez, A. G. Synthesis of polyun-saturated fatty acid-enriched trigly-cerides by lipase-catalyzed exterification. J. Am. Oil Chem. Soc., 1998, 75, 1329-1337
    [52] Shimada, Y.; Hitrota, Y.; Baha, T. Enzymatic synthesis of steryleter of polyunsature fatty acid. J. Am. Oil Chem. Soc., 1999, 76, 713-717
    [52] Lee, K. T.; Akoh, C. C. Immobilised lipase-catalyzed production of structured lipids with eicosapentaenoic at specific positions. J. Am. Oil Chem. Soc., 1996, 73, 611-615
    [54] 金英姿,庞彩霞.蔗糖脂肪酸酯的合成及应用,中国甜菜糖业,2005,3,28-31
    [55] Jing, Q.; Xu, J. M.; Liu, B. K. Synthesis and characterization of drug-saccharide conjugates by enzymatic strategy in organic media. Enzyme Microb. Technol., 2007, 41, 756-763
    [56] 邹坤,崔景荣,冉福乡,合欢皮中两个新八糖苷的分离鉴定和活性研究,有机化学,2005,25,654-659
    [57] Zou, K.; Zhao, Y. Y.; Tu, G. Z. A new triterpenoid saponin from Albizzia julibrissin, J. Chin. Pharma. Sci., 2000, 9, 125-127
    [58] 郑晓珂,刘云宝,李军,石胆草中的一个新苯乙醇苷,药学学报,2004,39,716-718
    [59] 廖循,李伯刚,丁立生,卵叶银莲花全草中的新三萜皂苷,药学学报,2000,35,821-825
    [60] 田晶,肖志艳,陈雅研,夏枯草皂苷A的结构鉴定,药学学报,2000,35,29-31
    [61] Hideyuki, S.; Hirokazu, K.; Yasuji, S. A new carotenoid glycosyl ester isolated from a marine microorganism, Fusarium strain T-1. J. Nat. Prod., 2002, 65,1683-1684
    [62] Masazumi, M.; Susumu, I.; Hirotoshi, S. 3α-Hydroxy-oleanene type triterpene glycosyl esters from leaves of Acanthopanax spinosus. Phytochemistry, 1997, 46, 1255-1259
    [63] Wang, B. G.; Jia, Z. J. Triterpenes and triterpene glycosyl ester from rubus pungens camb. Varoldhamii, Phytochemistry, 1998, 49,185-188
    [64] Katsuya, S.; Masazumi, M.; Sawako, M. Lupane triterpenoid glycosyl esters from leaves of Acanthopanax divaricatus, Phytochemistry, 1997, 45, 579-584
    [65] 王素雅,赵利,任顺成.糖酯在食品中的应用及其酶法合成,食品工业科技,2002,3,75-76
    [66] 李祖义,刘俊杰.酶促合成全氟辛酸半乳糖酯,有机化学,1998,18(5),432-435
    [67] Garti, N.; Aserin, A.; Fanun, M. Non-ionic sucrose esters microemulsions for food applications Part Ⅰ. Water solubilization. Physicochemical and Engineering Aspects, 2000,164, 27-38
    [68] Veronique, M. S.; Michele, G.; Philippe, M. Shear-induced phase transitions in Sucrose ester surfactant. J. Colloid Interface Sci., 2004,270, 270-275
    [69] Muller, A. S.; Gagnaire, J.; Queneau, Y.; et al. Winsor behaviour of sucrose fatty acid esters: choice of the cosurfactant and effect of the surfactant composition. Physicochemical and Engineering Aspects, 2002,203, 55-66
    [70] Ohm, J. B.; Chung, O. K. Relationships of free lipids with quality factors in hard winter wheat flours. Cereal Chem., 2002, 79 (2), 274-278
    [71] Addo, K.; Slepak, M.; Akoh, C. C. Effects of Sucrose Fatty Acid Ester and Blends on Alveograph Characteristics of Wheat Flour Doughs. Journal of Cereal Science, 1995,22 (2),123-127
    [72] 刘书来,毕艳兰,杨天奎.单甘酯合成及其应用.粮食与油脂,2001,11,30-31
    [73] Akihiro, W. On the Sub-a-Form and the a-Form in Monoacylglycerols. J. Am. Oil Chem. Soc., 1997, 74(12), 1569-1573.
    [74] Bruno, N.; Ropers, M. H.; Douliez, J. P. Use of fatty acid/monoglyceride vesicle dispersions for stabilizing O/W emulsions. Colloids Surf., A: Physicochemical and Engineering Aspects, 2005, 269, 80-86
    [75] Holland, R.; Liu, S. Q.; Crow, V. L.; et al. Esterases of lactic acid bacteria and cheese flavour: Milk fat hydrolysis, alcoholysis and esterification. International Dairy Journal, 2005, 75,711-718
    [76] 王素雅,赵利,任顺成.糖酯在食品中的应用及其酶法合成.食品工业科技,2002,23(3),75-76
    [77] Kumari, S. Devulapalle,a Aranzazu Gomez de Segura,b Manuel Ferrer. Effect of carbohydrate fatty acid esters on Streptococcus sobrinus and glucosyltransferase activity. Carbohydr. Res., 2004, 339,1029-1034
    [78] 孙玉泉.蔗糖酯在精细化学品工业中的应用,天津化工,2000,3,27-28
    [79] Maugard, T.; Legoy, M. D. Enzymatic synthesis of derivatives of vitamin A in organic media. Journal of Molecular Catalysis B: Enzymatic, 2000, 8, 275-280
    [80] 刘毅,杨群志,张晓乐,张保元,李世荫.全反式维甲酸四乙酰葡萄糖酯的合成及急性皮肤刺激性研究,中国医药工业杂志,1999,30(12),543-545
    [81] Shimada, Y.; Watanabe, Y.; Sugihara, A .; et al. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil ess. J. Mol. Catal. B: Enzym., 2002,17,133-142
    [82] 李尊江,邢德娜.蔗糖脂肪酸酯德生产应用及发展建议,化工科技市场,2003,12,8-11
    [83] 余城方,刘倩,蔡孟深.Koenigs-Knorr反应合成桂皮酸基糖基酯,科学通报,1989,20,1550-1553
    [84] Loganathan, D.;.Trivedi, G. K. Phase-transfer-catalyzed D-glucosylation: Synthesis of benzoylated aryl β -D-glucopyranosides and β -D-Glucopyranosyl-substituted cinnamates. Carbohydr. Res., 1987,162, 117-125
    [85] 王德心.固相同步多重肽合成,有机化学,1994,14,12-18
    [86] 大连晚报.A_4版,2003,05,28
    [87] 李世成,杨则宜.活性肽及其在运动中的运用,中国运动医学杂志,2003,22(2),174-176
    [88] 黄哲,王礼琛.血管肽酶抑制剂的研究与开发,药学进展,2004,28(5),214-217
    [89] 张庆文,周明华,时惠麟.N-羧烷基二肽型血管紧张素转化酶抑制剂的合成策略,中国医药工业杂志,2000,31(6),284-288
    [90] Roberto, C.; John, C. B.; Jean, L. R.; et al. Vasopeptidase inhibitors: a new therapeutic concept in cardiovascular disease. Circulation, 2001,104 (10), 1856-1862
    [91] John, M.; Marc, A. New therapeutic options in congestive heart failure: Part Ⅰ. Circulation, 2002,105 (4), 2099-2106
    [92] Weber, M. Vasopeptidase inhibitor. Lancet, 2001, 358,1525-1532
    [93] Ma, D.; Ju, G. The distribution of n-acetyl-aspartyl-glutamate (NAAG) -like immunoreactivenerve fibers in the posterior pituitary of the dog. Chinese Journal of Histochemistry and Cytochemistry, 1993, 2 (1), 33-38
    [94] Cai, Z. W.; Lin, S. Y.; Rhodes, P. G. Neuroprotective effects of N-acetylaspartylglutamate in a neonatal rat model of hypoxia-ischemia. Eur. J. Pharmacol, 2002, 437 (3), 139-145
    [95] Xu, S.; Yang, J.; Shen, J. Measuring N-acetyl-aspartate synthesis in vivo using proton magnetic resonance spectroscopy. Journal of Neuroscience Methods, 2008, 772 (1), 8-12
    [96] Van, H. A.; Hachimi, I. S.; et al. Neuroprotective effect of N-acetyl-aspartyl-glutamate in combination with mild hypothermia in the endothelin-1 rat model of focal cerebral ischemia. J. Neurosci., 2005, 95 (5), 1287-1297
    [97] Leonardi, A.; Bremond, G. D.; Bortolotti, M.; et al. Clinical and biological efficacy of preservative-free NAAGA eye-drops versus levocabastine eye-drops in vernal keratoconjunctivitis patients. The British Journal of Ophthalmology. 2007,91 (12),1662-1666
    [98] Minelli, A.; Bellezza, I.; Grottelli, S.; et al. Phosphoproteomic analysis of the effect of cyclo-[His-Pro] dipeptide on PC12 cells. Peptides., 2006,27 (1), 105-113
    [99] Estroff, L. A.; Hamilton, A. D. Water Gelation by Small Organic Molecules. Chem. Rev., 2004,104, 1201-1218.
    [100] Binder, W. H.; Smrzka, O. W. Self-Assembly of Fibers and Fibrils. Angew. Chem. Int. Ed. 2006, 45, 7324-7328
    [101] Yang, Z. M.; Xu, B. Supramolecular hydrogels based on biofunctional nanofibers of self-assembled small molecules. J. Mater. Chem., 2007,17, 2385-2393
    [102] Zhang, S. G. Fabrication of novel materials through molecular self-assembly. Nat. Biotechnol., 2003,27,1171-1178
    [103] Zhang, Y.; Gu, H.; Yang, Z.; Xu, B. Supramolecular Hydrogels Respond to Ligand-Receptor Interaction. J. Am. Chem. Soc., 2003, 725, 13680-13681
    [104] 周世宁,林永成,吴雄宇等.海洋真菌与细菌发酵物的环二肽.微生学通报,2002,29(3),59-62
    [105] 钟飞,蒋晓慧,田敏卿等.生物活性环二肽研究进展.海南师范学院学报:自然科学版,2006,19(4),352-358
    [106] Wang, D. X.; Liang, M. T.; Tian, G. J.; et al. A facile pathway to synthesize diketopiperazine derivatives. Tetrahedron Lett. 2002, 43 (5), 865-867
    [107] Prasad, C. Bioactive cyclic dipeptides. Peptides, 1995, 7(5(1), 151-164
    [108] Lin, L.; Okada. S.; York, D. A.; et al. Structural requirements for the biological activity of enterostatin. Peptides, 1995, 75 (5), 849-854
    [109] Crespo, L.; Sanclimens, G.; Pons, M.; Giralt, E.; Royo, M.; Albericio, F. Peptide and Amide Bond-Containing Dendrimers. Chem. Rev. 2005,105,1663-1682
    [110] Stiriba, S. E.; Frey. H.; Haag, R. Dendritic Polymers in Biomedical Applications: From Potential to Clinical Use in Diagnostics and Therapy. Angew. Chem. Int. Ed. 2002, 41,1329-1334
    [111] Mclntyre, J. O.; Fingleton, B.; Wells, K. S.; Piston, D. W.; Lynch, C. C.; Gautam, S.; Matrisian, L. M. Development of a novel fluorogenic proteolytic beacon for in vivo detection and imaging of tumour-associated matrix metalloproteinase-7 activity. Biochem. J., 2004, 377, 617-628
    [112] Esposito, A.; Delort, E.; Lagnoux, D.; Djojo, F.; Reymond, J. L. Catalytic Peptide Dendrimers. Angew. Chem. Int. Ed., 2003, 42 (12), 1381-1383
    [113] Lagnoux, D.; Delort, E.; Douat, C. C.; Esposito, A.; Reymond, J. L. Synthesis and Esterolytic Activity of Catalytic Peptide Dendrimers. Chem. Eur. J., 2004,10 (5),1215-1226
    [114] Clouet, A.; Darbre, T.; Reymond, J. L. A Combinatorial Approach to Catalytic Peptide Dendrimers. Angew. Chem. Int. Ed.,. 2004, 43 (35), 4612-4615
    [115] Douat, C. C.; Darbre, T.; Reymond, J. L. Selective Catalysis with Peptide Dendrimers. J. Am. Chem. Soc., 2004,126,7817-7826
    [116] Kensinger, R. D.; Catalone, B. J.; Krebs, F. C.; Wigdahl, B.; Schengrund, C. L. Novel Polysulfated Galactose-Derivatized Dendrimers as Binding Antagonists of Human Immunodeficiency Virus Type 1 Infection. Antimicrob Agents Chemother. 2004, 48, 1614-1623
    [117] Mazur, R. H.; James, P. A.; Tyner, D. A.; Hallinan, A. H.; Sanner, J. H.; Schulze, R. Bradykinin analogues containing N.alpha.methyl amino acids. J. Med. Chem. 1980, 23,758-763
    [118] 段玉兰.小肽的吸收及其应用前景,饲料博览,2002,3,43-45
    [119] 肖斌,朱永红.RGD肽在肿瘤治疗中的研究进展,中国肿瘤临床,2005,32(19),1135-1137
    [120] Sekine, I.; Yokose, J.; Ogura, T.; et al. Microsatellite instability in lung cancer patients 40 years of age or younger. Jpn. J. Cancer Res., 1997, 88 (6), 559-563
    [121] Zhao, M.; Wang, C.; Jiang, X.; et al. Synthesis of RGD containing peptides and their bioactivities. Prep. Biochem. Biotech., 2002,32 (4), 363-380
    [122] Sieber, P.; Kamber, B.; Hartmann, A.; Johl, A.; Riniker, B; Rittel, W. Total synthesisof human insulin under directed formation of the disulfide bonds. Helv. Chim. Acta., 1974, 57 (8), 2617-2621
    [123] 林藩平.生物活性肽在食品及饲料业中的开发利用,福建畜牧兽医,2000,22(2),38-42
    [124] 葛轶群.生物活性肽的研究进展,中国生化药物杂志,1998,19(6),404-406
    [125] 石岗.生物活性肽研究进展,北京农业科学,2002,(3),9-13
    [126] Chan, K. M.; Decker, E. A.; Means, W. J. Extraction andactivity of carnosine , a naturally occuring antioxidant in beef muscle. J. Food. Sci., 1993, 58, 1-4
    [127] Lyengar, R.; McEvily, A. J. Anti-browning agents: alternatives to the use of sulfites in foods. A Trends Food Sci. Techno., 1992, (3), 60-64
    [128] Bussing, A.; Wogner, M.; Wagner, B. Induction of mitochondrial Apo 2.7 molecules and generation of reactive-oxygen intermediates in cultured lymphoctytes by the toxic proteins from Viscum-Album. Cancer Letters, 1999,139 (1), 79-881
    [129] Clareand, D. A.; Swaisgood, H. E. Bioactive milk peptides, a prospectus. J. Dairy Sci., 2000, 82(1), 1187-11951
    [130] Meisel, H. Overview on milk protein-derived peptides. Int. Dairy Jonrnal, 1998, 8 (5) , 363-3731
    [131] Tischio, J. P.; Patrick, J. E.; Weintraub, H. S.; Chasin, M.; Goldstein, G. Short in vitro half-life of thymopoietin32--36 pentapeptide in human plasma. Int. J. Pept. Protein. Res., 1979,14 (5), 479-484
    [132] Audhya, T.; Goldstein, G. Comparative efficacy of various routes of administration of thymopentin (TP-5) with consideration of degradative mechanisms. Int J Pept Protein Res., 1983, 22(2), 187-193
    [133] 曲荣君,孙昌梅,王春华等.相转移催化在高分子化合物合成中的应用.催化学报,2003,24(9),716-724.
    [134] 王乃兴,李纪生.有机合成中的相转移催化作用.化学世界,1994,9,450-453.
    [135] Starks C. M., Napier D. R. Catalysis of Heterogeneous Reactions. FR 1573164,1969.
    [136] 李树有.相转移催化技术及其在药物合成中的应用.山西化工,2001,21(3),14-16.
    [137] 刘邵岩,鲁荆林,韩小平.连续法合成邻(对)硝基苯甲醚.精细与专用化学品,2002,8,19-21.
    [138] 徐惠娟,袁海涛,高佳令.相转移催化技术在无机化工中的拓展.当代化工,2002,31(2),14-16.
    [139] Martos, M. B.; K(?)r(?)sy, F. Preparation of Acetobrme-Sugars. Preparation of Acetobrome-Sugars. Nature, 1950,165: 369
    [140] Zhiyuan, Z.; Magnusson, G. Conversion of p-Methoxyphenyl Glycosides into the Corresponding Glycosyl Chlorides and Bromides, and into Thiophenyl Glycosides. Carbohydr. Res., 1996, 925,41-55.
    [141] Anderson, W. K.; Bhattacharjee, D.; Houston, D. M. Desing, Synthesis, Antineoplastic Activity, and Chemical Properties of Bis(carbamate) Derivatives of 4,5-Bis(hydroxymethyl) imidazole. J. Med. Chem., 1989, 32, 119-127
    [142] Walls, L. P. S. African 6 604 864,1968 [Chem. Abstr. 1969, 70, 87320w].
    [143] Finger, G. C.; Dickerson, D. R.; Starr, L. D.; Orlopp, D. E. Aromatic Fluorine Compounds. ⅩⅢ. Substituted N-Phenylglycine Ethyl Esters and Hydrazides. J. Am. Chem. Soc., 1965, 8,405-407
    [144] Bryson, A.; Davies, N. R; Serjeant, E. P. The Ionization Constants of N-(Substituted-phenyl)-glycines. J. Am. Chem. Soc., 1963, 85, 1933-1938
    [145] Southwick, P. L.; Dimond, H. L.; Stansfield, R. E. The Formation of N-(N-Acetyl-N-arylglycyl)-N-arylglycines in the Acetylation of N-Arylglycines. J. Am. Chem. Soc., 1956, 78,1608-1611
    [146] Khadlm, M. A.; Colebrook, L. D. Synthesis and Spectral Characteristics of N-Aryl-Substituted Glycines and Alanines., J. Chem. Eng. Data 1955, 30, 239-242
    [147] 李在国.有机中间体制备[M],北京:化学工业出版社,2001,58
    [148] Bednarz, B. B.; Bree, A. V.; Patrick, B. O.; Scheffer, J. R.; Trotter, J. Second-harmonic generation studies of chiral organic salts. Can. J. Chem., 1998, 76, 1616-1632
    [149] 刘明国,童开发,罗光富,廖全斌,付莎莉.PTC法合成5-芳基-2-呋喃甲酸四乙酰葡 萄糖酯,有机化学,2000,20,,198-201
    [150] Chen, H.; Huang, S.-Q.; Xie, J.-Y. A simple and efficient method for synthesis of fluorine-containing saccharide esters and antiviral activity. J. Fluorine Chem. 2006,127, 1130-1136
    [151] K(?)rti, L.; Czako, B. Strategic Applications of Named Reactions in Organic Synthesis, Academic Press, Pennsylvania, 2005, pp. 426-427.