羔羊凝乳酶提取分离及特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验以关中奶山羊皱胃为原料,对羔羊哺乳状况、屠宰年龄、皱胃处理方式和不同提取方法对凝乳酶活性的影响,凝乳酶原的激活,凝乳酶纯化与分离以及凝乳酶和胃蛋白酶特性进行了系统的研究,为羔羊凝乳酶开发以及在干酪生产中的应用提供理论基础。
     羔羊哺乳状况研究表明,全哺乳组凝乳活性最高(26108SU/g),蛋白水解活性与随机哺乳组无明显差别(P>0.05),而全喂草料组蛋白水解活性最高(1925U/g),这表明哺乳能够刺激皱胃中凝乳酶的持续分泌。屠宰年龄实验表明,羔羊出生5天时,凝乳活性与蛋白水解活性比率(C/P)最大,是提取羔羊凝乳酶的最佳年龄。
     皱胃处理方式研究结果表明,冷冻处理对酶活性影响最小,盐渍风干处理影响较大,自然风干处理酶活性损失最多。同时还发现盐渍风干处理和自然风干处理可使皱胃中一部分酶原自动激活。
     用传统方法和不同pH缓冲液方法提取羔羊凝乳酶时,食盐浓度、提取时间、提取温度、提取液与皱胃比例、提取次数对凝乳活性有重要的影响。随着食盐浓度增大,凝乳活性逐渐提高,当达到一定浓度后,凝乳活性又逐渐降低;在提取初期,提取速度较快,凝乳活性明显提高,当提取达到最大值后,凝乳活性又逐渐下降;随着提取温度的升高,凝乳活性逐渐增大,但温度过高时,会导致酶变性失活;随着提取液与皱胃比例的增大,酶溶出速度加快,提取次数越多,皱胃中酶提取越充分,提取2次后,皱胃中绝大部分酶被提出。正交试验表明,用传统方法提取时,当食盐浓度8%,皱胃与提取液比例1:20,提取温度30℃,提取时间48h,提取最大凝乳活性为65700SU/g;用pH4.5缓冲液提取时,当食盐浓度6%,皱胃与提取液比例1:10,提取温度30℃,提取时间60h,提取最大凝乳活性为58200SU/g;用pH5.4缓冲液提取时,当食盐浓度8%,皱胃与提取液比例为1:20,提取温度30℃,提取时间48h,提取最大凝乳活性为72300SU/g;用pH6.0缓冲提取时,当食盐浓度8%,皱胃与提取比例1:10,提取温度25℃,提取时间48h,提取最大凝乳活性为63850SU/g。由此可见,用pH5.4缓冲液提取,可获得最大的酶活性产量。
     本实验还对超声波在羔羊凝乳酶提取中的应用进行探讨,结果表明,超声提取可大大缩短提取时间,超声提取40min可达到传统方法48h的提取效果。在食盐浓度8%,皱胃与提取液比例1:15时,用30W/cm2超声强度提取40min,可获得最大的凝乳活性。羔羊凝乳酶以无活性的酶原形式分泌,pH,食盐和温度对其
    
    激活有重要的影响小H越低,激活速度越快,在 pHZ.0激活时仅需 5—10ruin,pH3.0
    时需要30min,在较低pH下激活,己激活酶不稳定,易失活;随着缓冲液中NaCI
    浓度的增加,激活速度随之加快;在5℃下激活速度非常缓慢,25℃以上激活速度
    明显加快。
     干酪生产中应用的酶是凝乳酶和胃蛋白酶的粗提物,应用凝胶过滤层析和离
    子交换层析对羔羊凝乳酶粗提物纯化分离结果表明,凝胶过滤层析不能使两种酶
    分离,仅除去一部分杂蛋白;利用DEAE纤维素(DE32)离子交换层析,可除
    去大部分杂蛋白,使凝乳酶和胃蛋白酶完全分离。此外,在对样品浓缩时发现,
    羔羊凝乳酶粗提物中含有分子量小于 10000的活性小肽物质,这在凝胶过滤层析时
    出现峰*和峰I[l亦得到证实。应用SDS——PAGE凝胶电泳和PAGE凝胶等电聚焦电
    泳对纯化羔羊凝乳酶和胃蛋白酶测定结果表明,羔羊凝乳酶分子量为30700,等电
    点为pH4.5;羔羊胃蛋白酶分子量为29900,等电点为pH4.4。
     羔羊凝乳酶特性研究表明,最适凝乳温度为45 ’C;45 ’C处理60Inin,酶活性开
    始降低,60’C处理60min,酶活性完全丧失;酶最适pH为2.(kr刀,在pHZ.(h刀
    范围内保持24h,具有较好的稳定性;在凝乳过程中,随着原料乳pH下降,凝乳活
    性逐渐增大;随着酶溶液中离于强度的增加,凝乳活性逐渐降低;乳中*”具有明
    显的促凝作用,当CaC12浓度大于0刀3%时,凝乳活性趋势于稳定;AI叶可明显提高
    酶的凝乳活性,Cu2+和Zn”对酶活性有抑制作用;随着乳液浓度增大,凝乳活性逐
    渐增加,当浓度大于 15%时,凝乳活性趋于稳定;以酪蛋白为底物,随着时间延长,
    蛋白水解活性逐渐增大,动力学特性研究表明,米氏常数llilll为6刁 g/L。
     羔羊胃蛋白酶最适凝乳温度为45 ’C;在45℃处理30Inin,酶活性开始下降,60
    C处理30lliln,酶活性完全丧失;酶的最适pH为1.G-3刀,在此pH范围内具有很好
    的稳定性;原料乳pH、CaZ”浓度、乳液浓度和离子强度对凝乳活性的影响与凝乳
    酶规律一致:A13+明显提高其凝乳活性,FC卜具有一定的促凝作用;以酪蛋白为底
    物,蛋白水解活性明显高于凝乳酶,米氏常数Km为234.sg/L。
This experiment is to probe the factors, such as the effect of the kid's suckling, the butchering age and the ay of the abomasums treatment on the chymosin activity;the activation of the prochymosin; the purification and separation of chymosin and the characterization of chymosin and pepsin, using Cuan Zhong dairy kid's abomasums as material, which would provide the theoretic base for the exploitation of the kid chymosin and its application to the cheese production.
    The research on the condition of kid's suckling indicates that the highest milk-dotting activity(26108su/g)was obtained for the whole suckling section, whereas proteolytic activity were no significant different between the whole suckling and random section(p>0.05),but proteolytic activity(1925u/g) was highest for the complete grass-feeding, which demonstrated suckling could stimulate the continuous secretion of chymosin in the abomasum. The experiment on butchering age showed that it was 5d after the kid birth that the ratio of clotting activity and proteolytic activity(C/P)was the highest, which was a best age for extracting kid chymosin.
    The methods of the abomasums treatment suggested that the freezing method had least influence on milk-clotting activity, while the salting air-drying and natural air-drying went to another extreme. Meanwhile, the partial proenzyme from the abomasums would be activated automatically by the latter two methods.
    As the kid chymosin was extracted by the traditional way and the buffering way at different pH values, its activity mainly depended on the salt concentration, extraction time and temperature, the ratio of buffer and abomasums and extraction times. With the increasing salt concentration, milk-clotting activity became higher and higher, then reached its peak, and then decreased gradually; In the early extraction, the speed was quick, the milk-clotting activity was increased obviously. After it amounted to the maximum, the activity became steadily lower steadily; the increasing temperature in extracting could improve the extraction activity, but too high temperature could result in the denaturation and inactivation; The greater the ratio of abomasums and butter and was, the quicker speed was when the enzymes was drawn out, and after extracting for twice, most of the enzymes in the abomasums could be drawn out. The result of
    
    
    orthogonal experiment were as follows:1.by the traditional method, using 8% salt concentration, 1:20 ratio of abomasums and butter, 30℃extraction temperature and 48h extraction time, the highest activity could be obtained; 2.In buttering way at pH4.5, pH5.4and pH6.0 respectively, using 6%,8%and8% salt concentration,1: 15,1:20and 1:15 ratio of abomasums and butter,30℃ ,3 0℃ and25℃ extracting temperature,60h,60h and 48h extraction time, the highest activity could be obtained. From above it could be see that it was the buffering way at pH5.4 that the largest enzyme yield could be obtained.
    In addition, the application of the supersonic wave to the extraction of kid's chymosin was studied in the experiment. And the results showed that the supersonic extraction could shorten the extraction time greatly, which could have the same effect for 40min as the traditional way of 48h. The greatest activity could be obtained on the condition of 8% salt concentration, 1:20 ratio of abomasums and butter, 30W/cm2 supersonic strength and 40min extraction time.
    The kid chymosin was secreted as being the form of non-activated prochymosin, and its activation depended on pH value, salt concentration and temperature. The lower the pH value was, the higher activated speed become. It needed only 5-10min to activate at pH2.0, 30min at pH3.0. But the activated chymosin wasn't somewhat stable enough at the lower pH value. The activated speed was improved by the increasing salt concentration. It was very slow at 5℃ but become higher above 25℃.
    The enzyme from abomasums used in cheese production was rough extracts containing chymosin and pepsin. Through the gel filtration chromatography and ion exchange c
引文
1. Kageyama T. Pepsinogens, progastricsins and prochymosins:structure, function, evolution, and development. Cellular and Molecular Life Scence. 2002,59,288-306
    2. Chitpinityol S.,Crabbe M.C. Chymosin and aspartic proteinases. Food Chemstry. 1998,61,395-418
    3. Staff A. Rennet containing 100% chymosin increases cheese quality and yield. New process optimizes extraction of chymosin from calves leading to improved rennet product. Food Technology. 1989,43,88-89
    4. Garnot P.,Thapon C. M.,Mathieu J. L. et al. Determination of rennet and borive pepsins in commercial rennets and abomasal juices. Dairy Sci. 1972,55,1641-1650
    5. Foltmann B. Studies on Rennin. Ⅳ. Chromatographic fractionation of rennin. Acta Chem. Scand. 19640,14(9),2059-20641
    6. Newman M.,Safro M.,Frazao C. Ⅹ-ray analyses of aspartic proteinases Ⅳ Structure and refinement at 2.2 A Resolution of Bovine chymosin. Journal Mol. Biol. 1991,221,1259-1309
    7. Tang J.,Sepulveda P.,Marciniszyn J. et al. Amino-acid sequence of porcinec pepsin. Proc. Natl. Acad. Sci. USA 1973,70,3437-3439
    8. Kurabayashi Y., Yamada J., Andem A. et al. Cellular and subcellular localization of progastricsin in calf fundic mucosa:colocalization with pepsinogen and prochymosin. Acta. Anat. 1991,140,75-84
    9. Foltmann B.,Lonblad P. and Axelsen N.H. Demonstration of chymosin(EC 3.4.23.4) in the stomach of newborn pig. Biochem. Journal. 1978,1640, 425-427
    10. James M.N. G.,Sielecki A.,Salituro F. et al. Conformational flexibility in the active sites of aspartyl proteinases revealed by a pepstatin fragment binding to penicillopepsin. Proc. Natl. Acad. Sci. USA. 1982,79,6137-6141
    11. Shamsuzzaman K. and Haard N.F. Purification and characterization of a chymosin-like protease from the gastric mucosa of the harp seal (Pagphilusgroen landicus). Can. Journal Biochem. Cell Biol.1984,62, 699-708
    
    
    12. Baudys M.,Erdene T. G.,Kostka V. et al. Comparison between prochymosin and pepsinogen from lamb and calf. Comp. Biochem. Physiol. 1988a, 89B, 385-391
    13. Amourache L., Vijayalakshmi M.A. Affinity chromatography of kid chymosin on histidyl-sepharose. Journal of Chromatography. 1984,303,285-290
    14. Andren A.,Bjorck L. Milk-feeding maintains the prochymosin production in the cells of bovine abomasal mucosa. Acta. Physiol. Scand. 1986,126,419-427
    15. Ymada J. Electron Immunocytochemical Co-localization of Prochymosin and Pepsinogen in chief cells, mucous neck cells and transitional mucous neck/chief cells of the calf fundic glands. Acta. Anat. 1988,132,246-252
    16. Andren A. Production of prochymosin, pepsinogen and progastricsin, and their cellular and intracellular localization in bovine abomasal mucosa, scand. J. clin. Lab. Invest. 1992,52,59-64
    17. Andren A, Bjorck L, Claesson O. Levels of chymosin and pepsin in the povine abomasal mucosa. Neth. Milk Dairy J. 1981,35,365-366
    18. Guilloteall P.,CorringT.,Toullec R. et al. Enzyme potentialities of the abomasum and pancreas of the calf. 1.--Effect of age in the preruminant. Reprod. Nutr. Develop. 1984,24,315-325
    19. Kobayashi H.,Murakami K. Rapid and large scale isolation of chymosin (Rennin) by pepstatin-aminohexylagarose. Agri. Bilo. Chem. 1978,42,2227-2231
    20. Mcmahon D.J.,Brown R.J. Effect of enzyme type on millc coagulation. J. Dairy Sci. 1985,68,628-632
    21. Garnot P. Influence of dietary proteins on rennin and pepsin content of preruminant calf vell. J. Dairy Res. 1974,41,19-23
    22. Bavisotto V. S., Jadd E. C. et al. Commercial enzymes by extraction (Rennet). Industrial Engineering and Chemistry. 1960,52,2-8
    23. Fenger F. A comparison between the chemical and physiological characteristics of pepsin and rennin. J. Am. Chem. Soc. 1923,45,249-255
    24. 韩绍玫.用于干酪生产的凝乳酶与小牛皱胃酶的制备.中国乳品工业,1997,
    
    15, 262-264
    25. Davide C.L.,Peralta C.N.,Cruz L.L. Preparation of milk coagulants from adult carabao, cattle and goat abomasa. Phil. Agri. 1982,65,131-145
    26. Wangoh J.,Farah Z.,Puhan Z. Extraction of camel rennet and its comparison with calf rennet exact. Milch wissenschaft. 1993,48,322-325
    27. Kin S.M. Processing parameters of chymosin extraction by ultrasound. Food Sci. 1989,54,700-703
    28. Zayas J.F. Effect of ultrasonic treatment on the extraction of chymosin. J. Dai. 1986,69,1769-1775
    29. Kim S. M.,Zayas J.F. Influence of ultrasound on the properties of chymosin and the ultrastructure of abomasum during chymosin extraction. J. of Food Processing and Preservation. 1991,15,89-100
    30. Kim S. M.,Zayas J.F. Comparative quality characteristics of chymosin extracts obtained by ulreasound treatment. Food Sci. 1991,56,406-410
    31. Kim S. M. Zayas J.F. Effects of ultralsound Treatment on the properties of chymosin. Food Sci. 1991, 56,926-930
    32. Peralta C.N. Characteristics of DTRI-IFS-6 milk coagulant. Phil. Agri. 1985,68,94-101
    33. Zayas J. F. Properties and quality characteristics of rennin extracted by ultrasound. Biotechnology and Bioengineering. 1987, ⅩⅩⅨ, 969-975
    34. Donnelly W.J., Carroll D.P.,Ocallaghan D.M. et al. Genetic polymorphism of bovine chymosin. J. Dairy Res. 1986,53,657-664
    35. Zayas J.F. Effect of ultrasonic treatment on the extraction of chymosin. Dai. 1986,69,1767-1775
    36. Berridge N.J. The purification and crystallization of rennin. Biochem. 1945,39,179-186
    37. Bunn C.W.,Moews P.C. The crystallography of calf rennin(chymosin). Proc. Roy. Soc. Lond. B. 1971,178,245-258
    38. Castle A.V. Purification of rennin. Dairy Res. 1971,38,69-71
    39. De koning P.J., Draaisma J. TH.M. Identification of different types of rennet by means of isoelectric focusing. Neth. Milk Dairy J. 1976, 27,368-378
    40. Righetti P.G.,Molinari B.M.,Molinar G. Isoelectric focusing of moik
    
    -clotting enzymes. Dairy Res. 1977,44,69-72
    41. Collin J.C.,De Retta G.M.,Martin P. Immunologocal identification of milk-clotting enzymes. J. Dairy Res. 1982,49,221-230
    42. Foltmann B. Studies on rennin Ⅱ. On the crystallisation, stability and proteolytic activity of rennin. Acta. chem. Scand. 1959,13,1927-1935
    43. Foltmann B. A review on prorennin and rennin. Compt. Rend. Trav. Lab. Carlsberg. 1966,35,143-167
    44. Foltmann B.,Pedersen V.B.,Jacobsen H. et al. The complete amino acid sequence of prochymosin. Proc. Natl. Acad. Sci. USA 1977,74,2321-2324
    45. Kageyama T. and Takahashi K. The complete amino acid sequence of monkey progastricsin. J. Biol. Chem. 1986,261,4406-4419
    46. Andreeva N.S. and James M.N. Why does pepsin have a negative charge at very low PH? Ananalysis of conserved charged residues in Aspartic proteinases. Adv. Exp. Med. Biol. 1991,306,39-45
    47. Foltmann B.,Pedersen V.B.,Kauffman D. et al. The primary structure of calf chymosin. Journal Biol. Chem. 1979,254,8447-8456
    48. Richter C.,Takuji T.,Yada R.T. Mechanism of activation of gastric aspartic proteinases: pepsinogen progastricsin and prochymosin. Biochem. J. 1998,335,481-491
    49. Uchiyama H.,Uozumi T.,Beppu T. et al. Purification of prorennin and production of its antibody. J. Biolchem. 1981,90,483-487
    50. Foltmann B. Prochymosin and chymosin (prorennin and rennin). Biochem. J. 1969,115,39-49
    51. Rand A.G. Effect of pH and sodium chloride on activation of prorennin. Dairy Sci. 1964,47,1181-1186
    52. Danley D.E. and Geoghegan K.F. Structure and mechanism of formation of chymosin C derived from recombinant chymosin A. Journal Biol. chem. 1988,263,9785-9789
    53. Chen H.G.,Zhang G.B.,Zhang Y.Y. et al. Functional implications of disulfide bond, Cys2OG-Cys210, in recombinant prochymosin(Chymosin). Biochemistry 2000,39,12140-12148
    54. Gilliland G. L.,Winborne E. L.,Nachman J. et al. The three-dimensional structure of recombinant bovine chymosin at 2.3 A resolution. Proteins:
    
    Structure, Function and Genetics 1990,8,82-101
    55. Foltmann B. Chymosin: A short review on foetal and neonatal gastric proteases. Scand. J. Clin. Lab. Invest. 1992,52,65-79
    56.黄葵,陈世茎,杨开宇.牛凝乳酶的结晶及其二硫键的化学修饰.生物工程学报.1991,7,77—83
    57. Cooper J.B.,Khan G.,Tickle I.J. et al. Ⅹ-ray analyses of aspartic proteinases. Ⅱ.Three-dimensional structure of the hexagonal crystal form of porcine pepsin at 2.3 A resolution. J. Mol. Biol. 1990,214,199-222
    58. Andreeva N.,Dill J. and Gilliland G.L. Can enzymes adopt a self-inhibited form? Results of Ⅹ-ray crystallographic studies of chymosin. Biochem. Biophys. Res. Commun. 1992,184, 1074-1081
    59. Gustchina E.,Rumsh L.,Ginodman L. et al. Post Ⅹ-ray crystallographic studies of chymosin: the existence of two structural forms and the regulation of activity by the interaction with the histidineproline cluster of k-casein. Febs Letters 1996,379,60-62
    60. Yamauchi T.,Nagahama M.,Hori H. et al. Functional characterization of Asp-137 mutant of human rennin expressed in COS cells. Febs Letts. 1988,230,205-208
    61. Mantafounis, D. and Pitts J. Protein engineering of chymosin: modification of the optimum PH of enzyme catalysis. Protein Eng. 1990,3,605-609
    62. Pearl L. and Blundell T.L. The active site of aspartic proteinases. Febs Letts. 1984,174,96-101
    63. Asato N. Fractionation and Isolation of the multiple forms of prorennin (prochymosin). Biochem. J. 1972,129,841-846
    64. Al-Janabi J.,Hartsuck J.A. and Tang J. Kinetics and mechanism of pepsinogen activation. J. Biol. Chem. 1972,247,4628-4632
    65. Pedersen V.B.,Chritensen K.A.,Foltmann B. Investigations on the activation of bovine prochymosin. Eur. J. Biochem. 1979,94, 573-580
    66. Mccaman M.T.,Cummings D.B. A mutated bovine prochymosin zymogen can be activated without proteolytic processing at low PH.J. Biol. chem. 1986,261,15345-15348
    
    
    67. Tauber H., Kleiner I.S. Studies on rennin. Ⅰ. the purification of rennin and its separation from pepsin. J. Biological Chemistry. 1932,96,745-758
    68. Rand A.G. and Ernstrom C.A. Effect of PH and sodium chloride on activation of prorennin. Journal Dairy Sci. 1964,47,1181-1187
    69. Foltmann B. Studies on rennin: Ⅵ the heterogeneity of prorennin and its transformation into rennin. C.R. Travaux Lab. Carlsberg. 1962,32, 425-444
    70. Anifantak E.,Green M.L. Preparation and properties of rennets from lamb' s and kid' s abomasa. J. Dairy Res. 1980,47,221-320
    71. Baudys M.,Erden T.G. Comparison between prochymosin and pepsinogen from lamb and calf. Comp. Biochem. Physiol. 1988,89B, 385-391
    72. Arima K. Milk clotting enzyme from micoorganisms. Agr. Biol. Chem. 1967, 31(5),540-545
    73. Mickelsen R. Effect of PH on the stability of rennin-porcine pepsin blends. J. Dairy Sci. 1971,55,194-197
    74. Richardson G.H. et al. Differences between calf and adult bovine rennet. J. Dairy Sci. 1970,53,1367-1372
    75. Stepanov V.M.,Lavrenova G.I.,Terent E.Y. et al. Prochymosin activation by non-aspartic proteinases. Febs Letters. 1990,260,173-175
    76. Foltmann B. Studies on rennin. Ⅵ. The heterogeneity of prorennin and its transformation into rennin. Compt. Rend. Trav. Lab. Carlsberg. 1963, 32,425-443
    77. Foltmann B. Studies on rennin: Ⅱ. on the crystallisation, stability and proteolytic activity of rennin. Acta. Chem. Scand. 1959a, 13,1927-1935
    78. Cheeseman G. C. Denaturation of rennin: Effect on activity and molecular configuration. Nature 1965,205,1011-1012
    79. Mickelson R., Eanstrom C.A. Factors affecting the stability of rennin. J. Dairy Sci. 1963,46,613
    80. Turner M.D.,Miller L.L.,Segal H.L. Gastric proteases and protease inhibitors. Progress in Gastroenterology. 1967,53,967-981
    81. Foltmann B. Studies on rennin: Ⅲ. on the solubility of rennin. Acta.
    
    Chem. Scand. 1959b, 13,1936-1942
    82. Kawaguchi Y.,kosugi S.,Sasaki K. et al. Production of chymosin in Escherichia coli cells and its enzymatic properties. Agric. Biol. Chem. 1987,51,1871-1877
    83. Mickelsen R.,Ernstrom C.A. Factors affecting stability of rennin. J. Dairy Sci. 1966,50,645-650
    84. Braun Kunath H. Investigations on biochemical properties of milk-clotting emzymes. Die Nahrung. 1988, 32(4), 375-381
    85. Hill R.D. and Laing R.R. The action of rennin on cascin: The effect of modifying functional groups on the rennin. Biochem. Biophys. Acta. 1965,99,352-359
    86. Smith J.L.,Bayliss F.T. and Ward M. Sequence of the cloned pyr4 gene of Trichoderma reesei and its use as a homologous selective maker for transformation. Curr. Oenet. 1991a, 19,27-33
    87. Smith J.L.,Billings G. E. and Yada R. Y. Chemical modification of amino groups in Mucor miehei aspartic proteinases, porcine pepsin, and chymosin: Ⅰ Structure and function. Agric. Biol. Chem. 1991b, 55,2009-2016
    88. Sugruc R.,Marston F.A.O.,Lowe P.A. et al. Denaturation studies on natural and recombinant bovine prochymosin(prorennin). Biochem. Journal. 1990,271,541-547
    89. Huang H.,Zhang Z.,Liu N. et al. Functional implication of disulfide bond, Cys250-Cys283, in bovine chymosin. Biochem. Biophys. Res. Commun. 1992,187,692-696
    90. Fridenthal M.K.,Visser S. Enzyme adsorption and loss of activity in dilute solutions of chymosin and pepsin. Prevention with polyethylene glycol. Neth. Milk Dairy J. 1985,39,63-70
    91. 宋云,李立钊,崔雅洁等.不同因素对凝乳酶活力的影响.中国乳品工业.1995 23,124
    92. Barkholt P.V.,Christensen K.A. and Foltmann B. Investigations on the activation of bovine prochymosin. Eur. Journal Biochem. 1979,94, 573-580
    93. Privalov P.L.,Mateo P.,Khechinashvili N.N. et al. Comparative themo-dynamic study of pepsinogen and pepsin structure. Journal Mol. Biol.
    
    1981,152,445-464
    94. Mcphile P.The origin of the alkaline inactivation of pepsinogen. Biochemistry 1975,14,5253-5256
    95. Guillou H.,Miranda G. and Pelissier J.P. Hydrolysis of β-casein by gastric proteases. Ⅰ.Comparison of proteolytic action of bivine chymosin and pepsin A. Int. J. Pept. Protein Res. 1991,37,494-501
    96. Fruton J.S. The specificity and machanism of pepsin action. Adv. Enzymol. Relat. Areas Mol. Biol. 1970,33,401-443
    97. Dunn B. M.,Valler M. J.,Rolph C. E. et al. The PH dependence of the hydrolysis of chromogenic substrates of the type. Lys-Pro-Xaa-Yaa-Phe- (NO2)phe-Arg-Leu, by selected aspartic proteinases: evidence for specific interactions in subsites S3 and S2. Biochem. Biophys. Acta. 1987, 913,122-130
    98. Foltmann B. Studies on rennin Ⅱ. On the crystallisation, stability and proteolytic activity of rennin. Acta Chem. Scand. 1959,13(10),1927-1935
    99. Cheeseman G.C. Denaturation of rennin: Effect on activity and Molecular configuration. Nature. 1965,205,1011-1012
    100. Jensen T.,Axelsen N.H. and Foltmann B. Isolation and partial characterization of prochymosin and chymosin from cat. Biochem. Biophys. Acta. 1982,705,249-256
    101. Suzuki J.,SasakiK.,Sasao Y. et al. Alteration of catalytic properties of chymosin by site-directed mutagenesis. Protein Eng. 1989,2,563-569
    102. Foltmann B. Prochymosin and chymosin. Methods Enzymol. 1970,19,421-436
    103. Jollès J.,Alais C. and Jollès P. The tryptic peptide with the reninsensitive linkage of cow' s κ-casein. Biochem. Biophys. Acta. 1968,168,591-593
    104. Williams M.G.,Wilsher J.,Nugent P. et al. Mutagenesis, biochemical characterization and Ⅹ-ray structural analysis of of point mutants of bovine chymosin. Protein Eng. 1997, 10, 991-997
    105. Marciniszyn J.,Hartsuck J.A. and Tang J. Mode of inhibition of acid proteases by pepstatin. Journal Biol. Chem. 1976a, 251,7088-7094
    106. Marciniszyn J.,Huang J.S.,Hartsuck J.A. et al. Mechanism of intra
    
    -molecular activation of pepsinogen. Journal Biol. Chem. 1976b, 251,7095-7102
    107. Davies D.R. The structure and function of the aspartic proteinases. Annu. Rev. Biophys. Biophys. Chem. 1990,19,189-215
    108. Kageyama T. New world monkey pepsinogens A and C, and prochymosins: purification, characterization of enzymatic properties, cDNA cloning, and molecular evolution. J. Biochem. 2000,127,761-770
    109. Narita Y.,Oda S.,Moriyama A. et al. Pepsinogens and pepsins from house musk shrew, Suncus murinus: purification, characterization, determination of the amino-acid sequences of the activation segments, and analysis of proteolytic specificities. J. Biochem. 1997,121,1010-1017
    110. Suzuki M.,Narita Y.,Oda S. et al. Purification and characterization of goat pepsinogens and pepsins. Comp. Biochem. Physiol. 1999, B 122,453-460
    111. Powell M.J.,Holdsworth R.J.,Baker, T.S. et al. Design synthesis of statine-containing inhibitors of chymosin. In Aspartic Proteinases and Their inhibitors, ed.Ⅴ. Kostka. Walter de Gruyter Co. Berlin. 1985,479-483
    112. McCaman M.T.,Andrews W.H. and Files J.G. Enzymatic properties and processing of bovine prochymosin synthesized in Escherichia coli. Journal Biotech. 1985,2,177-190
    113. Chang W. J.,Takahashi K. The structure and function of acid proteases Ⅱ. Inactivation of Bovine Rennin by Acid Protease-Specific Inhibitors. Biochem. J. 1973,74,231-237
    114. Abuerreish G.M and Peanasky R.J. Pesin inhibitors from Ascaris lumbricoides: pepsin-inhibitor complex: stoichiometry of formation. Dissociation, and stability of the complex. J. Biol. Chem. 1974,249, 1566-1571
    115. Ryle A.P. The procine pepsins and pepsinogens. Methods Enzymol. 1970, 19,316-336
    116. Kageyama T. Molecular cloning, expression and characterization of an Ascaris inhibitor for pepsin and cathepsin E. Eur. J. Biochem. 1998,253, 804-809
    
    
    117. Abuereish G.M. Pepsin inhibitor from roots of Anchusa strigosa. Phytochemistry. 1998,48,217-221
    118. 唐兵,杨开宇.凝乳酶原Cys45-Cys50二硫键功能的研究.中国科学(C辑).1997,27,14-20
    119. Poland D.C.,Scherrage H.A. Statistical mechanics of non-covalent bonds in polyamio acid, Ⅷ covalent loops in proteins. Biopolymer. 1965,3,379-385
    120. Dhanaraj V.,Dealwis C. G.,Frazao C. et al. Ⅹ-ray analyses of peptide -inhibitor complexes define the structural basis of specificity for human and mouse rennins. Nature. 1992,357,466-472
    121. James M.N.G.,Hsu I.N and Delbaere L.T.J. Mechanism of acid protease catalysis based on the crystal structure of penicillopepsin. Nature. 1997, 267,808-813
    122. James M.N.G.,Sielecki A. and Hofman T. Ⅹ-ray diffraction studies on penicillopepsin and its complexes: the hydrolytic mechanism. In Aspartic Proteinases and Their Inhibitors, ed.Ⅴ. Kostka. de Gruyter. New York. 1985,163-177
    123. Polgàr L. The mechanism of action of aspartic proteases involves 'push-pull' catalysis. Febs Lett. 1987,219,1-4
    124. Pearl L. The catalytic machanism of aspartic proteinases. Febs. Letts. 1987,214,8-12
    125. Veerapandian B.,Cooper J.B.,Sali A. etal. Ⅹ-ray analyses of aspartic proteinases. Ⅲ. Three-dimensional structure of endothiapepsin complexed with a transition-site isostere inhibitor of rennin at 1.6 resolution. Journal Mol. Biol. 1990,216,1017-1029
    126. Fruton J.S. Proteinase-catalysed synthesis of peptide-bonds. Adv. Enzymol. 1982,53,239- 306
    127. Schmidt D.G. Colloidal aspects of casein. Neth. Milk Dariy J. 1980,34, 41-45
    128. 郭本恒.乳品化学.中国轻工业出版社.2001,1
    129. Polanowski A.,Wihsz T.,Kolaczkowska M.K. et al. Purification and characterisation of aspartic proteinases from Cucumis sativus and Cucurbita maxima seeds. In Aspartic proteinases and Their Inhibitors
    
    ed.Ⅴ. Kostka. Walter de Gruyter & Co. Berlin. 1985,49-52
    130. Visser S.,Vanalebeek G.J.,Rollema H.S. et al. Spectrophotometric method for the determination of chymosin and pepsin in calf and adult bovine rennets. Neth. Milk Dairy Res. 1988,42,221-232
    131. Bringe N. A. and Kinsella J. E. Use of pletelet aggrerometer to monitor the chymosin-initiated coagulation of casein micelles. Journal Dairy Res. 1986a, 53,359-370
    132. Bringe N. A. and Kinsella J. E. Influence of calcium chloride on the chymosin-initiated coagulation of casein micelles. Journal Dairy Res. 1986b, 53,371-379
    133. Okigbo L.M.,Richarson G.H.,Brown R.J. et al. Effect of PH, calcium ahoride, and chymosin concentration on coagulation properties of abnormal and normal milk. Journal Dairy Sci. 1985a, 68,2527-2533
    134. Berridge N.J. The second phase of rennet coagulation. Nature 1942,149, 149-194
    135. Dalgleish D. G. In Developments in Dairy Chemistry, ed.P.F. Fox. Part 1. Applied Science Publishers, Barking. 1982,157-187
    136. Carlson A.,Hill G.C. and Olson N.F. The coagulation of milk with immobilized enzymes: a critical review. Enz. Microb. Technol. 1986,8,642-650
    137. Martin P.,Raymond M. N.,Bricas E. et al. Kinetic studies on the action of Mucor pusillus, Mucor michei acid proteases and chymosins A and B on a synthetic chromophoric hexapeptide. Biochem. Biophys. Acta 1980, 612,410-420
    138. Dronse H.B. and Foltmann B. Specificity of milk-clotting enzymes towards bovine κ-casein. Biochem. Biophys. Acta. 1989,995,221-224
    139. Shammet K.M.,Brown R. J., and McMahon D.J. Proteolytic activity of some milk-clotting enzymes on κ-casein. Journal Dairy Sci. 1992, 75, 1373-1379
    140. Grag A.K.,Johri B.N. Rennet: current trends and future research. Food Reviews International. 1994,10(3),313-355
    141. Fox P.F. Milk-clotting and proteolytic activities of rennet, and of bovine pepsin and porcine pepsin. J. Dairy Res. 1969,36,427-433
    
    
    142. Hicks C. L.,Oleary J.,Buck J. Use of recombinant chymosin in the manufacture of Chedder and Colby cheese. J. Dairy Sci. 71,1127-1132
    143. Hodgson J. Expression systems: a user's guide. Biol. Technol. 1993,11, 887-893
    144. 张树庸,耿运琪.基因工程.科学普及出版社,1995
    145. 黄木秋.生物技术在畜产研究上的应用.中国畜产与食品.1994,1,26-27
    146. Uchiyama H.,Uozumi T.,Beppu T. et al. Purification of prorennin mRNA and its translation in vitro. Agric. Biol. Chem. 1980,44,1373-1381
    147. Emtage J.S.,Angal S.,Doel M.T. et al. Synthesis of calf prochymosin (Prorennin) in Escherichia coli. Proc. Nat. Acad. Sci. USA 1983,80,3671-3675
    148. Nishimori K.,Shimizu N.,Kawaguchi Y. et al. Expression of calf prochymosin cDNA by plasmid vectors using tryptophan operon promotor. Gene 1984,29,41-49
    149. Marston F. A.O.,Angal S.,White S. et al. Solubilization and cativation of recombinant calf prochymosin from Escherichia coli. Biochem. Soc. Trans. 1985,13,1035
    150. Karpràlek F.,Jecmen P.,Sedlàcek J. et al. Fermentation conditions for high-level expression of the tac-promoter-controlled calf prochymosin cDNA in Escherichia coli HB101. Biotech. Bioeng. 1991, 37,71-79
    151. Supannee Chitpinityol,& M. James C. Crabbe. Review: Chymosin and aspartic proteinases. Food Chemistry 1998,61,395-418
    152. Kawaguchi Y.,Yanagida N.,Uozumi T. et al. Improved direct expression of prochymosin cDNA through changing the SD-ATG codon length. Agric. Biol. Chem. 1986,50,499-500
    153. Shoemaker J.M.,Brasnett A.H. and Marston F.A.O. Examination of calf prochymosin accumulation in Escherichia coli: disulphide linkages are a structural component of prochymosin-containing inclusion bodies. Embo. Journal. 1985,4,775-780
    154. McCaman M.T. Fragments of prochymosin produced in Escherichia coli form insoluble inclusion bodies. Journal Bacteriol. 1989,171,1225-1227
    155. Parente D.,de Ferra F.,Galli G. et al. Prochymosin expression in
    
    Bacillus subtilis. Fems Microbiol. Lett. 1991,77,243-250
    156. Simons G.,Rutten G.,Hornes M. et al. Production of prochymosin in Lactococci. In Structure and Function of Aspartic Proteinases, ed.B.M. Dunn Plenum Press, New York. 1991,115-119
    157. Moir D.T.,Moa J.,Duncan M.J. et al. Production of calf chymosin by the yeast Saccharomyces cerevisiae. In Developments in Industrial Microbiology, ed. L. Underkofler. Society for Industrial Microbiology, Arlington, VA, USA 1985,26,75-85
    158. Van den Berg J.A.,van der Laken K.L.,van Ooyen A.J.J. et al. Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin. Biotechnology. 1990, 8, 135-139
    159. Green M.L.,Angal S.,Lowe P.A. et al. Cheddar cheese-making with recombinant calf chymosin synthesized in Escherichia coli. Journal Dairy Res. 1985,52,281-286
    160. Bines V.E.,Young P. and Law B.A. Comparison of cheddar cheese made with a recombinant calf chymosin and with standard calf rennet. Journal Dairy Res. 1989,56,657-664
    161. Flamm E.L. How FDA approved chymosin: A case history. Biotechnology. 1991,9,349-351
    162. Guinee T.P. Rennet coagulation and coagulants in cheese manufacture. J. of the Society of Dairy Technology. 1992,45(4),94-104
    163. De koning P. J. Coagulating enzymes in cheese making. Dairy Industries International. 1978,43,7-12
    164. Sugrue R. Rennin substitute from our microbiology correspondent. Nature 1969,221,714-715
    165. Winwood J. Rennet and rennet substitutes. Journal of the Society of Dairy Technology. 1989,42,1-2
    166. 顾瑞霞,申戈.凝乳酶及其代用品.中国乳品工业.1991,19,20-23
    167. Macedo A.C.,Malcata F.X.,Oliveira J.C. The technology ,chemistry, and microbiology of Serra Cheese, a review. J. Dairy Sci. 1993,76,1725-1739
    168. Donald E.P. Rennet containing 100% chymosin increase cheese quality and yield. Food Tech. 1989,43,87-89
    
    
    169. Nelson J.H. Symposium: Application of enzyme technology to dairy manufacturing impact of new milk clotting enzymes on cheese technology. J. Dairy Sci. 1975, 58, 1739-1750
    170.熊振平.酶工程.化学工业出版社.1986.
    171. Hidyuki K. Rapid and large scale isolation of chymosin by pepstatin aminohexylagarose. Agric. Biol. Chem. 1987, 42, 2227-2231
    172. Fox P.F. Proteolusis during cheese manufacture and ripening. J. Dairy Sci. 1989, 72, 1379-1400
    173.韦薇,韩刚,徐凤彩.小牛凝乳酶的分离及部分特性的研究.中国乳品工业.1997,25,21—24
    174.杨宝进.不同凝乳酶制做羊奶干酪效果的研究.西北农业大学硕士生毕业论文.1999
    175.李立钊,冀娟,吴限等 凝乳酶的研究与生产.中国畜牧与畜产品加工国际会议论文集.中国科学技术出版社.1996,376—382
    176.姜锡瑞.酶制剂应用手册.中国轻工业出版社.1999,2
    177.张龙翔,张庭芳,李令媛等.生化实验方法和技术.高等教育出版社.1996,12
    178. Guilloteau P., Corring T., Garnot P. et al. Effect of Age and weaning on enzyme activities of abomasum and pancreas of the lamb, J. Dairy Sci, 1983, 66, 2373-2385
    179. Amasaki H. Changes in contents and localizations of carbonic anhydrase Ⅱ, prochymosin and pepsinogen in abomasal mucosae during long term milk feeding goats. Asian-Australasian J. of Ani. Sci. 1992, 5, 527-532
    180.乳品工业手册编写组.乳品工业手册.轻工业出版社.1987,12
    181.郭勇.酶工程.中国轻工业出版社.1997,2
    182. Pedersen V.B., Christensen K.A., Foltmann B. Investigations on the activation of bovine prochymosin. Eur. J. Biochem. 1979,94, 573-580
    183. Leary P.A., Fox P.F. A method for the quantitative analysis of the enzyme complement of commercial rennets. J. Dairy Res. 1974, 41,381-387
    184.张富新,田呈瑞.木瓜蛋白酶凝乳酶特性的研究.西北农业大学学报.1997,25,102-105
    185.张富新.不同因素对羔羊皱胃酶凝乳活性的影响.农业工程学报.2001,17(4),111-114
    186.刘邻渭.食品化学.陕西科技出版社.1996,9
    
    
    187.陈自珍.食品酵素学.台湾.复文书局.1978
    188.张富新.小牛皱胃酶提取技术的研究[J].西北农林科技大学学报(自然科学版),2002,30(1):103—106.