光电子能谱线站的建设及Cu/3C-SiC界面的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的内容主要包括两个方面,一个是NSRL(National SynchrotronRadiation Laboratory)光电子能谱光束线和实验站的建设,一个是对Cu/3C-SiC界面的研究。
     NSRL原有的光电子能谱光束线自建成以后,在同步辐射应用研究方面发挥了重要的作用,并取得了很多有意义的结果。但是由于种种原因,这条光束线存在很多问题,使光电子能谱实验站不能充分发挥同步辐射的优势,因此决定对该光束线进行改造,指标要求为:能量范围覆盖60~1000 eV,样品点流强理论上大于4×10~9光子数/秒(200 mA 15×1 mrad~2 0.1%b.w.),能量分辨本领(E/△E)好于650。样品点最大光斑大小为1 mm(h)×0.8 mm(v)。
     首先进行了光束线的设计。光束线主要包括前置聚焦系统、入射狭缝、单色器、出射狭缝、后置聚焦系统。前置聚焦系统采用柱面-超环面镜组合的聚焦系统,它具有大的水平接收角而光学元件的尺寸可以很小,如果在3218 mm处以2.5°掠入射,水平接收15 mrad时镜子长度为130 mm。我们的系统采用的小尺寸反射镜不仅加工精度高,而且价格更经济,与其它前置系统相比,更具优越性。单色器采用dragon单色器,此种单色器有较少的光学元件,简单的机械机构和很好的性能,因此被广泛应用于真空紫外-软X射线波段。后置聚焦系统采用一个超环面镜将光斑沿垂直和水平方向聚焦到样品点。以SHADOW程序对设计的光束线进行光追迹,来确定各个反射镜的尺寸及子午半径和弧矢半径的大小、入射狭缝和出射狭缝的聚焦情况、单色器的分辨率、样品点的光斑大小。在计入同步辐射光源的特点,光学元件的反射率,光栅的衍射效率及光束线的几何传输效率的情况下,计算结果为:高能光子的光通量在10~(10)光子/秒(200 mA 15×1 mrad~2 0.1%b.w.)的量级,低能光子的光通量可以达到10~(11)光子数/秒(200 mA 15×1 mrad~2 0.1%b.w.)。
     然后进行光束线的安装调试及指标测试。光束线的安装调试是关系到光束线的设计指标能否实现的关键步骤,我们利用各种精密仪器对光束线的各部件进行了离线测试和在线安装,经过模拟激光的观察基本到位。其中单色器是光束线的核心,包括正弦机构和切换机构,正弦机构的直线位移测量精度经过激光干涉仪和光栅尺的距离比对测量,误差小于6μm。正弦杆的标定长度为491.19mm,以此拟合的角度误差小于4秒。对安装调试好的光束线进行分辨本领、光通量的测试及光子能量标定,利用能谱仪测量的结果为:在135/70μm的狭缝开度下,700线/mm光栅在250 eV、450 eV,1220线/mm光栅在500 eV、650 eV时的分辨本领依次为1403、986、1033、1073。能量范围350~1000 eV内,光通量好于3×10~9光子数/秒(200 mA 15×1 mrad~2 0.1%b.w.),能量范围200~500 eV内,光通量好于101~0光子数╱秒(200 mA 15×1 mrad~2 0.1%b.w.),基本达到指标要求。
     对能谱仪的接口和控制软件进行更新。设计出由3个16 bit D/A转换而成的精度较高的18 bit D/A。经过对其稳定性,重复性进行测试,表明18 bit D/A达到设计要求。控制软件实现了对多种硬件设备的驱动,可以控制光束线及实验站选择光子能量,实现与光子能量有关的实验模式,也可以进行XPS(x-rayPhotoelectron Spectroscopy)测试。
     研究了Cu与3C-SiC界面形成过程。SiC作为第三代宽带隙半导体材料,因具有优异的物理化学性能,在高温、高频、高压、大功率的电子器件以及光电子器件等应用领域中占有重要地位。由于铜有低的电阻和高的电子迁移率,是将来电子器件中最吸引人的材料之一。因此Cu/SiC界面的性质对于以SiC为基础的电子器件是非常重要的,然而目前大量的研究都是液态Cu与SiC衬底的相互作用,对固态界面性质的研究则很少。本论文主要用同步辐射光电子能谱和X射线光电子能谱的方法研究了Cu/3C-SiC(111)界面的性质。在超高真空下,Cu慢慢沉积到2ML(monolayer)。Cu2P_(3/2)用XPS测得,结合能从沉积0.08 ML时的933.1 eV移动到沉积2 ML的932.8 eV,Si2P用同步辐射光测得,峰位从未沉积时的43.55 eV移动到沉积2 ML的43.87 eV,峰形状未发生变化,表明Cu与衬底之间没有发生化学反应,薄膜的生长开始为二维生长,超过0.1 ML时变为三维生长,SiC的表面有表面态存在,当沉积少量的Cu时,表面态消失。随着Cu的沉积,能带发生弯曲,肖特基势垒高度增加,在沉积2 MLCu时肖特基势垒变为1.2 eV。
Two aspects are included in this dissertation. One is the re-construction of photoelectron spectroscopy beamline and endstation at NSRL. The other is the study of Cu/3C-SiC interface formation.
     Photoelectron spectroscopy beamline and endstation at NSRL had played an important role in many kinds of new scientific experiments and obtained many important results since it was constructed. But because of some problems, the beamline couldn't be used efficiently, so it is necessary to be modified. The new beamline will cover the photon energy from 60 to 1000 eV with resolution power better than 650(E/△E). The monochromatic spot size at the sample is about 1 mm(h)×0.8 mm(v) with flux better than 4×10~9 photons/s (200 mA 15×1 mrad~2 0.1% b.w.).
     The new beamline was made of prefocusing system, entrance slit, monochromator, exit slit and re-focusing system. The cylindrical-toroidal mirrors system was selected as the prefocusing system. The imaging performance of this system is almost the same as that of the famous grazing KB system, but with reduced mirror dimensions. So the mirrors can be manufactured with better quality and lower cost comparing with other prefocusing systems. The good image quality at the entrance slit proves that this system works successfully. A 'Dragon' momochromator was selected. Because of its less optical element and the simple working mechanism with excellent performance, the 'Dragon' design has been used extensively in the VUV and soft X-ray regions. A toroidal mirror was used to re-focus the SR light along the vertical and horizontal direction on the sample spot.
     The ray tracing program-SHADOW had been used to examine the performance of the beamline, which included the dimensions and radius of all mirrors, the image on entrance slit by prefocusing system, the resolution power of the monochromator and the light spot size on the sample. The calculation result of flux is over 10~(11) and 10~(10) photons/s(200 mA 15×1 mrad~2 0.1% b.w.) at middle and high photon energy region respectively by taking into account of the acceptance of synchrotron radiation, the reflectance of all mirrors, the diffraction of grating and the geometrical transmission of the beamline.
     The beamline performance is strongly related to the alignment accuracy and carefully commissioning. We had tested all main components off-line and put the key parts in the beamline by precise equipment. Mirrors position was adjusted by simulative laser. The monochromator is the core of the beamline. It includes sin-bar drives and switchable device. Laser interferometer measurement shows the linear guide accuracy is within 6μm. The sin-bar length is calibrated to be 491.19 mm and the angle error is less than 4 seconds by fitting method. At 135/70μm slits, the resolution power of monochromator and the photon flux at the sample had been obtained. The resolution power is 1403, 986 for the 700 l/mm grating at 250 eV, 450 eV, and 1033, 1073 for the 1200 l/mm grating at 500 eV, 650 eV respectively by measuring the Au 4f photoemission with VSW HAC5000 hemispherical analisyser. The photon flux is better than 3×10~9 photons/s (200 mA 15×1 mrad~2 0.1% b.w.) in the energy range of 350-1000 eV and better than 10~(10) photons/s (200 mA 15×1 mrad~2 0.1% b.w.) in the energy range of 200-500 eV. The results meet the designed specification
     A new kind of 18 bit D/A was designed for the photoelectron spectrometer. This 18 bit D/A is transformed by three 16 bit D/A. Its stability and repeatabilty were tested and the results could achieve the goal. The new experiment software can control the beamline monochromator effectively as well as the experimental endstation. The program of the experiment endstation can not only do XPS mode for photoemission experiments but also do different experiment modes such as CIS, CFS, EDC, etc. which are needed for photoelectron spectroscopy experiment by using synchrotron radiation.
     Silicon carbide (SiC) is one of the most important wide-band gap semiconductor with excellent physical and chemical properties, and is a promising material for many applications in electronic and optoelectronic devices working in extreme conditions such as high temperature, high frequency, high voltage and high power density. SiC material will play an important role in modern semiconductor device technology. Cu is one of the most attractive materials for the future electronic devices, because of its low resistivity and high electromigration resistance. A thorough understanding of the Cu/SiC interfacal properties is important to make SiC-based technology viable. Presently however, most of basic studies of Cu/SiC system are investigating interactions between liquid copper and solid SiC substrates, while few studies of solid state interface property and reaction between Cu and SiC have been reported. The Cu/3C-SiC(111) interface formation at room temperature was investigated using synchrotron radiation photoelectron spectroscopy (SRPES) and X-ray photoelectron spectroscopy (XPS) by stepwise evaporation of Cu in UHV up to a thickness of 2 ML .The binding energy of the XPS Cu2P_(3/2) core level peak shifted from 933.1 eV at 0.08 ML coverage to 932.8 eV at 2 ML Cu deposition, The kinetic energy of SRPES Si2P core level peak shifted from 43.55 eV at 0ML coverage to 43.87 eV at 2 ML Cu deposition. The stable peaks indicate that no significant chemical reaction has taken place between Cu and SiC at RT. The growth of the film was initially via 2D-cluster formation and exhibited a 3D character above 0.1 ML. The surface states on the SiC surface were found to disappear when a little Cu was deposited. The height of the Schottky barrier for the Cu/3C-SiC (111) contact was found to be 1.2 eV at 2ML Cu deposition.
引文
马礼敦,杨福家主编.2001.同步辐射应用概论[M].上海:复旦大学出版社,13-23,238,239-260.
    王劼,李红红,王峰等.2005.软X射线磁性圆二色光束线的调试和实验[J].核技术,28(7):489-495.
    刘金锋.2007.SiC薄膜的SSMBE外延生长及其结构表征[D]:[博士].合肥:中国科技大学,3-5,62.
    刘洪图主编.2003.半导体材料物理[M].合肥:中国科学技术大学出版社,16,104.
    吕丽军,王秋平,余小江.1999.4-120 nm波段的单色仪光束线设计[J].光学学报,19(1):117-123.
    余小江.1996.同步辐射光电子能谱数据采集系统及其应用[D],中国科技大学图书馆:中国科技大学国家同步辐射实验室,18-19.
    余小江.2002.NSRL表面物理光束线[D]:[博士]合肥:中国科学技术大学,21,71,145-148.
    邹崇文.2006.NSRL表面物理站的调试及宽禁带半导体的SRPES研究[D]:[博士].合肥:中国科技大学,1,68.
    郝跃,彭军,杨银堂,编著.2000.碳化硅宽带隙半导体技术[M].北京:科学出版社.
    濑升主编.2004.电工电子功能材料[M].彭军译.北京:科学出版社,88-92.
    潘承璜,赵良仲编.1981.电子能谱基础[M].北京:科学出版社.
    Aboelfotoh MO.2003.Schottky-barrier behavior of metals on n- and p-type 6H-SiC[J].Phys.Rev.B,67:075312-1-075312-7.
    AD7641-18-Bit,2 MSPS SARADC 产品技术资料.
    Amemiya K,Kondoh H,Yokoyama T,et al.2002.A soft X-ray beamline for surface chemistry at the Photon Factory[J].Journal of Electron Spectroscopy and Related Phenomena,124:151-164.
    An Z,Ohi A,Hirai M,et al.2001.Study of the reaction at Cu/3C-SiC interface[J].Surface Science,493:182-187.
    An Z,Hirai M,Kusaka M,et al.2003.Surface and interface study of Cu(film)/SiC(substrate)system[J].Applied Surface Science,216:169-173.
    Balooch M,Hamza AV.1994.SiC microcomponents via reaction of C60 with silicon[J].J.Vac.96 Sci. Technol.B, 12:3218-3219.
    
    Binari SC, Klein PB, Kazior TE. 2002. Trapping effects in GaN and SiC microwave FETs [J]. Proc. IEEE 2002,90(6):1048-1058.
    
    Cao Y, Nyborg L, Yi D-Q, et al. 2006. Study of reaction process on Ni/4H-SiC Contact [J].Materials Science and Technology, 22 (10): 1227-1234.
    
    Casady JB, Johnson RW. 1996. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review [J]. Solid-St. Electron, 39(10): 1409-1422.
    
    Cavasso FRL, Homema MGP, Landers R, et al.2005.Advances on the Brazilian toroidal grating monochromator (TGM) beamline [J]. Journal of Electron Spectroscopy and Related Phenomena, 144-147:1125-1127.
    
    Cavasso FRL, Lago AF, Homem MGP, et al. 2007. Delivering high-purity vacuum ultraviolet photons at the Brazilian toroidal grating monochromator (TGM) beamline [J] Journal of Electron Spectroscopy and Related Phenomena, 156-158:168-171.
    
    Cepek C, Schiavuta P, Sancrotti M, et al. 1999. Photoemission study of C60/Si (111) adsorption as a function of coverage and annealing temperature [J].Phys. Rev. B, 60(3):2068-2073.
    
    Cheng C-P, Huang J-W, Pi T-W, et al.2006. Surface structure of SiC formed by C60 molecules on a Si (001)-2×1surface at 800 ℃ [J]. JAppl.Phys, 99:123708-1 -123708-5.
    
    Chen CT, Sette F.1988. Performance of the Dragon soft X-ray beamline[J]. Review of Scientific Instrums, 60(7): 1616-1621.
    
    Chen D, Workman R, Sarid D.1995. Growth mechanism of silicon carbide films on silicon substrates using C_(60) carbonization [J]. Surface Science, 344:23-32.
    
    Chen W, Xu H, Loh KP, et al. 2005. Structure of Co deposited 6H-SiC(0001) [J]. Surface Science, 595:107-114.
    
    Cooper J A, Melloch MR, Singh R, et al. 2002. Status and prospects for SiC power MOSFETs IEEE [J]. Trans. Electron Devices, 49(4): 658-664.
    
    Davis RF, Kelner G, Shur M, et al. 1991.Thin-film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide [J].Proc IEEE, 79 (5):677-701.
    
    Dontas I, Kennou S.2001. The interfacial properties of erbium films on the two polar faces of 6H-SiC (0001)[J].Diamond and Related Materials, 10:13-17.
    
    Dontas I, Ladas S, Kennou S. 2003. Study of the early stages of Cu/6H-SiC (000-1) interface formation[J].Diamond and Related Materials, 12:1209-1212.
    
    Dontas I, Karakalos S, Ladas S, et al. 2006. Study of the early stages of Cr/6H-SiC(0 0 0 1) interface formation [J]. Applied Surface Science, 252:5312-5315.
    
    Eiji S. Beamlines in 2004.UVSOR Facility, Institute for Molecular Science.
    
    Fis Nuclear sel A, 2003. Artificially layered heteropolytypic structures based on SiC polytypes: molecular beam epitaxy, characterization and properties[J].Phy. Rep, 379:149-255.
    
    Fonseca P de T, Pacheco JG, Samogin E d'A, et al. 1992. Vacuum ultraviolet beam lines at Laboratdrio National de Luz Sfncrotron, the Brazilian synchrotron source [J]. Review of Scientific Instrums, 63(1): 1256-1259.
    
    Gan KK, Gu MY. 2006. Mechanical alloying process and mechanical properties of Cu-SiCp composite[J]. Materials Science and Technology, 22(8):960-964.
    
    Geier S, Zeitler M, Helming K, et al. 1997.Study of the growth of fullerene-carbonized epitaxial SiC thin films by synchrotron radiation [J].Appl. Phys. A: Mater. Sci. Process, 64(2):139-141.
    
    Gelius U, Svensson S, Siegbahn H, et al.1974. Chem Phys Lett, 28(1):1-7.
    
    Guy OJ, Doneddu D, Chen L, et al. 2006. Improved Schottky contacts to annealed 4H-SiC using a protective carbon cap: Investigated using current voltage measurements and atomic force microscopy [J].Diamond and Related Materials, 15:1472-1477.
    
    Hamza AV, Balooch M, Moalem M. 1994.Growth of silicon carbide films via C_(60) precursors [J]. Surface Science, 317(3):L1129-1135.
    
    Hattori N, Hirai M, Kusaka M, et al. 2003. Investigation of SiC clean surface and Ni/SiC interface using scanning tunneling microscopy [J].Applied Surface Science, 216:54-58.
    
    Henke S, Stritzker B, Rauschenbach B.1995. Synthesis of epitaxialβ-SiC by C_(60) carbonization of silicon [J].J. Appl. Phys. 78:2070-2073.
    
    Hoshino Y, Matsubara Y, Nishimura T, et al. 2005. Atomic and electronic structures of an ultrathin Ni-deposited SiC (0001)-2×2 surface [J]. Phys. Rev. B, 72:235416-1 - 235416-9. http://srdata.nist.gov/xps/query_all_dat_el.asp?elm 1 =Au.
    
    Hu YF, Zuin L, Wright G, et al. 2007.Commissioning and performance of the variable line spacing plane grating monochromator beamline at the Canadian Light Source [J].Review of Scientific Instruments ,78:083109-1 - 083109-5.
    
    Hwanga H-N, Kima H-S, Kima B, et al. 2007.Construction of a soft X-ray beamline at the PLS [J]. Instruments and Methods in Physics Research A, 581:850-855. Instruction manual of VWS HAC5000 analyser, VSW scientific instruments LTD. England.
    
    Instruction manual of VSW MCD150 mutichannel detector, VSW scientific instruments LTD. England.
    
    Iwanowski RJ, Fronc K, Paszkowicz W, et al. 1999. XPS and XRD study of crystalline 3C-SiC grown by sublimation method [J]. Journal of Alloys and Compounds, 286:143-147.
    
    Jan Cˇechal, Toma'sˇ Sˇikola. 2006. A study of the formation and oxidation of PtSi by SR-PES [J].Surface Science, 600:4717-4722.
    
    Jeff T, Matthew RL, Christer W, et al. 1997. Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction [J].Appl. Phys. Lett., 71 (8):1056-1058.
    
    Johnson CM, Wright NG, Uren MJ, et al. 2001. Recent progress and current issues in SiC semiconductor devices for power applications [J].IEE Proc.-Circuits Devices Syst, 148(2):101-108.
    
    Joselito L, Akihiko O, Masaaki H, et al.2003.Surface morphology and interface structural analyses of Ti(film)/SiC(substrate) by PEEM, SXES, AES and XRD [J].Surf. Interface Anal, 35: 89-93.
    
    Jovan M.Hadzi-Vukovic, Milan M. Jevtic. 2007. The voltage pulse degraded Ti/4H-SiC Schottky diodes studied with I-V and low frequency noise measurements [J]. Diamond and Related Materials, 16:81-89.
    
    Kang T-H, Kim K-J, Hwang CC, et al. 2001.PLS photoemission electron microscopy beamline [J]. Nuclear Instruments and Methods in Physics Research A, 467-468:581-585.
    
    Kang HK, Kang SB.2006. Thermal decomposition of silicon carbide in a plasma-sprayed Cu/SiC composite deposit[J]. Materials Science and Engineering A, 428(1 -2):336-345.
    
    Kennou S. 1995.An x-ray photoelectron spectroscopy and work-function study of the Er/a-SiC (0001) interface [J]. J. Appl. Phys, 78 (1):587-589.
    
    Kennou S, Siokou A, Dontas I, et al. 1997. An interface study of vapor-deposited rhenium with the two (0001) polar faces of single crystal 6H-SiC[J].Diamond and Related Materials, 6:1424-1427.
    
    Kildemo M, Grossner U, Raaen S. 2006. Electronic properties of the Ce/4H-SiC interface studied by x-ray photoemission spectroscopy [J].J.Appl. Phys, 100:053706-1-053706-6.
    
    Kildemo M, Grossner U, Juel M, et al.2006. Electronic properties of the Sm/4H-SiC surface alloy[J].J.Appl.Phys,99:013703-1 -013703-9.
    King GC,Tronc M,Read FH,et al.1977.J.Phys.B,10(12):2479-2495.
    Levinshtein ME,Rumyantsev SL,Shur MS编.2003.先进半导体材料数据手册[M].杨树人,殷静志译.北京:化学工业出版社.
    Lebedev AA.2006.Heterojunctions and superlattices based on silicon carbide[J].Semicond.Sci.Technol,21(6):R17-R34.
    Masri P.2002.Silicon carbide and silicon carbide-based structures-The physics of epitaxy[J].Surf.Sci.Rep,48(1-4):1-51.
    Lee H-K,Lee J-K.J.1992.Decomposition and interface reaction in brazing of SiC by copper-based active alloys[J].J.Mater.Sci.Lett,11:550-553.
    Mcdaniel GY,Fenstermaker ST,W.Lampertb WV,et al.2004.Rhenium ohmic contacts on 6H-SiC[J].J.Appl.Phys,96,(9):5357-5364.
    Mannella N,Yang S-H,Mun BS,et al.2006.Observation and resonant x-ray optical interpretation of multi-atom resonant photoemission effects in O 1s emission from NiO[J].Phys.Rev.B,74:165106-1-165106-11.
    Mehregany M,Zorman CA,Rajan N et al.1998.Silicon carbide MEMS for harsh environments [J].Proc.IEEE,86(8):1594-1610.
    Miskiewicz MA,Matysiak H,Kurzydlowski KJ.2007.Finite element method modelling of the properties of a Cu-SiC composite under cyclic loading conditions[J].Materials Science-Poland,25(3):687-697.
    Morkoc H,Strite S,Gao GB,et al.1994.Large-band-gap SIC,Ⅲ-Ⅴ nitride,and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies[J].J.Appl.Phys,76(3):1364-1377.Moro L,Paul A,Lorents DC,et al.1997.Silicon carbide formation by annealing C60 films on silicon[J].J.Appl.Phys,81:6141-6146.
    Nikolopoulos P,Grubmeier H.1992.Wettability and interfacial energies in SiC-liquid metal systems[J].J.Mater.Sci,27:139-145.
    NSRRC Activity Report 2002/2003.138-141.
    Otero E,Urquhart SG.2006.Nitrogen ls near-edge X-ray absorption fine structure spectroscopy of amino acids:Resolving zwitterionic effects[J].J.Phys.Chem.A,110:12121-12128.
    Powell AR,Rowland LB.2002.SiC materials-Progress,status,and potential roadblocks[J]Proc.IEEE,90(6):942-955.
    Qin C-D, Derby B.1991.High-temperature reaction between SiC and silicon copper [J].Brit.Ceram.Trans.J, 90:124-125.
    
    Randall KJ, Feldhaus J, Erlebach W, et al. 1992. Soft x-ray spectroscopy beam line on the NSLS Xl undulator: Optical design and first performance tests [J]. Review of Scientific Instrums, 63:1367-1370.
    
    Regiera T, Krochak J, Sham TK, et al.2007. Performance and capabilities of the Canadian Dragon: The SGM beamline at the Canadian Light Source [J]. Nuclear Instruments and Methods in Physics Research A, 582:93-95.
    
    Roy S, Jacob C, Lang C, et al. 2003. Studies on Ru/3C-SiC Schottky Junctions for High Temperature Hydrogen Sensors[J]. Journal of The Electrochemical Society, 150(6):H135-H139.
    
    Ruff M, Hitlehner H, Helbig R.1994. Sic Devices-Physics and NumericalL- Simulation [J].IEEE Trans. Electron Devices, 41 (6):1040-1054.
    
    Ruus R, Kooser K, Nommiste E, et al. 2004. Potential barrier effects in Cs3d resonance photoemission of CsF [J].Journal of Electron Spectroscopy and Related Phenomena, 137-140: 377-381.
    
    Sakamoto K, Suzuki T, Harada M, et al. 1998. SiC film formation and growth by the thermal reaction of a C60 film adsorbed on a Si (111)-(7×7) surface: Bonding nature of C60 molecules and SiC-film surface phonons [J]. Phys. Rev. B, 57:9003-9014.
    
    Sakamoto K, Harada M, Ashima H, et al.1998. SiC islands grown on Si(111)-(7 × 7) and Si(001)-(2 × 1) surfaces by C60 precursor[J]. Journal of Electron Spectroscopy and Related Phenomena, 88-91:897-903.
    
    Sakamoto K, Kondo D, Ushimi Y, et al. 1999. Temperature dependence of the electronic structure of C60 films adsorbed on Si (001)-2×1and Si (111)-7×7. Surfaces[J]. Phys. Rev. B, 60(4):2579-2590.
    
    Schubert T, Trindade B, Weissgarber T, et al.2008.Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications[J]. Materials Science and Engineering A, 475:39-44.
    
    Schwarzkopf O, Eggenstein F, Flechsig U, et al. 1998. High-resolution constant length Rowland circle monochromator at BESSY [J]. Review of Scientific Instrums, 69:3789-3793.
    
    Sellin PJ, Vaitkus J.2006.New materials for radiation hard semiconductor dectectors[J].Nucl. Instr.and Meth. A, 557:479-489.
    Seyller T, Emtsev KV, Speck F et al.2006.Schottky barrier between 6H-SiC and graphite: Implications for metal/SiC contact formation [J].Appl.Phys.Lett, 88:242103-1-242103-3.
    
    Song YF, Tseng P-C, Huang L-R, et al.2001.Design of an ultra-high resolution and high flux cylindrical grating monochromator undulator beamline [J]. Nuclear Instruments and Methods in Physics Research A, 467-468:496-499.
    
    Song YF, Yuh J-Y, Lee Y-Y, et al. 2006.Performance of an ultrahigh resolution cylindrical grating monochromator undulator beamline [J].Review of Scientific Instrums, 77:085102-1 - 085102-5.
    
    Spetz AL, Tobias P, Baranzahi A, et al. 1999. Current status of silicon carbide based high-temperature gas sensors [J]. IEEE Tran. Electron Devices, 46(3):561-566.
    
    Sriram S, Siergiej RR, Clarke RC.1997.SiC for microwave power transistors [J].Phys. Stat. Sol. A-appl.Resea, 162(1):441-457.
    
    Sung YM, Casady JB, Dufrene JB, et al.2002.A review of SiC static induction transistor development for high-frequency power amplifiers [J].Solid-St. Electron, 46:605-613.
    
    Suzuki S, Yamamoto H, Maeda F, et al.2005. Beamline for angle-resolved photoemission spectroscopy atlow-temperature constructed at NTT Atsugi R&D Center [J]. Journal of Electron Spectroscopy and Related Phenomena 144-147:1109-1112.
    
    Taguchi M, Laan G van der, Arenholz E, et al.2003. Magnetic circular dichroism and spin polarization in 3d/4f resonant photoemission from Tb metal in the perpendicular geometry [J]. Phys. Rev. B, 68:104408-1-104408-9.
    
    Takahashi K, Kondo Y, Azuma J, et al. 2005. Beamline for high-resolution angle-resolved photoemission at Saga Light Source[J]. Journal of Electron Spectroscopy and Related Phenomena, 144-147:1093-1096.
    
    Takashi S, Kazuaki K, Tomoaki H, et al. 2001. Electrical properties and thermal stability of Cu/6H-SiC junctions [J].Jpn.J.Appl.Phys, 40:L43-L45.
    
    Treichler R, Weissgaerber T, Kiendl T. 2006. TOFSIMS analysis of Cu-SiC composites for thermal management applications[J].Apply Surface Science, 252(19):7086-7088.
    
    Tumakha S, Goss SH, Brillson LJ, et al.2005. Electronic defect states at annealed metal/4H-SiC interfaces [J]. J. Vac. Sci. Technol. B, 23(2):594-598.
    
    Volz K, Schreiber S, Zeitler M, et al. 1999. Structural investigations of silicon carbide films formed by fullerene carbonization of silicon [J].Surf.Coat.Technol, 122:101-107.
    Volz K,Schreiber S,Gerlach JW,et al.2000.Heteroepitaxial growth of 3C-SiC on(10(?)by C60 and Si molecular beam epitaxy[J].Mater.Sci.Eng.A,289:255-264.
    Waldrop JR,Grant RW.1992.Formation and Metal Schottky barrier of metal contacts to β-6H-SiC[J].Appl.Phys.Lett,56(6):557-559.
    Waldrop JR,Grant RW,Wang YC,et al.1992.METAL SCHOTTKY-BARRIER CONTACTS TO ALPHA-6H-SIC[J].J.Appl.Phys,72(10):4757-4760.
    Waldrop JR,Grant RW.1993.Schottky barrier height and interface chemistry of annealed metal contacts to alpha 6H-SiC:Crystal face dependence[J].Appl.Phys.Lett,62(21):2685-2687.
    Waldrop JR.1994.Schottky barrier height of.metal contacts to p-type alpha 6H-SiC[J].J.Appl.Phys,75(9):4548-4550.
    Wang J,Williams BW.1999.The 4H-SiC npn power bipolar junction transistor[J].Semicond.Sci.Technol,14:1088-1097.
    Wang J,Williams BW.1999.Evaluation of high-voltage 4H-SiC switching devices[J].IEEE Tran.Electron Devices,46(3):589-597.
    Wang Z,Wynblatt P.1998.Study of a reaction at the solid Cu/a-SiC interface[J].J.Mater.Sci,33:1177-1181.
    Westphal C,Berges U,Dreiner S,et al.2005.The plane-grating monochromator beamline at the U55 undulator for surface and interface studies at DELTA[J].Journal of Electron Spectroscopy and Related Phenomena,144-147:1117-1123.
    Yang L,Zhang X,Huang R,et al.2006.Formation of b-SiC nanowires by annealing SiC films in hydrogen atmosphere[J].Physica E,35:146-150.
    Yu C,Lars N.2006.Quantitative XPS depth profiling for nickel/4H-SiC contact with layered structure[J].Surf.Interface Anal,38:748-751.
    Yuzuru N,Toshikazu I,Kanji Y,et al.2003.Si(4×4)structure appeared in the initial stage of 3C-SiC epitaxial growth on Si(001)usingmonomethylsilane and dimethylsilane[J].Applied Surface Science,212-213:730-734.
    Zou CW,Sun B,Zhang WH,et al.2005.Commissioning of a new beamline and station for ARPES at NSRL[J].Nuclear Instruments and Methods in Physics Research A,548:574-581.
    Zou CW,Sun B,Wu YY et al.2006.Photoemission study of the initial oxidation of 6H-SiC(000(1)over-bar)-(2×2)(C)[J].Journal of Electron Spectroscopy and Related Phenomena,151:40-44.
    (?)CW, Wu YY, Sun B,et al.2007.Photoemission studies of initial oxidation for ultra-thin zinc film on 6H-SiC(0001) surface with synchrotron radiation[J] Applied Surface Science, 253:3761-3765.