红树林湿地微生物对典型有机物污染的响应及其在生物修复中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以福建龙海浮宫九龙江口红树林为研究区域,设置四个断面16个采样站位,于冬季和夏季采集红树林表层沉积物样品。对16个站位的理化因子、胞外酶活性、微生物数量分布特征以及PAHs污染胁迫下红树林沉积物微生物群落响应等方面进行了研究。同时,从红树林沉积物中分离得到了多株PAHs降解菌,采用PCR-DGGE技术分析了PAHs降解单菌的不同组合对单一和混合PAHs的降解规律。主要的研究结果如下:
     1、分别测定了冬季和夏季16个站位红树林表层沉积物的pH值、盐度、温度、有机碳(TOC)、有机质(TOM)、油类含量等理化参数,同时,应用荧光模拟底物的方法和GC/MS的方法对红树林沉积物中的胞外酶活性和PAHs含量也进行了测定,并分析了这些环境参数的相关关系。结果表明,冬季与夏季各环境参数之间有显著差异;各站位α-葡萄糖苷酶活性(α-GlcA)的变化范围分别为10.63μmol/gh-100.86μmol/gh和43.80μmol/gh-197.78μmol/gh;β-葡萄糖苷酶活性(β-GlcA)的变化范围分别为39.60μmol/gh-222.75μmol/gh和169.88μmol/gh-676.93μmol/gh,各站位α-GlcA与β-GlcA呈显著相关性(R~2=0.8215和R~2=0.7582),且β-GlcA显著高于α-GlcA (p<0.05):α-GlcA和β-GlcA与各站位TOC、TOM呈显著相关性,与其它理、化参数无相关关系:不同站位的PAHs含量范围为279.98 ng/g-1074.50 ng/g,各站位均表现为高分子量的PAHs组分占优势,该区域PAHs主要来源于矿物如柴油、汽油和煤的不完全燃烧。
     2、对两个季节红树林沉积物各站位异养细菌、菲(Phe)、芘(Pyr)、荧葸(Flu)、苯并芘(Bap)和混合PAHs(M-PAHs)降解菌进行了计数,分析了它们与各环境参数的相关关系。结果表明,夏季的异养细菌、Phe降解菌、Pyr降解菌、Flu降解菌、Bap降解菌及M-PAHs降解菌数量明显高于冬季;不同季节异养细菌数与各环境因子有不同程度的相关性,同一季节异养细菌数与α-GlcA和β-GlcA均呈显著正相关;各站位不同PAHs降解菌的数量与相应PAHs的含量无显著相关性。
     应用PCR-DGGE技术对红树林沉积物各站位的微生物群落结构进行了分析。结果表明,每个站位都存在着在丰富的微生物多样性,夏季各站位的细菌种类数多于冬季,红树林区细菌多样性高于非红树林区细菌多样性;各站位细菌多样性指数、丰度和均匀度均有不同,不同站位的相似性系数变化较大;聚类分析表明同一断面相邻站位相似性系数较高分类位置较近。
     应用16S rDNA文库技术对红树林沉积物各站位的微生物多样性也进行了分析。结果表明,绝大多数序列对应的细菌均为未培养微生物,这些微生物中变形菌门(Proteobacteria)占优势(70.0%),其次还有拟杆菌门(Bacteroidetes)占8.0%,浮霉菌门(Planctomycetacia)、放线菌门(Actinobacteria)和疣微菌门(Verrucomicrobia)分别占2.0%,除此之外,还检测到未可培养,性质以及分类尚不清楚的细菌占16.0%。无论是PCR-DGGE还是16S rDNA文库的方法,结果均表明红树林沉积物存在着丰富的微生物多样性。
     3、通过PCR-DGGE技术研究红树林沉积物微生物在PAHs污染胁迫下的群落结构变化。结果表明,当加入不同浓度的Phe、Pyr、Bap、M-PAHs后,在不同的时间,微生物群落结构发生了不同的变化。不同浓度的PAHs对红树林沉积物中的微生物群落结构的影响不同,较高浓度的PAHs对微生物群落结构的影响也较大,同时在高浓度的PAHs胁迫下,微生物群落结构发生改变的响应时间也较短。发生明显变化的DGGE条带序列所代表的微生物大部分为未培养微生物。
     4、从红树林冬季沉积物样品中分离得到14株PAHs降解菌,它们都属于变形菌门(Protcobactcria),其中7个属于α-proteobacteria,占50%,7个属于γ-proteobacteria,占50%。对夏季样品以选用不同培养基为筛选策略,经细菌形态分类和RFLP分型后,分离得到67株PAHs降解菌。两个季节共得到不同的PAHs降解菌56株,变形菌门(Proteobacteria)38株,占67.8%,包括α-proteobacteria为14株,β-proteobacteria为1株,γ-proteobacteria为23株;拟杆菌门(Bacteroidetes)5株,占8.9%,包括鞘脂杆菌纲(Sphingobactcria)2株,黄杆菌纲(Flavobacteria)3株;放线菌门(Actinobacteria)5株,占8.9%;厚壁菌门(Firmicutes)的芽孢杆菌纲(Bacilli)8株,占14.3%。
     5、利用平板升华法观察降解菌对PAHs利用能力,结果发现Phe降解菌F2在MM2平板和2216E平板均形成明显的透明圈,同时发现不同降解菌利用PAHs做为碳源进行生长的情况不同。另外,以不同PAHs降解菌驯化过程中DGGE条带的变化信息为依据,将优势条带对应的降解单菌进行组合,研究混合菌系对不同PAHs的降解效果,结果表明,Phe降解菌系和M-PAHs降解菌系对Phe均有较高的降解率,这些降解菌系对三环PAHs的降解率要高于四环和五环PAHs的降解率。
In this research, mangrove swamp has been selected as a research region in Fugong, Longhai, Fujian Province of China to study the potential role in bioremediation of polluted environment. The four transects including sixteen stations were established, and the surficial sediments were collected in Winter and Summer, respectively. Physico-chemical and microbiological parameters were determined in 16 stations from mangrove swamps. The activities of extracellular enzymes were analyzed, and the changes of microbial community constructure were also evaluated when added different PAHs to the samples from mangrove sediments. In addition, according to PCR-DGGE profiles, the research of degradation characteristics of individual and mixed PAHs have been performed by different mixture of PAH-degrading bacteria isolated from mangrove swamp.
     The results obtained are summarized as follows:
     1. The physico-chemical parameters were determined in mangrove surficialsediments from 16 stations, such as pH, salinity, temperature, TOC, TOM, and contents of oil. The glucosidase activities and PAHs contents were also determined in different stations by the method of fluorogenic model substrate (FMS) and GC/MS, respectively. The activities of a-glucosidase (α-GlcA) ranged from 10.63μmol/gh to 100.86μmol/gh and from 43.80μmol/gh to 197.78μmol/gh in Winter and Summer, respectively, and the activities ofβ-glucosidase (β-GlcA) varied from 39.60μmol/gh to 222.75μmol/gh in Winter and from 169.88μmol/gh to 676.93μmol/gh in Summer. There was significant positive relationship betweenα-GlcA andβ-GlcA (R~2=0.8215 and R~2=0.7582), andβ-GlcA was higher thanα-GlcA in different seasons. The significant positive relationship was found between glucosidase activities and TOC, also TOM. Except, there was no significant relationship between glucosidase activities and other environmental parameters. The contents of PAHs ranged from 279.98 ng/g to 1074.50 ng/g,and HMW PAHs were dominant in all of the stations. Based on our data, it suggested the source of PAHs maybe came from fuel combustion.
     2. The numbers of several different bacterial groups, including culturable heterotrophic bacteria, Phe-degrading bacteria, Pyr-degrading bacteria, Flu-degrading bacteria, Bap-degrading bacteria and mixture of PAH-degrading bacteria were counted. Correlated relationship was analyzed between bacterial numbers and environmental parameters. The results showed the numbers of these bacteria were higher in Summer than those in Winter. As to the numbers of culturable heterotrophic bacteria, there was different relationship between them and the environmental parameters in different seasons, and significant positive relationship between them and glucosidase activities. While, there were no differences in correlations between the numbers of PAH-degrading bacteria and contents of PAHs.
     The results of analysis of microbial community structure by the method of PCR-DGGE indicated that the diversity of microbial population was higher in Summer than that in Winter by DGGE profiles. The microbial diversity was also higher in mangrove swamp than that in non-mangrove swamp. There were various Shannon-wiener Index (H), Richness (S), Evenness (EH) and community similar coefficient in mangrove sediments at different stations.
     The results of evaluation to microbial diversity by the method of constructed 16S rDNA library showed that the most colonies were uncultured microbes in 16S rDNA library. The dominant microbes belonged to Proteobacteria (70.0%), the other microbes were Bacteroidetes (8.0%), Planctomycetacia (2.0%), Actinbacteria (2.0%) and Verrucomicrobia (2.0%), respectively. Additional, uncultured and unclassified microbes (16.0%) were also detected. Finally, it demonstrated that there were abundant microbial diversity in mangrove sediments by using the methods of either PCR-DGGE or 16S rDNA library.
     3. The results of research on community structure through the response of microbes in mangrove swamp under PAHs stress revealed that different changes of microbial community structure had occurred in different concentrations of Phe, Pyr, Flu, Bap and M-PAHs. The more obvious influence would happen to microbial community structure in higher concentrations of PAHs, and responsive time would also be short. The most bands of distinct difference were as uncultured microorganisms that were associated with biodegradation of pollutants.
     4.14 strains of PAH-degrading bacteria were isolated from mangrove sediments in Winter. All of these strains belonged to Proteobacteria, includingα-proteobacteria (7 strains, 50%) andγ-proteobacteria (7 strains, 50%). Based on microbial morphology and results of RFLP analysis, 67 strains PAH-degrading bacteria were isolated from mangrove swamp in Summer by some screening strategies with different medium. All of them were chosen to carry out 16S rDNA identification. The results indicated that these strains were grouped into four phylum from samples in Winter and Summer, including 38 strains of proteobacteria (α-proteobacteria, 14 strains;β-proteobacteria,1 strains;γ-proteobacteria,23 strains), 5 strains of Bacteroidetes (Sphingobacteria,2 strains; Flavobacteria 3 strains), 5 strains of Actinobacteria and 8 strains of Firmicutes (Bacilli, 8 strains).
     5. Phe- degrading bacterium F2 formed the clear zones in MM2 and 2216E plates by the sublimate-plate method, and no clear zones were observed in other PAH-degrading bacteria. The different PAH-degrading bacteria had various growth ways to utilize PAHs as sole carbon source. In addition, bacterial degradation effects to PAHs were also studied by mixture of several PAH-degrading bacteria according to information from DGGE profiles. The results of degrading rates by HPLC showed that either Phe-degrading bacteria or mixture of PAH-degrading bacteria had the stronger degradation ability to phenanthrene. The degradation rates to the three rings of PAHs were higher than those of the four or five rings of PAHs.
引文
[1] 林鹏.中国红树林生态系[M].北京:科学出版社,1997.
    [2] 吕彩霞.中国红树林保护与合理利用规划[M].北京:海洋出版社,2002.
    [3] 李长安.中国湿地环境现状与保护对策[J].中国水利,2004,(3):24-26.
    [4] 张乔民,隋淑珍.中国红树林湿地资源及其保护[J].自然资源学报,2001,16(1):28-36.
    [5] 王文卿,王瑁.中国红树林[M].北京:科学出版社,2007.
    [6] 何斌源,范航清,王瑁,等.中国红树林湿地物种多样性及其形成[J].生态学报,2007,27(11):4859-4870.
    [7] 林鹏,张宜辉,杨志伟.厦门海岸红树林的保护与生态恢复[J].厦门大学学报(自然科学版),2005,44(S1):1-6.
    [8] 丁绍莲.我国红树林自然保护区旅游发展动力机制理论探讨[J].生态经济,2007,(1):118-122.
    [9] 沈世伟.红树林在福建省的分布、作用及造林技术[J].林业建设,2007,(3):46-49.
    [10] 彭逸生,周炎武,陈桂珠.红树林湿地恢复研究进展[J].生态学报,2008,28(2):786-797.
    [11] 国家海洋局.中国海洋环境质量公报[M].2007.
    [12] Silva CARE, da Silva AP, de Oliveira SR. Concentration, stock and transport rate of heavy metals in a tropical red mangrove, Natal, Brazil[J]. Marine Chemistry, 2006,99(1-4): 2-11.
    [13] Amusan AA, Adeniyi IF. Characterization and heavy metal retention capacity of soils in mangrove forest of the Niger Delta, Nigeria[J]. Communications in Soil Science and Plant Analysis, 2005, 36(15-16): 2033-2045.
    [14] Cuong DT, Bayen S, Wurl O, et al. Heavy metal contamination in mangrove habitats of Singapore[J]. Marine Pollution Bulletin, 2005, 50(12): 1732-1738.
    [15] 林鹏,陈荣华.九龙江口红树林对汞的循环和净化作用[J].海洋学报(中文版),1989,11(2):242-247.
    [16] MacFarlane GR, Pulkownik A, Burchett MD. Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk.)Vierh.: biological indication potential[J]. Environmental Pollution, 2003, 123(1): 139-151.
    
    [17] Otitoloju AA. Evaluation of the joint-action toxicity of binary mixtures of heavy metals against the mangrove periwinkle Tympanotonus fuscatus var radula (L.)[J]. Ecotoxicology and Environmental Safety, 2002, 53(3): 404-415.
    
    [18] Tang YJ, Fang ZQ, Yu SX. Heavy metals, polycyclic aromatic hydrocarbons and organochlorine pesticides in the surface sediments of mangrove swamps from coastal sites along the Leizhou Peninsula, South China[J]. Acta Oceanologica Sinica, 2008, 27(1): 42-53.
    
    [19] Usha B, Prashanth SR, Parida A. Differential expression of two metallothionein encoding genes during heavy metal stress in the mangrove species, Avicennia marina (Forsk.) Vierh[J]. Current Science, 2007, 93(9): 1215-1219.
    
    [20] Guangqiu Q, Chongling Y, Haoliang L. Influence of heavy metals on the carbohydrate and phenolics in mangrove, Aegiceras corniculatum L., seedlings[J]. Bulletin of Environmental Contamination and Toxicology, 2007, 78(6): 440-444.
    
    [21] Zhang FQ, Wang YS, Lou ZP, et al. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza)[J]. Chemosphere, 2007, 67(1): 44-50.
    
    [22] Ravikumar S, Williams GP, Shanthy S, et al. Effect of heavy metals (Hg and Zn) on the growth and phosphate solubilising activity in halophilic phosphobacteria isolated from Manakudi mangrove[J]. Journal of Environmental Biology, 2007, 28(1): 109-114.
    
    [23] Chen RG, Twilley RR. A gap dynamic model of mangrove forest development along gradients of soil salinity and nutrient resources[J]. Journal of Ecology, 1998, 86(1): 37-51.
    [24] Hogarth PJ. The Biology of Mangroves[M]. Oxford: Oxford University Press,1999.
    [25] Maciel-Souza MD, Macrae A, Volpon AGT, et al. Chemical and microbiological characterization of mangrove sediments after a large oil-spill in Guanabara Bay, RJ, Brazil[J]. Brazilian Journal of Microbiology, 2006,37(3): 262-266.
    [26] 卢昌义,林鹏.利用红树植物监测海岸油污染方法初探[J].生态学杂志,1990,9(1):57-59.
    [27] Jones DA, Plaza J, Watt I, et al. Long-term (1991-1995) monitoring of the intertidal biota of Saudi Arabia after the 1991 Gulf War oil spill[J]. Marine Pollution Bulletin, 1998, 36(6): 472-489.
    [28] Duke NC, Burns KA, Swannell RPJ, et al. Dispersant use and a bioremediation strategy as alternate means of reducing impacts of large oil spills on mangroves: The Gladstone field trials[J]. Marine Pollution Bulletin,2000,41(7-12): 403-412.
    [29] Menzie CA, Hoeppner SS, Cura JJ, et al. Urban and suburban storm water runoff as a source of polycyclic aromatic hydrocarbons (PAHs) to Massachusetts estuarine and coastal environments[J]. Estuaries, 2002, 25(2):165-176.
    [30] Boxall ABA, Maltby L. The effects of motorway runoff on freshwater ecosystems .3. Toxicant confirmation[J]. Archives of Environmental Contamination and Toxicology, 1997, 33(1): 9-16.
    [31] Mailhot H. Prediction of algal bioaccumulation and uptake rate of nine organic compounds by ten physicochemical properties[J]. Environmental Science & Technology, 1987,21: 1009-1013.
    [32] 欧盟2010年正式限用多环芳烃[J].特种橡胶制品,2008,(1):49.
    [33] stegeman JJ. Cytochrome p-0450monooxygenase system in aquatic species:Carcinogen metabolism and biomarkers for carcinogen and pollutant exposure[J]. Environmental Health Perspectives, 1991,90: 101-109.
    [34] Kellen E, Zeegers M, Paulussen A, et al. Does occupational exposure to PAHs, diesel and aromatic amines interact with smoking and metabolic genetic polymorphisms to increase the risk on bladder cancer?; The Belgian case control study on bladder cancer risk[J]. Cancer Lett, 2007, 245(1-2): 51-60.
    [35] Singh A, Ward OP. Biodegradation and Bioremediation[M]. ed. A. Varma. Berlin: Springer-Verlag Berlin Heidelberg, 309,2004.
    [36] Boonyatumanond R, Wattayakorn G, Togo A, et al. Distribution and origins of polycyclic aromatic hydrocarbons (PAHs) in riverine, estuarine, and marine sediments in Thailand[J]. Mar Pollut Bull, 2006, 52(8): 942-56.
    [37] Chen YJ, Sheng GY, Bi XH, et al. Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China[J]. Environmental Science & Technology, 2005, 39(6): 1861-1867.
    [38] Tsapakis M, Stephanou EG Occurrence of gaseous and particulate polycyclic aromatic hydrocarbons in the urban atmosphere: study of sources and ambient temperature effect on the gas/particle concentration and distribution[J]. Environ Pollut, 2005, 133(1): 147-56.
    [39] Odabasi M, Vardar N, Sofuoglu A, et al. Polycyclic aromatic hydrocarbons (PAHs) in Chicago air[J]. Science of the Total Environment, 1999, 227(1): 57-67.
    [40] Li CL, Fu JM, Sheng GY, et al. Vertical distribution of PAHs in the indoor and outdoor PM2.5 in Guangzhou, China[J]. Building and Environment, 2005, 40(3): 329-341.
    [41] Zhou JL, Hong H, Zhang Z, et al. Multi-phase distribution of organic micropollutants in Xiamen Harbour, China[J]. Water Research, 2000, 34(7): 2132-2150.
    [42] Zhang ZL, Hong HS, Zhou JL, et al. Phase association of polycyclic aromatic hydrocarbons in the Minjiang River Estuary, China[J]. Science of the Total Environment, 2004, 323(1-3): 71-86.
    [43] Chen BL, Xuan XD, Zhu LZ, et al. Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China[J]. Water Research, 2004, 38(16): 3558-3568.
    [44] Shi Z, Tao S, Pan B, et al. Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons[J]. Environmental Pollution, 2005, 134(1):97-111.
    [45] Luo XJ, Mai BX, Yang QS, et al. Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China[J]. Marine Pollution Bulletin, 2004,48(11-12): 1102-1115.
    [46] 杨清书,欧素英,谢萍,等.珠江虎门潮汐水道水体中多环芳烃的分布及季节变化[J].海洋学报(中文版),2004,26(6):37-48.
    [47] Zhang ZL, Huang J, Yu G, et al. Occurrence of PAHs, PCBs and organochlorine pesticides in the Tonghui River of Beijing, China[J].Environmental Pollution, 2004,130(2): 249-261.
    [48] Maskaoui K,Zhou JL, Hong HS, et al. Contamination by polycyclic aromatic hydrocarbons in the Jiulong River Estuary and Western Xiamen Sea,China[J].Environmental Pollution, 2002,118(1): 109-122.
    [49] Zhou JL, Maskaoui K. Distribution of polycyclic aromatic hydrocarbons in water and surface sediments from Daya Bay, China[J]. Environmental Pollution, 2003,121(2): 269-281.
    [50] Ko F-C, Baker JE. Partitioning of hydrophobic organic contaminants to resuspended sediments and plankton in the mesohaline Chesapeake Bay[J].Marine Chemistry, 1995,49(2-3): 171-188.
    [51] Manoli E, Samara C, Konstantinou I, et al. Polycyclic aromatic hydrocarbons in the bulk precipitation and surface waters of Northern Greece[J].Chemosphere, 2000,41(12): 1845-1855.
    [52] Ngabe B, Bidleman TF, Scott GI. Polycyclic aromatic hydrocarbons in storm runoff from urban and coastal South Carolina[J]. Science of the Total Environment, 2000,255(1-3): 1-9.
    [53] 程家丽,黄启飞,魏世强,等.我国环境介质中多环芳烃的分布及其生态风险[J].环境工程学报,2007,1(4):138-144.
    [54] 陈静,王学军,陶澍,等.天津地区土壤多环芳烃在剖面中的纵向分布特征[J].环境科学学报,2004,24(2):286-290.
    [55] Ma LL, Chu SG, Wang XT, et al. Polycyclic aromatic hydrocarbons in the surface soils from outskirts of Beijing, China[J]. Chemosphere, 2005, 58(10):1355-1363.
    [56] Tang L, Tang XY, Zhu YG, et al. Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China[J]. Environment International, 2005, 31(6): 822-828.
    [57] Wu Y, Zhang J, Zhu ZJ. Polycyclic aromatic hydrocarbons in the sediments of the Yalujiang Estuary, North China[J]. Marine Pollution Bulletin, 2003, 46(5):619-625.
    [58] Tao S, Cui YH, Xu F, et al. Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin[J]. Science of the Total Environment, 2004, 320(1): 11-24.
    [59] 孙娟,郑文教,陈文田.红树林湿地多环芳烃污染研究进展[J].生态学杂志,2005,24(10):1211-1214.
    [60] Tarn NF, Ke L, Wang XH, et al. Contamination of polycyclic aromatic hydrocarbons in surface sediments of mangrove swamps[J]. Environ Pollut,2001,114(2): 255-63.
    [61] Yang GP. Polycyclic aromatic hydrocarbons in the sediments of the South China Sea[J]. Environ Pollut, 2000,108(2): 163-71.
    [62] 陆志强,郑文教,马丽.九龙江口及邻近港湾红树林区沉积物中多环芳烃污染现状及评价[J].台湾海峡,2007,26(3):321-326.
    [63] Fischer SG, Lerman LS. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory[J]. Proc Natl Acad Sci U S A, 1983, 80(6): 1579-83.
    [64] Muyzer G, de Waal EC, Uitterlinden AG Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Appl Environ Microbiol, 1993, 59(3): 695-700.
    [65] Ranjard L, Poly F, Nazaret S. Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment[J]. Research in Microbiology, 2000,151(3): 167-177.
    
    [66] Ferris MJ, Muyzer G, Ward DM. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community[J]. Appl Environ Microbiol, 1996, 62(2): 340-6.
    
    [67] Garcia-Pichel F, Johnson SL, Youngkin D, et al. Small-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the Colorado plateau[J]. Microb Ecol, 2003,46(3): 312-21.
    
    [68] Casamayor EO, Schafer H, Baneras L, et al. Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis[J]. Appl Environ Microbiol, 2000,66(2): 499-508.
    
    [69] Sekiguchi H, Watanabe M, Nakahara T, et al. Succession of bacterial community structure along the Changjiang River determined by denaturing gradient gel electrophoresis and clone library analysis[J]. Appl Environ Microbiol, 2002, 68(10): 5142-50.
    
    [70] Bano N, Hollibaugh JT. Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean[J]. Appl Environ Microbiol, 2002, 68(2): 505-18.
    
    [71] Smalla K, Wieland G, Buchner A, et al. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed[J]. Appl Environ Microbiol, 2001, 67(10): 4742-51.
    
    [72] Jung S, Park S, Kim D, et al. Denaturing gradient gel electrophoresis analysis of bacterial community profiles in the rhizosphere of crylAC-carrying Brassica rapa subsp. pekinensis[J]. J Microbiol, 2008,46(1): 12-5.
    
    [73] Nagy ML, Perez A, Garcia-Pichel F. The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ)[J]. FEMS Microbiol Ecol, 2005, 54(2): 233-45.
    [74] Henriques IS, Alves A, Tacao M, et al. Seasonal and spatial variability of free-living bacterial community composition along an estuarine gradient (Ria de Aveiro, Portugal)[J]. Estuarine Coastal and Shelf Science, 2006, 68(1-2):139-148.
    [75] Ibekwe AM, Papiernik SK, Gan J, et al. Impact of fumigants on soil microbial communities[J]. Appl Environ Microbiol, 2001, 67(7): 3245-57.
    [76] Sun HY, Deng SP, Raun WR. Bacterial community structure and diversity in a century-old manure-treated agroecosystem[J]. Appl Environ Microbiol, 2004,70(10): 5868-74.
    [77] Kanaly RA, Bartha R, Watanabe K, et al. Rapid mineralization of benzo[a]pyrene by a microbial consortium growing on diesel fuel[J]. Appl Environ Microbiol, 2000, 66(10): 4205-11.
    [78] Muller AK, Westergaard K, Christensen S, et al. The effect of long-term mercury pollution on the soil microbial community[J]. FEMS Microbiol Ecol,2001, 36(1): 11-19.
    [79] 王岳坤,洪葵.红树林土壤细菌群落16SrDNAV3片段PCR产物的DGGE分析[J].微生物学报,2005,45(2):20l一204.
    [80] Lopez I, Ruiz-Larrea F, Cocolin L, et al. Design and evaluation of PCR primers for analysis of bacterial populations in wine by denaturing gradient gel electrophoresis[J]. Appl Environ Microbiol, 2003, 69(11): 6801-7.
    [81] Chrost RJ. Characterization and significance of β-glucosidase activity in lake water[J]. Limnol. Oceanogr., 1989, 34(4): 660-672.
    [82] Chrost RJ. Microbial enzymes in aquatic environments[M]. New York: Springer-Verlag, 1991.
    [83] [苏]Ω.X.哈兹耶夫.土壤酶活性[M].北京:科学出版社,1980.
    [84] 徐海,陈少波,张素霞,等.红树林土壤基本特征及发展前景[J].安徽农业科学,2008,36(4):1496-1497,1504.
    [85] 张银龙,林鹏.秋茄红树林土壤酶活性时空动态[J].厦门大学学报(自然科学版),1999,38(1):129-136.
    [86] Sannino F, Gianfreda L. Pesticide influence on soil enzymatic activities[J]. Chemosphere, 2001,45(4-5): 417-425.
    [87] Adam G, Duncan H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils[J]. Soil Biology & Biochemistry, 2001, 33(7-8): 943-951.
    [88] Martinez J, Smith DC, Steward GF, et al. Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea[J]. Aquatic Microbial Ecology, 1996,10: 223-230.
    [89] Green VS, Stott DE, Diack M. Assay for fluorescein diacetate hydrolytic activity: Optimization for soil samples[J]. Soil Biology & Biochemistry, 2006,38(4): 693-701.
    [90] Kim SJ, Hoppe HG Microbial extracellular enzyme detection on agar plates by means of fluorogenic methylumbelliferyl-substrates[J]. Actes de Colloques,1986,3:175-183.
    [91] 郑天凌,王斐,徐美珠,等.台湾海峡水域的β-葡萄糖苷酶活性[J].应用与环境生物学报,2001,7(2):175.182.
    [92] Boschker HTS, Cappenberg TE. Patterns of extracellular enzyme activities in littoral sediments of Lake Gooimeer, The Netherlands[J]. Ferns Microbiology Ecology, 1998,25(1): 79-86.
    [93] Kang HJ, Freeman C. Phosphatase and arylsulphatase activities in wetland soils: annual variation and controlling factors[J]. Soil Biology & Biochemistry,1999, 31(3): 449-454.
    [94] McLatchey GP, Reddy KR. Regulation of organic matter decomposition and nutrient release in a wetland soil[J]. Journal of Environmental Quality, 1998,27(5): 1268-1274.
    [95] Parham JA, Deng SP. Detection, quantification and characterization of beta-glucosaminidase activity in soil[J]. Soil Biology & Biochemistry, 2000,32(8-9): 1183-1190.
    [96] Meyer-Reil LA. Seasonal and Spatial Distribution of Extracellular Enzymatic Activities and Microbial Incorporation of Dissolved Organic Substrates in Marine Sediments[J]. Appl Environ Microbiol, 1987, 53(8): 1748-1755.
    [97] 郑天凌,庄铁城,蔡立哲,等.微生物在海洋污染环境中的生物修复作用[J].厦门大学学报(自然科学版),200 1,40(2):524-534.
    [98] 王家玲.环境微生物学[M].北京:高等教育出版社,2004.
    [99] 陈春云,岳珂,陈振明,等.微生物降解多环芳烃的研究进展[J].微生物学杂志,2007,27(6):100-103.
    [100] 张杰,刘永生,冯家勋,等.多环芳烃降解菌ZL5分离鉴定及其降解质粒[J].应用与环境生物学报,2003,9(4):433-435.
    [101] Barclay CD, Farquhar GF, Legge RL. Biodegradation and sorption of polyaromatic hydrocarbons by Phanerochaete chrysosporium[J]. Appl Microbiol Biotechnol, 1995,42(6): 958-63.
    [102] 邹德勋,骆永明,徐凤花,等.土壤环境中多环芳烃的微生物降解及联合生物修复[J].土壤,2007,39(3):334-340.
    [103] Kotterman MJ, Rietberg HJ, Hage A, et al. Polycyclic aromatic hydrocarbon oxidation by the white-rot fungus Bjerkandera sp. strain BOS55 in the presence of nonionic surfactants[J]. Biotechnol Bioeng, 1998, 57(2): 220-7.
    [104] Cerniglia CE. Fungal metabolism of polycyclic aromatic hydrocarbons: past,present and future applications in bioremediation[J]. J Ind Microbiol Biotechnol, 1997,19(5-6): 324-33.
    [105] Rabinovich ML, Bolobova AV, Vasil'chenko LG. Fungal Decomposition of Natural Aromatic Structures and Xenobiotics: A Review[J]. Applied Biochemistry and Microbiology, 2004,40(1): 1-17.
    [106] Warshawsky D, Radike M, Jayasimbulu K, et al. Metabolism of benza[a]pyrene by a dioxygenase enzyme system of the freshwater green alga Selanastum capricornutum[J]. Biochemical and Biophysical Research Communication, 1988,152: 479-484.
    [107] Murty VS, Penning TM. Polycyclic aromatic hydrocarbon (PAH) ortho-quinone conjugate chemistry: Kinetics of thiol addition to PAH ortho-quinones and structures of thioether adducts of naphthalene-1,2-dione[J].Chemico-Biological Interactions, 1992, 84(2): 169-188.
    [108] Monks TJ, Hanzlik RP, Cohen GM, et al. Quinone chemistry and toxicity[J]. Toxicology and Applied Pharmacology, 1992,112(1): 2-16.
    [109] Bamforth SM, Singleton I. Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions[J]. Journal of Chemical Technology and Biotechnology, 2005, 80(7): 723-736.
    [110] Juhasz AL, Naidu R. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene[J]. International Biodeterioration & Biodegradation, 2000,45(1-2): 57-88.
    [111] Mahaffey WR, Gibson DT, Cerniglia CE. Bacterial oxidation of chemical carcinogens: formation of polycyclic aromatic acids from benz[a]anthracene[J]. Appl Environ Microbiol, 1988, 54(10): 2415-23.
    [112] Cerniglia CE. Biodegradation of polycyclic aromatic hydrocarbons[J]. Biodegradation, 1992, 3(2): 351-368.
    [113] Alongi DM. Bacterial productivity and microbial biomass in tropical mangrove sediments[J]. Microbial Ecology, 1988, 15(1): 59-79.
    [114] Shome R, Shome BR, Mandal AB, et al. Bacterial flora in mangroves of Andaman. Part 1: Isolation, identification and antibiogram studies[J]. Indian J. Mar. Sci, 1995,24: 97-98.
    [115] 王岳坤,洪葵.红树林土壤因子对土壤微生物数量的影响[J].热带作物学报,2005,26(3):109-114.
    [116] Al-Sayed HA, Ghanem EH, Saleh KM. Bacterial community and some physico-chemical characteristics in a subtropical mangrove environment in Bahrain[J]. Marine Pollution Bulletin, 2005, 50(2): 147-155.
    [117] 刘峰,洪葵.红树林微生物及其代谢产物多样性[J].海南医学,2006,17(5):171-173.
    [118] Ananda K, Sridhar KR. Diversity of endophytic fungi in the roots of mangrove species on the west coast of India[J]. Can J Microbiol, 2002,48(10): 871-8.
    [119] 王岳坤.清澜港红树林土壤微生物区系和土壤细菌16S rDNA的多态性研究[D].华南热带农业大学,2004.
    [120] Sengupta A, Chaudhuri S. Halotolerant rhizobium strains from mangrove swamps of the Ganges River Delta[J]. Indian J. Microbiol, 1990, 30(4): 483-484.
    [121] Holguin G, Vazquez P, Bashan Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview[J]. Biology and Fertility of Soils, 2001, 33(4): 265-278.
    [122] Rappe MS, Giovannoni SJ. The uncultured microbial majority[J]. Annu Rev Microbiol, 2003, 57: 369-94.
    [123] Dauga C, Dore J, Sghir A. Expanding the known diversity and environmental distribution of cultured and uncultured bacteria[J]. Med Sci (Paris), 2005, 21(3): 290-6.
    [124] Steele HL, Streit WR. Metagenomics: advances in ecology and biotechnology[J]. FEMS Microbiol Lett, 2005,247(2): 105-11.
    [125] Handelsman J. Metagenomics: application of genomics to uncultured microorganisms[J]. Microbiol Mol Biol Rev, 2004, 68(4): 669-85.
    [126] Tringe SG, von Mering C, Kobayashi A, et al. Comparative metagenomics of microbial communities[J]. Science, 2005, 308(5721): 554-7.
    [127] Labrenz M, Brettar I, Christen R, et al. Development and application of a real-time PCR approach for quantification of uncultured bacteria in the central Baltic Sea[J]. Appl Environ Microbiol, 2004, 70(8): 4971-9.
    [128] Tringe SG, Rubin EM. Metagenomics: DNA sequencing of environmental samples[J]. Nat Rev Genet, 2005, 6(11): 805-14.
    
    [ 129] Daniel R. The metagenomics of soil[J]. Nat Rev Microbiol, 2005, 3(6): 470-8.
    
    [130] Ward N. New directions and interactions in metagenomics research[J]. FEMS Microbiol Ecol, 2006, 55(3): 331-8.
    [131] Lu Y, Lueders T, Friedrich MW, et al. Detecting active methanogenic populations on rice roots using stable isotope probing[J]. Environ Microbiol, 2005, 7(3): 326-36.
    [132] Lu Y, Conrad R. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere[J]. Science, 2005, 309(5737): 1088-90.
    [133] 胡承彪,梁秀棠.合浦滨海海滩森林土壤微生物区系及生化活性[J].热带林业,1987,(1):1-7.
    [134] Sahu MK, Murugan M, Sivakumar K, et al. Occurrence and distribution of actinomycetes in marine environs and their antagonistic activity against bacteria that is pathogenic to shrimps[J]. Israeli Journal of Aquaculture-Bamidgeh, 2007, 59(3): 155-161.
    [135] 林鹏,张瑜斌,邓爱英,等.九龙江口红树林土壤微生物的类群及抗菌活性[J].海洋学报(中文版),2005,27(3):133-141.
    [136] Takeuchi M, Hatano K. Gordonia rhizosphera sp. nov, isolated from the mangrove rhizosphere[J]. International Journal of Systematic Bacteriology, 1998,48:907-912.
    [137] Takeuchi M, Hatano K. Agromyces luteolus sp nov., Agromyces rhizospherae sp nov and Agromyces bracchium sp nov., from the mangrove rhizosphere[J]. International Journal of Systematic and Evolutionary Microbiology, 2001, 51:1529-1537.
    [138] Lyimo TJ, Pol A, den Camp HJM, et al. Methanosarcina semesiae sp nov., a dimethylsulfide-utilizing methanogen from mangrove sediment[J]. International Journal of Systematic and Evolutionary Microbiology, 2000, 50:171-178.
    [139] Arunasri K, Sasikala C, Ramana CV, et al. Marichromatium indicum sp nov., a novel purple sulfur gammaproteobacterium from mangrove soil of Goa,India[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55:673-679.
    [140] Tamura T, Sakane T. Asanoa iriomotensis sp nov., isolated from mangrove soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55: 725-727.
    [141] Germida JJ, Siciliano SD, Renato de Freitas J, et al. Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.)[J]. FEMS Microbiology Ecology, 1998,26(1): 43-50.
    [142] Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiol Rev, 1995, 59(1): 143-69.
    [143] Stackebrandt E, M. ET. Diversity of unclutured microorganisms in the environment[J]. 2000.
    [144] Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition[J]. Appl Environ Microbiol, 1996, 62(2): 316-22.
    [145] Bertrand H, Poly F, Van VT, et al. High molecular weight DNA recovery from soils prerequisite for biotechnological metagenomic library construction[J]. J Microbiol Methods, 2005, 62(1): 1-11.
    [146] Pace NR. A molecular view of microbial diversity and the biosphere[J]. Science, 1997,276(5313): 734-40.
    [147] Giovannoni SJ, Britschgi TB, Moyer CL, et al. Genetic diversity in Sargasso Sea bacterioplankton[J]. Nature, 1990, 345(6270): 60-3.
    [148] Gonzalez JM, Moran MA. Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater[J]. Appl Environ Microbiol, 1997, 63(11): 4237-42.
    [149] Kemp PF, Aller JY. Bacterial diversity in aquatic and other environments:what 16S rDNA libraries can tell us[J]. Ferns Microbiology Ecology, 2004,47(2): 161-177.
    [150] Dunbar J, Takala S, Barns SM, et al. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning[J]. Appl Environ Microbiol, 1999,65(4): 1662-9.
    [151] Dunbar J, Ticknor LO, Kuske CR. Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis[J]. Appl Environ Microbiol, 2000, 66(7): 2943-50.
    [152] 梁毓,王树玉,贾婵维.荧光原位杂交技术的研究进展[J].中国优生与遗传杂志,2005,13(5):119-120.
    [153] 王建龙.荧光原位杂交(FISH)技术检测水体中大肠菌群研究[J].中国生物 工程杂志,2004,24(2):70-73.
    [154] 邢德峰,任南琪,李建政.荧光原位杂交在环境微生物学中的应用及进展[J].环境科学研究,2003,16(3):55-58.
    [155] Alfreider A, Pernthaler J, Amann R, et al. Community Analysis of the Bacterial Assemblages in the Winter Cover and Pelagic Layers of a High Mountain Lake by In Situ Hybridization[J]. Appl Environ Microbiol, 1996,62(6): 2138-2144.
    [156] 孙寓姣,王勇,黄霞.荧光原位杂交技术在环境微生物生态学解析中的应用研究[J].环境污染治理技术与设备,2004,5(11):14-20.
    [157] 叶姜瑜,罗固源.微生物可培养性低的生态学释因与对策[J].微生物学报,2005,45(3):478-482.
    [158] 焦瑞身.新世纪微生物学者的一项重要任务——未培养微生物的分离培养[J].生物工程学报,2004,20(5):641-654.
    [159] 戴欣,王保军,黄燕,等.普通和稀释培养基研究太湖沉积物可培养细菌的多样性[J].微生物学报,2005,45(2):161-165.
    [160] 蒋云霞,郑天凌,田蕴.红树林土壤微生物的研究:过去、现在、未来[J].微生物学报,2006,46(5):848-851.
    [161] Yu KSH, Wong AHY, Yau KWY, et al. Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments[J]. Marine Pollution Bulletin, 2005, 51(8-12): 1071-1077.
    [162] Burns KA, Codi S, Swannell RJP, et al. Assessing the oil degradation potential of endogenous micro - organisms in tropical marine wetlands[J]. Mangroves and Salt Marshes, 1999, 3(2): 67-84.
    [163] 庄铁诚,林鹏.红树林下土壤微生物对柴油的降解[J].厦门大学学报(自然科学版),1995,34(3):442-446.
    [164] Halide H, Ridd PV, Peterson EL, et al. Assessing sediment removal capacity of vegetated and non-vegetated settling ponds in prawn farms[J]. Aquacultural Engineering, 2003,27(4): 295-314.
    [165] Boonsong K, Piyatiratitivorakul S, Patanaponpaiboon P. Potential use of mangrove plantation as constructed wetland for municipal wastewater treatment[J]. Water Science and Technology, 2003, 48(5): 257-266.
    [166] Chu HY, Chen NC, Yeung MC, et al. Tide-tank system simulating mangrove wetland for removal of nutrients and heavy metals from wastewater[J]. Water Science and Technology, 1998, 38(1): 361-368.
    [167] Ye Y, Tarn NF, Wong YS. Livestock wastewater treatment by a mangrove pot-cultivation system and the effect of salinity on the nutrient removal efficiency[J]. Mar Pollut Bull, 2001,42(6): 513-21.
    [168] Tarn NFY. Effects of wastewater discharge on microbial populations and enzyme activities in mangrove soils[J]. Environmental Pollution, 1998, 102(2-3): 233-242.
    [169] 庄铁诚,张瑜斌,林鹏.红树林土壤微生物对甲胺磷的降解[J].应用与环境生物学报,2000,6(3):276-280.
    [170] Ke L, Wang WQ, Wong TWY, et al. Removal of pyrene from contaminated sediments by mangrove microcosms[J]. Chemosphere, 2003, 51(1): 25-34.
    [171] 李魁晓,顾继东.红树林细菌Rhodococcus ruberlK降解邻苯二甲酸二丁酯的研究[J].应用生态学报,2005,16(8):1566-1568.
    [172] Yu SH, Ke L, Wong YS, et al. Degradation of polycyclic aromatic hydrocarbons (PAHS) by a bacterial consortium enriched from mangrove sediments[J]. Environment International, 2005, 31(2): 149-154.
    [173] Lin P. Mangrove Ecosystem in China[M]. ed. K.L. Peng. Beijing: Science Press, 271,1999.
    [174] Belanger C, Desrosiers B, Lee K. Microbial extracellular enzyme activity in marine sediments: extreme pH to terminate reaction and sample storage[J]. Aquatic Microbial Ecology, 1997,13(2): 187-196.
    [175] Hoppe HG Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates[J]. Marine Ecology-Progress Series, 1983,11: 299-308.
    [176] Pritsch K, Raidl S, Marksteiner E, et al. A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone-labelled fluorogenic substrates in a microplate system[J]. J Microbiol Methods, 2004, 58(2): 233-41.
    [177] Zhou M, Upson RH, Diwu Z, et al. A fluorogenic substrate for beta-glucuronidase: applications in fluorometric, polyacrylamide gel and histochemical assays[J]. J Biochem Biophys Methods, 1996, 33(3): 197-205.
    [178] Somville M, Billen G A method for determining exoproteolytic activity in natural waters[J]. Limnology and Oceanography, 1983,28(1): 190-193.
    [179] Hoppe HG Relations between bacterial extracellular enzyme activities and heterotrophic substrate uptake in a brackish water environment[J]. Actes de Colloques, 1986, 3: 119-128.
    [180] Karner M, Rassoulzadegan F. Extracellular enzyme activity: indications for high short-term variablity in a coastal marine ecosystem[J]. Microbial Ecology, 1995,30: 143-156.
    [181] Rulik M, Spacil R. Extracellular enzyme activity within hyporheic sediments of a small lowland stream[J]. Soil Biology & Biochemistry, 2004, 36(10): 1653-1662.
    [182] Jones SE, Lock MA. Hydrolytic extracellular enzyme activity in heterotrophic biofilms from two contrasting streams[J]. Freshwater Biology, 1989, 22(2): 289-296.
    [183] Marxsen J, Fiebig DM. Use of perfused cores for evaluating extracellular enzyme activity in stream-bed sediments[J]. FEMS Microbiology Ecology, 1993, 13(1): 1-12.
    [184] Rulik M, Spacil R. Assessment of extracellular enzyme activities of a- and β-glucosidase in sediments of a small lowland stream (sitka stream, czech republic)[J]. Acta Universitatis Palackianae Olomucensis Facultas Rerum Naturalium, 1999,37: 99-105.
    [185] Hendel B, Marxsen J. Measurement of low-level extracellular enzyme activity in natural waters using fluorigenic model substrates[J]. Acta Hydrochimica Et Hydrobiologica, 1997, 25(5): 253-258.
    [186] Boetius A. Microbial hydrolytic enzyme activities in deep-sea sediments[J]. Helgolander Meeresunters, 1995, 11: 177-187.
    [187] Zheng TL, Hong HS, Wang F, et al. The distribution characteristics of bacterial beta-glucosidase activity in Taiwan strait[J]. Mar. Pollut. Bull., 2002, 45(1-12): 168-76.
    [188] Sakami T, Yokoyama H, Ishihi Y. Microbial hydrolytic enzyme activity in the sediments of a net cage aquaculture area[J]. Fisheries Science, 2005, 71(2): 271-278.
    [189] King GM. Characterization of beta-Glucosidase Activity in Intertidal Marine Sediments[J]. Appl. Environ. Microbiol., 1986, 51(2): 373-380.
    [190] Mallet C, Debroas D. Regulation of b- and a-Glycolytic Activities in the Sediments of a Eutrophic Lake[J]. Microb Ecol, 2001,41(2): 106-113.
    [191] 周礼恺.土壤酶学[M].北京:科学出版社,1987.
    [192] 何斌,温远光,袁霞,等.广西英罗港不同红树植物群落土壤理化性质与酶活性的研究[J].林业科学,2002,38(2):21-26.
    [193] Meyer-Reil LA, Koester M. Microbial life in pelagic sediments: The impact of environmental parameters on enzymatic degradation of organic material[J]. Mar Ecol Prog Ser, 1992, 81(1): 65-72.
    [194] Chapman PM, Allard PJ, Vigers GA. Development of sediment quality values for Hong Kong Special Administrative Region: A possible model for other jurisdictions[J]. Marine Pollution Bulletin, 1999,38(3): 161-169.
    [195] 刘敏,侯立军,邹惠仙,等.长江口潮滩表层沉积物中多环芳烃分布特征[J].中国环境科学,2001,21(4):343-346.
    [196] 林秀梅,刘文新,陈江麟,等.渤海表层沉积物中多环芳烃的分布与生态风险评价[J].环境科学学报,2005,25(1):70-75.
    [197] 田蕴,郑天凌,王新红.厦门西港表层沉积物中多环芳烃(PAHs)的含量、分布及来源[J].海洋与湖沼,2004,35(1):15-20.
    [198] 袁东星,杨东宁,陈猛,等.厦门西港及闽江口表层沉积物中多环芳烃和有机氯污染物的含量及分布[J].环境科学学报,2001,21(1):107-112.
    [199] 张军,袁东星,陆志强,等.九龙江口红树林区表层沉积物中多环芳烃含 量与来源[J].厦门大学学报(自然科学版),2003,42(4):499-503.
    [200] Zhang J, Cai L, Yuan D, et al. Distribution and sources of polynuclear aromatic hydrocarbons in Mangrove surficial sediments of Deep Bay, China[J].Mar Pollut Bull, 2004,49(5-6): 479-86.
    [201] Tian Y, Luo YR, Zheng TL, et al. Contamination and potential biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments of Xiamen,China[J]. Mar Pollut Bull, 2008, 56(6): 1184-1191.
    [202] Ke L, Yu KSH, Wong YS, et al. Spatial and vertical distribution of polycyclic aromatic hydrocarbons in mangrove sediments[J]. Science of The Total Environment, 2005, 340(1-3): 177-187.
    [203] Kim GB, Maruya KA, Lee RF, et al. Distribution and sources of polycyclic aromatic hydrocarbons in sediments from Kyeonggi Bay, Korea[J]. Marine Pollution Bulletin, 1999,38(1): 7-15.
    [204] Tian Y, Liu HJ, Zheng TL, et al. PAHs contamination and bacterial communities in mangrove surface sediments of the Jiulong River Estuary, China[J]. Mar Pollut Bull, 2008, 57(6-12): 707-15.
    [205] Sicre MA, Marty JC, Saliot A, et al. Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: Occurrence and origin[J]. Atmospheric Environment (1967), 1987,21(10): 2247-2259.
    [206] Wise SA, Byrd GD, Byrd GD. Determination of polycyclic aromatic hydrocarbons in a coal tar standard reference material [J]. Analytical Chemistry, 1988, 60: 887-894.
    [207] Miller JS, Olejnik D. Photolysis of polycyclic aromatic hydrocarbons in water[J]. Water Res, 2001, 35(1): 233-43.
    [208] Kahan TF, Donaldson DJ. Photolysis of polycyclic aromatic hydrocarbons on water and ice surfaces[J]. J Phys Chem A, 2007,111(7): 1277-85.
    [209] Jacobs L, Weavers L, Chin YP. Direct and Indirect Photolysis of Polycyclic Aromatic Hydrocarbons in Nitrate-Rich Surface Waters[J]. Environ Toxicol Chem, 2008: 1.
    [210] Shemer H, Linden KG Photolysis, oxidation and subsequent toxicity of a mixture of polycyclic aromatic hydrocarbons in natural waters[J]. Journal of Photochemistry and Photobiology a-Chemistry, 2007, 187(2-3): 186-195.
    [211] Gschwend PM, Hites RA. Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States[J]. Geochimica et Cosmochimica Acta, 1981,45(12): 2359-2367.
    [212] Soclo HH, Garrigues P, Ewald M. Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: Case studies in Cotonou (Benin) and Aquitaine (France) areas[J]. Marine Pollution Bulletin, 2000,40(5): 387-396.
    [213] Haruta S, Kondo M, Nakamura K, et al. Microbial community changes during organic solid waste treatment analyzed by double gradient-denaturing gradient gel electrophoresis and fluorescence in situ hybridization[J]. Appl Microbiol Biotechnol, 2002, 60(1-2): 224-31.
    [214] DeLong EF. Archaea in coastal marine environments[J]. Proc Natl Acad Sci USA, 1992, 89(12): 5685-9.
    [215] 张瑜斌,林鹏,庄铁诚.九龙江口红树林土壤微生物的时空分布[J].厦门大学学报(自然科学版),2007,46(4):587-592.
    [216] Rego JV, Billen G, Fontigny A, et al. Free and attached proteolytic activity in water environments[J]. Marine Ecology-Progress Series, 1985,21: 245-249.
    [217] Vrba J, Callieri C, Bittl T, et al. Are bacteria the major producers of extracellular glycolytic enzymes in aquatic environments?[J]. Internat Rev Hydrobiol, 2004, 89(1): 102-117.
    [218] Launen LA, Dutta J, Turpeinen R, et al. Characterization of the indigenous PAH-degrading bacteria of Spartina dominated salt marshes in the New York/New Jersey Harbor[J]. Biodegradation, 2008,19(3): 347-363.
    [219] Amellal N, Portal JM, Vogel T, et al. Distribution and location of polycyclic aromatic hydrocarbons (PAHs) and PAH-degrading bacteria within polluted soil aggregates[J]. Biodegradation, 2001, 12(1): 49-57.
    [220] Tarn NFY, Guo CL, Yau WY, et al. Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in Hong Kong[J]. Marine Pollution Bulletin, 2002,45(1-12): 316-324.
    [221] 李玫,廖宝文,章金鸿.底泥微生物在红树林生态系统中的作用[J].广州环境科学,2006,21(4):21-25.
    [222] Gafan GP, Lucas VS, Roberts GJ, et al. Statistical analyses of complex denaturing gradient gel electrophoresis profiles[J]. J Clin Microbiol, 2005,43(8): 3971-8.
    [223] 张镱锂.植物区系地理研究中的重要参数——相似性系数[J].地理研究,1998,17(4):429-434.
    [224] Hugenholtz P, Pitulle C, Hershberger KL, et al. Novel division level bacterial diversity in a Yellowstone hot spring[J]. Journal of Bacteriology, 1998,180(2):366-376.
    [225] Ravenschlag K, Sahm K, Knoblauch C, et al. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments[J]. Appl Environ Microbiol, 2000, 66(8): 3592-602.
    [226] Cottrell MT, Kirchman DL. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter[J]. Appl Environ Microbiol, 2000, 66(4): 1692-7.
    [227] 席峰,傅莲英,王桂忠,等.海洋沉积物DNA提取前的简易脱腐方法研究[J].高技术通讯,2006,16(5):539-544.
    [228] Zipper H, Buta C, Lammle K, et al. Mechanisms underlying the impact of humic acids on DNA quantification by SYBR Green I and consequences for the analysis of soils and aquatic sediments[J]. Nucleic Acids Res, 2003, 31(7): e39.
    [229] Alm EW, Zheng D, Raskin L. The presence of humic substances and DNA in RNA extracts affects hybridization results[J]. Appl Environ Microbiol, 2000, 66(10): 4547-54.
    [230] Jacobsen CS, Rasmussen OF. Development and Application of a New Method To Extract Bacterial DNA from Soil Based on Separation of Bacteria from Soil with Cation-Exchange Resin[J]. Appl Environ Microbiol, 1992, 58(8):2458-2462.
    [231] Chandler DP, Schreckhise RW, Smith JL, et al. Electroelution to remove humic compounds from soil DNA and RNA extracts[J]. Journal of Microbiological Methods, 1997,28(1): 11-19.
    [232] Lovell RD, Jarvis SC, Bardgett RD. Soil microbial biomass and activity in long-term grassland: Effects of management changes[J]. Soil Biology and Biochemistry, 1995, 27(7): 969-975.
    [233] Nichols TD, Wolf DC, Rogers HB, et al. Rhizosphere microbial populations in contaminated soils[J]. Water Air and Soil Pollution, 1997, 95(1-4): 165-178.
    [234] Smit E, Leeflang P, Gommans S, et al. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods[J]. Appl Environ Microbiol, 2001, 67(5): 2284-91.
    [235] Verdin A, Sahraoui ALH, Robinson G, et al. Effect of the polycyclic aromatic hydrocarbon, benzo[a]pyrene, on the intracellular protein composition of Fusarium solani and Fusarium oxysporum[J]. International Biodeterioration & Biodegradation, 2005, 55(3): 171-174.
    [236] Chauhan A, Fazlurrahman, Fazlurrahman, et al. Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation[J]. Indian Journal of Microbiology, 2008,48(1): 95-113.
    [237] Ramsay MA, Swannell RPJ, Shipton WA, et al. Effect of bioremediation on the microbial community in oiled mangrove sediments[J]. Marine Pollution Bulletin, 2000,41(7-12): 413-419.
    [238] Leys NM, Ryngaert A, Bastiaens L, et al. Culture independent detection of Sphingomonas sp. EPA 505 related strains in soils contaminated with polycyclic aromatic hydrocarbons (PAHs)[J]. Microb Ecol, 2005, 49(3): 443-50.
    [239] Zhong Y, Luan TG, Wang XW, et al. Influence of growth medium on cometabolic degradation of polycyclic aromatic hydrocarbons by Sphingomonas sp strain PheB4[J]. Applied Microbiology and Biotechnology, 2007,75(1): 175-186.
    [240] Pinyakong O, Habe H, Omori T. The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs)[J]. J GenAppl Microbiol, 2003,49(1): 1-19.
    [241] 施晓东,常学秀.重金属污染土壤的微生物响应[J].生态环境,2003,12(4):498-499.
    [242] Johnsen AR, Wick LY, Harms H. Principles of microbial PAH-degradation in soil[J]. Environ Pollut, 2005,133(1): 71-84.
    [243] Meyer S, Moser R, Neef A, et al. Differential detection of key enzymes of polyaromatic-hydrocarbon-degrading bacteria using PCR and gene probes[J].Microbiology, 1999,145 (Pt7): 1731-41.
    [244] Hwang S, Cutright TJ. Effect of expandable clays and cometabolism on PAH biodegradability[J]. Environ Sci Pollut Res Int, 2003,10(5): 277-80.
    [245] Bogardt AH, Hemmingsen BB. Enumeration of phenanthrene-degrading bacteria by an overlayer technique and its use in evaluation ofpetroleum-contaminated sites[J]. Appl Environ Microbiol, 1992, 58(8):2579-82.
    [246] Atlas RM. Petroleum biodegradation and oil spill bioremediation[J]. Marine Pollution Bulletin, 1995,31(4-12): 178-182.
    [247] Relexans JC.Measurement of the respiratory electron transport system (ETS) activity in marine sediments: state-of-the-art and interpretation. ? . Methodology and review of literature data[J]. Mar Ecol Prog Ser, 1996, 136:277-287.
    [248] Relexans JC. Measurement of the respiratory electron transport system (ETS) activity in marine sediments: state-of-the-art and interpretation. ? . Significance of ETS activity data[J]. Mar Ecol Prog Ser, 1996,136: 289-301.
    [249] 东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [250] 王春明,李大平,刘世贵.4株多环芳烃降解菌的分离及鉴定[J].应用与环境生物学报,2007,13(4):546-550.
    [251] 田蕴,郑天凌.海洋环境中降解多环芳烃的微生物[J].海洋科学,2004,28(9):50-55.
    [252] Surovtseva EG, Ivoilov VS, Belyaev SS. Physiological and biochemical properties of Beijerinckia mobilis 1f Phn(+) capable of degrading polycyclic aromatic hydrocarbons[J]. Microbiology, 1999, 68(6): 746-750.
    [253] Saito A, Iwabuchi T, Harayama S. Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp. KP7[J]. Chemosphere, 1999, 38(6): 1331-1337.
    [254] Saito A, Iwabuchi T, Harayama S. A novel phenanthrene dioxygenase from Nocardioides sp strain KP7: Expression in Escherichia coli[J]. Journal of Bacteriology, 2000, 182(8): 2134-2141.
    [255] Kamath R, Schnoor JL, Alvarez PJ. Effect of root-derived substrates on the expression of nah-lux genes in Pseudomonas fluorescens HK44: implications for PAH biodegradation in the rhizosphere[J]. Environ Sci Technol, 2004, 38(6): 1740-5.
    [256] Kumara M, Leon V, De Sisto Materano A, et al. Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1[J]. Z Naturforsch [C], 2006,61(3-4): 203-12.
    [257] Widada J, Nojiri H, Kasuga K, et al. Molecular detection and diversity of polycyclic aromatic hydrocarbon-degrading bacteria isolated from geographically diverse sites[J]. Appl Microbiol Biotechnol, 2002, 58(2): 202-9.
    [258] Grant RJ, Muckian LM, Clipson NJW, et al. Microbial community changes during the bioremediation of creosote-contaminated soil[J]. Letters in Applied Microbiology, 2007,44(3): 293-300.
    [259] Palmroth MR, Langwaldt JH, Aunola TA, et al. Treatment of PAH-contaminated soil by combination of Fenton's reaction and biodegradation[J]. Journal of Chemical Technology and Biotechnology, 2006, 81(4): 598-607.
    [260] Kasai Y, Kishira H, Harayama S. Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment[J]. Appl Environ Microbiol, 2002, 68(11): 5625-33.
    [261] Geiselbrecht AD, Hedlund BP, Tichi MA, et al. Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of Puget Sound Cycloclasticus strains[J]. Applied and Environmental Microbiology, 1998,64(12): 4703-4710.
    [262] Baboshin M, Akimov V, Baskunov B, et al. Conversion of polycyclic aromatic hydrocarbons by Sphingomonas sp VKM B-2434[J]. Biodegradation, 2008, 19(4): 567-576.
    [263] Rentz JA, Alvarez PJJ, Schnoor JL. Benzo[a]pyrene degradation by Sphingomonas yanoikuyae JAR02[J]. Environmental Pollution, 2008, 151(3): 669-677.
    [264] Stingley RL, Khan AA, Cerniglia CE. Molecular characterization of a phenanthrene degradation pathway in Mycobacterium vanbaalenii PYR-1[J]. Biochem Biophys Res Commun, 2004, 322(1): 133-46.
    [265] Krivobok S, Kuony S, Meyer C, et al. Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1: evidence for two ring-hydroxylating dioxygenases[J]. J Bacteriol, 2003,185(13): 3828-41.
    [266] Feitkenhauer H, Muller R, Markl H. Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 60-70 degrees C by Thermus and Bacillus spp [corrected][J]. Biodegradation, 2003,14(6): 367-72.
    [267] Carmichael AB, Wong LL. Protein engineering of Bacillus megaterium CYP102.The oxidation of polycyclic aromatic hydrocarbons[J]. Eur J Biochem, 2001,268(10): 3117-25.
    [268] Hedlund BP, Staley JT. Isolation and characterization of Pseudoalteromonas strains with divergent polycyclic aromatic hydrocarbon catabolic properties[J]. Environ Microbiol, 2006, 8(1): 178-82.
    [269] Pinyakong O, Habe H, Kouzuma A, et al. Isolation and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase from acenaphthene and acenaphthylene degrading Sphingomonas sp. strain A4[J]. FEMS Microbiol Lett, 2004, 238(2): 297-305.
    [270] Brito EM, Guyoneaud R, Goni-Urriza M, et al. Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil[J]. Res Microbiol, 2006,157(8): 752-62.
    [271] Guo CL, Zhou HW, Wong YS, et al. Isolation of PAH-degrading bacteria from mangrove sediments and their biodegradation potential[J]. Mar. Pollut. Bull., 2005, 51(8-12): 1054-61.
    [272] Zhou HW, Luan TG, Zou F, et al. Different bacterial groups for biodegradation of three- and four-ring PAHs isolated from a Hong Kong mangrove sediment[J]. J Hazard Mater, 2008,152(3): 1179-85.
    [273] 骆苑蓉,胡忠,郑天凌,等.红树林沉积物中的微生物对苯并[a]芘的降解研究[J].厦门大学学报(自然科学版),2005,44(Sup):75-79.
    [274] 布坝南 RE,吉本斯.伯杰氏细菌鉴定手册[M].第8版.北京:科学出版社,1984.
    [275] Porteous LA, Widmer F, Seidler RJ. Multiple enzyme restriction fragment length polymorphism analysis for high resolution distinction of Pseudomonas (sensu stricto) 16S rRNA genes[J]. J Microbiol Methods, 2002, 51(3): 337-48.
    [276] Pascoal A, Barros-Velazquez J, Cepeda A, et al. A polymerase chain reaction-restriction fragment length polymorphism method based on the analysis of a 16S rRNA/tRNA(Val) mitochondrial region for species identification of commercial penaeid shrimps (Crustacea: Decapoda:Penaeoidea) of food interest[J]. Electrophoresis, 2008, 29(2): 499-509.
    [277] Horz HP, Yimga MT, Liesack W. Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling[J]. Appl Environ Microbiol, 2001,67(9): 4177-85.
    [278] Braker G, Ayala-del-Rio HL, Devol AH, et al. Community structure of denitrifiers, bacteria, and archaea along redox gradients in Pacific Northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase (nirS) and 16S rRNA genes[J]. Appl Environ Microbiol, 2001, 67(4): 1893-901.
    [279] Leadbetter JR. Cultivation of recalcitrant microbes: cells are alive, well and revealing their secrets in the 21st century laboratory[J]. Curr Opin Microbiol, 2003,6(3): 274-81.
    [280] Aagot N, Nybroe O, Nielsen P, et al. An altered Pseudomonas diversity is recovered from soil by using nutrient-poor Pseudomonas-selective soil extract media[J]. Applied and Environmental Microbiology, 2001,67(11): 5233-5239.
    [281] Stevenson BS, Eichorst SA, Wertz JT, et al. New strategies for cultivation and detection of previously uncultured microbes[J]. Appl Environ Microbiol, 2004, 70(8): 4748-55.
    [282] Kirchman DL, Dittel AI, Malmstrom RR, et al. Biogeography of major bacterial groups in the Delaware Estuary [J]. Limnology and Oceanography, 2005, 50(5): 1697-1706.
    [283] del Giorgio PA, Bouvier TC. Linking the physiologic and phylogenetic successions in free-living bacterial communities along an estuarine salinity gradient[J]. Limnology and Oceanography, 2002,47(2): 471-486.
    [284] Chen J, Wong MH, Wong YS, et al. Multi-factors on biodegradation kinetics of polycyclic aromatic hydrocarbons (PAHs) by Sphingomonas sp. a bacterial strain isolated from mangrove sediment[J]. Mar Pollut Bull, 2008, 57(6-12): 695-702.
    [285] Desai AM, Autenrieth RL, Dimitriou-Christidis P, et al. Biodegradation kinetics of select polycyclic aromatic hydrocarbon (PAH) mixtures by Sphingomonas paucimobilis EPA505[J]. Biodegradation, 2008,19(2): 223-33.
    [286] Di Gennaro P, Rescalli E, Galli E, et al. Characterization of Rhodococcus opacus R7, a strain able to degrade naphthalene and o-xylene isolated from a polycyclic aromatic hydrocarbon-contaminated soil[J]. Res Microbiol, 2001, 152(7): 641-51.
    [287] Gu J, Cai H, Yu SL, et al. Marinobacter gudaonensis sp nov., isolated from an oil-polluted saline soil in a Chinese oilfield[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57: 250-254.
    [288] McGowan L, Herbert R, Muyzer G. A comparative study of hydrocarbon degradation by Marinobacter sp., Rhodococcus sp and Corynebacterium sp isolated from different mat systems[J]. Ophelia, 2004, 58(3): 271-281.
    [289] Ma Y, Wang L, Shao Z. Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer[J]. Environ Microbiol, 2006, 8(3): 455-65.
    [290] Arino S, Marchal R, Vandecasteele JP. Involvement of a rhamnolipid-producing strain of Pseudomonas aeruginosa in the degradation of polycyclic aromatic hydrocarbons by a bacterial community[J]. J Appl Microbiol, 1998, 84(5): 769-76.
    [291] Howard MB, Ekborg NA, Taylor LE, et al. Genomic analysis and initial characterization of the chitinolytic system of Microbulbifer degradans strain 2-40[J]. Journal of Bacteriology, 2003,185(11): 3352-3360.
    [292] Kwon KK, Lee HS, Jung HB, et al. Yeosuana aromativorans gen. nov., sp. nov., a mesophilic marine bacterium belonging to the family Flavobacteriaceae, isolated from estuarine sediment of the South Sea, Korea[J]. Int J Syst Evol Microbiol, 2006, 56(Pt 4): 727-32.
    [293] Alley JF, Brown LR. Use of sublimation to prepare solid microbial media with water-insoluble substrates[J]. Applied and Environmental Microbiology, 2000, 66(1): 439-442.
    [294] Dagher F, Deziel E, Lirette P, et al. Comparative study of five polycyclic aromatic hydrocarbon degrading bacterial strains isolated from contaminated soils[J]. Can J Microbiol, 1997,43(4): 368-77.
    [295] Churchill SA, Harper JP, Churchill PR Isolation and characterization of a Mycobacterium species capable of degrading three- and four-ring aromatic and aliphatic hydrocarbons[J]. Appl Environ Microbiol, 1999, 65(2): 549-52.
    [296] Boffetta P, Jourenkova N, Gustavsson P. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons [J]. Cancer Causes & Control, 1997, 8(3): 444-472.
    [297] Harri M, Svoboda P, Mori T, et al. Analysis of 8-hydroxydeoxyguanosine among workers exposed to diesel particulate exhaust: comparison with urinary metabolites and PAH air monitoring[J]. Free Radic Res, 2005, 39(9): 963-72.
    [298] Hedlund BP, Geiselbrecht AD, Bair TJ, et al. Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov[J]. Appl Environ Microbiol, 1999,65(1): 251-9.