多环芳烃降解菌的降解特性与降解途径研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃(PAHs)是一类广泛分布于海洋环境中的典型的持久性有机污染物(POPs),通过食物链的传递会对生态环境和人体健康造成极大危害。了解PAHs在环境中的来源、分布、归宿及去除问题,已成为当今环境科学研究的前沿课题。生物降解是环境(土壤,沉积物,水体)中PAHs去除的最主要途径。研究其遗传控制方式,探索代谢途径,是为了更好地将降解菌应用于有效而可控的生物修复之中。
     本论文将采集自厦门博坦油码头的海水样品,在持续性的高浓度、高分子量PAHs选择压力下进行富集驯化,获得高分子量PAHs的降解混合菌系,并以此讨论高分子量多环芳烃(HMW-PAHs)降解菌的筛选策略;同时对筛选获得的2株能高效降解PAHs的细菌从生理生化角度、基因组学、蛋白质组学方面进行较为系统的研究,探讨其降解特性,解析相关功能基因及功能酶,并在这些基础上推测其代谢途径。获得的主要结果如下:
     1.用高浓度(1000 mg/L),混合PAHs(菲,芘,荧蒽,苯并(a)芘)作为选择压力,从采自石油污染地区样品中驯化获得混合降解菌系,从中分离得到3株可培养单菌,变性梯度凝胶电泳(PCR—DGGE)跟踪分析驯化过程中的细菌群落结构变化及优势菌形成过程。采用高效液相色谱(HPLC)测定混合菌系BL和3株单菌BL01,BL02,BL03对高分子量、难降解的PAH——苯并(a)芘的降解能力,结合DGGE结果分析菌系中各单菌在降解过程中的作用。结果显示BL02,BL03不具有降解BaP的能力,BL01 14 d后降解了20.98%,三菌混合培养物降解了22.61%;而混合菌系BL 14天后降解了44.07%的BaP,这在同类报道中处于较高水平,显示了BL对BaP有较好的降解能力。该筛选策略有助于关注那些未可培养细菌在HMW-PAHs降解中的作用,因此采用高浓度、高分子量PAHs的选择压力筛选HMW-PAHs的降解菌是一种快速而行之有效的筛选策略。
     2.对采自厦门海域的水样和沉积物样品,经过一定时间的PAHs富集培养之后,采用改良的平板升华法成功地筛选到两株菲高效降解菌,降解能力测定显示,它们都能以菲和荧蒽作为唯一碳源生长,72 h后均能完全降解起始浓度为100mg/L的菲。16S rDNA鉴定结果显示这两株分别为鞘氨醇单胞菌Sphingomonas sp.B2-7和分支杆菌Mycobacterium sp.S8。
     3.通过降解菌对芳香烃化合物和PAHs降解过程中常见中间产物的利用情况,菌株B2-7能利用水杨酸,2—萘酚,邻苯二酚,初步推测它以水杨酸途径代谢菲,菌株S8不能降解萘,能利用原儿茶酸,但是不能利用邻苯二甲酸,很可能是以邻苯二甲酸以外的途径代谢菲。降解菌降解荧蒽的优化条件实验结果显示,非离子表面活性剂Tween-80和营养物葡萄糖能促进菌株B2-7和S8对荧蒽的降解。
     4.芳环羟基化双加氧酶和芳环断裂双加氧酶是PAHs降解过程中开环的两种关键酶,其中环羟基化双加氧酶(RHDs)控制苯环加氧,是微生物降解反应的限速步骤,邻苯二酚双加氧酶是催化苯环开裂的重要酶。我们通过引物设计的方法,从降解菌Sphingomonas sp.B2-7中扩增得到全长的邻苯二酚-2,3-双加氧酶基因(C23O)和环羟基化双加氧酶大亚基(phnA),从分子生物学角度证明了PAHs降解过程中的重要酶系邻苯二酚-2,3-双加氧酶(C23O)和环羟化双加氧酶基因α亚基(phnA)在菌株B2-7中的存在。对phnA基因构建了重组表达载体,成功在表达宿主大肠杆菌E.coli BL21(DE3)中进行表达,基因在宿主中以溶解蛋白形式存在。可以进一步推断菌株B2-7降解菲的基本途径是RHDs氧化PAHs形成二氢二醇PAHs化合物,再在C23O的作用下经由水杨酸途径间位裂解(meta-cleavage)苯环,生成2-羟基粘康酸半醛(2-HMS)。
     5.采用1-DE(一向凝胶电泳)和2-DE(双向凝胶电泳)结合LC-MS/MS(串联质谱),研究菌株B2-7在菲诱导与无菲诱导(对照)状况下的蛋白质表达,对差异蛋白的生物质谱结果进行分析,得到多个代谢途径中的关键酶(加氧酶、脱氢酶、醛缩酶等),结合菌株B2-7的降解特性与降解基因的研究结果,最终推导出菌株B2-7降解菲较为完整的代谢途径。
The presence of polycyclic aromatic hydrocarbons (PAHs) in the environment is a considerable public health hazard because of their intrinsic chemical stability, high recalcitrance to different types of degradation and high toxicity to living organisms. The principle processes for their successful removal are currently believed to be microbial transformation and degradation.
     This research aimed at finding bacteria capable of breaking down the PAHs, identifying the functional genes and enzymes involved in the biodegradation, and elucidating PAHs biodegradative pathway.The main results were as follows:
     1. A microbial consortium was obtained from the enrichment culture of sea water samples collected from Botan oil port in Xiamen, China, using the persistent high concentration of high molecular weight polycyclic aromatic hydrocarbons (HMW PAHs) enrichment strategy. Denaturing Gradient Gel Electrophoresis (DGGE) was adopted to investigate the bacterial composition and community dynamic changes based on 16S rRNA genes PCR amplification during enrichment batch culture. Using the spray-plate method, three bacteria namely BL01, BL02 and BL03, which corresponded to the dominant bands in the DGGE profiles, were isolated from the consortium. Sequences analysis showed BL01, BL02 and BL03 were phylogenetically closer to Ochrobactrum sp., Stenotrophomonas maltophilia and Pseudomonas fluorescens respectively. The degradation of Benzo(a)Pyrene (BaP), a model HWM-PAH compound by individual isolate, mixture of three isolates and the microbial consortium(BL) isolated from sea water were examined. Results show that the degradation capability of bacteria represented the order of consortium(BL), mixture of three isolates, individual isolate for high to low, the consortium BL showed the highest PAH degradation capability for degrading HMW-PAH compounds, 44.07% of benzo(a)pyrene was degraded by consortium BL after 14 days incubation. Our results pointed out that the high selective pressure strategy is feasible and effective to enrich the HMW PAH-degraders from the original sea water sample.
     2. Using modified sublimation method, an effective and more convenient method, two phenanthrene-degrading bacteria, identified as Sphingomonas sp. B2-7 and Mycobacterium sp. S8, were isolated from a mixed culture that had been enriched under the selective pressure of PAHs. They can utilize a wide range of PAHs made of 2-4 aromatic rings as the sole carbon source and degrade these PAH compounds. Both of these two strains can degrade phenanthrene to undetectable levels in 72 h. Further experiments were carried out to optimize the degradation of HMW-PAHs and results showed that non-ionic surfactant Tween-80 and glucose can significantly increase the biodegradation percentages.
     3. Strain B2-7 was used to study the enzymes involved in PAHs degradation using genomic and proteomic methods. The genes encoding two key enzymes were cloned and one of them was overexpressed in Escherichia coli BL21 (DE3). One is ring-hydroxylating dioxygenase a subunit (phnA) , the enzyme that catalyzes the initial step in PAHs degradation, and the other is catechol-2,3-dioxygenase (C23O), catalyzes the extradiol ring-cleavage of catechol. These results indicated the main catabolic pathway of strain B2-7 degrades PAHs.
     4. Phenanthrene, a tricyclic PAH, was selected as the model PAH compound to determine the degradation pathway. Two-dimensional (2D) gel electrophoresis of phenanthrene-induced proteins from cultures of strain B2-7 was used to detect proteins that increased after phenanthrene exposure. Comparison of proteins from phenanthrene-induced and uninduced cultures on 2D gels indicated that at least ten major proteins were expressed. Proteins newly induced by phenanthrene were then analyzed from the gels by liquid chromatography/tandem mass spectrometry (LC-MS/MS). Most of them shared a high degree of similarity with the existing database and were responsible for phenanthrene or naphthalene degradation, such as hydroxylating dioxygenase, dihydrodiol dehydrogenase, oxovalerate aldolase and isocitrate dehydrogenase. A complete phenanthrene degradation pathway for Sphingomonas sp. B2-7 based on these results was proposed.
引文
[1]余刚,牛军峰,黄俊等编著.持久性有机污染物——新的全球性污染问题[M].北京.科学出版社.2005.
    [2]Stegeman,JJ,Lech JJ.Cytochrome P-450 monooxygenase system in aquatic species:Carcinogen metabolism and biomarkers for carcinogen and pollutant exposure[J].Environmental Health Perspectives,1991,90:101-109.
    [3]孙红文,李书霞.多环芳烃的光致毒效应[J].环境科学进展,1998,6(6):1-10
    [4]王连生编著.环境化学进展[M].化学工业出版社:北京.1995
    [5]Mueller JG,Middaugh DP,Lantz SE,Chapman PJ.Biodegradation of creosote and pentachlorophenol in contaminated groundwater:chemical and biological assessment[J].Appl Environ Microbiol.1991,57(5):1277-1285.
    [6]Edwards NT.Reviews and analysis:Polycyclic aromatic hydrocarbons(PAHs)in the terrestrial environment—A review[J].Environ.Qual.1983,12:427-441.
    [7]Jacob J,Karcher W,Belliardo JJ,Dumler R.,Boenke A.Polycyclic aromatic hydrocarbons of environmental and occupational importance—Their occurrence,toxicity and the development of high-purity certified reference materials[J].Fresen.J.Anal.Chem.,2004,340:755-767.
    [8]董瑞斌,许东风,刘雷,何宗建,齐美富,曾慧卿.多环芳烃在环境中的行为[J].环境与开发.1999,14(4):43-45.
    [9]宋玉芳,常世俊,李利.污灌土壤中多环芳烃(PAHs)的积累与动态变化研究[J].应用生态学报,1997,8(1):93-98.
    [10]Mcveety BD,Hites RA.The distribution and accumulation of PAHs in environment[J].Atmospheric Environment,1988,22(1):511.
    [11]刘期松.污灌土壤中多环芳烃自净的微生物效应[J].环境科学学报.1984,4(2):185-192.
    [12]葛成军,俞花美.多环芳烃在土壤中的环境行为研究进展[J].中国生态农业学报.2006,10(1):162-165.
    [13]Simoneit BRT.,Mazurek MA.Air pollution:the organic compounds[J].CRC Critical Reviews in Environmental Control,1981,11:219-276.
    [14]余顺.全球海洋——大气环境中污染物的迁移及行为[J].海洋环境科学,1989,8(3):55-63.
    [15]Connel DW,Miller GJ.Petrolum hydrocarbons in aquatic ecosystems-behavior and effects of sublethat concentrations[J].CRC Critical Reviews in Environmental Control.1981,11:37-104.
    [16]Witt G.Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea[J].Marine Polltion Bulletin,1995,31:237-248.
    [17]Baumard P,Budzinski H,Garrigues P.Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean Sea[J].Environmental Toxicology and Chemistry.1998.15,765-776.
    [18]Yunker MB,MacDonald RW,Cretney WJ,Fowler BR,McLaughlin FA.Alkane,terpene and polycyclic aromatic hydrocarbon geochemistry of the Mackenzie River and Mackenzie Shelf:riverine contributions to Beaufort Sea coastal sediment[J].Geochimica et Cosmochimica Acta.1993.57,3041-3061.
    [19]Shiaris MP,Jambard-Sweet D.Polycyclic aromatic hydrocarbons in surficial sediments of Boston Harbour,MA,USA[J].Marine Pollution Bulletin.1986.17:469-472.
    [20]麦碧娴,林峥,张干,盛国英,闵育顺,傅家谟.珠江三角洲河流和珠江口表层沉积物中有机污染物研究—多环芳烃和有机氯农药的分布及特征[J].环境科学学报.2000,20(2):192-197.
    [21]Liu M,Hou LJ,Yang Y,Zou H,Lu J,Wang X.Distribution and sources of polycyclic aromatic hydrocarbons in intertidal flat surface sediments from the Yangtze Estuary,China[J].Environmental Geology,2001,41:90-95.
    [22]吴莹,张经.多环芳烃在渤海海峡柱状沉积物中的分布[J].环境科学.2001,22(3):74-77.
    [23]田蕴,郑天凌,王新红,骆苑蓉,张勇.厦门西港及其邻近海域沉积物中PAHs污染特征及生物修复研究建议[J].台湾海峡.2003,22(2):192-200.
    [24]Madsen EL.Metermining in situ biodegradation:Facts and Challenges[J].Evrion.Sci.Technol.1991,25(10):1663-1672.
    [25]郑天凌,庄铁城,蔡立哲,田蕴,徐美珠,李少菁.微生物在海洋污染环境中的生物修复作用[J].厦门大学学报.2001,40(2):524-534.
    [26]李培军,郭书海,孙铁纸,台培东,张春桂,白玉兴,孙强,生平.不同类型原油污染土壤生物修复技术研究[J].应用生态学报.2002,13(11):1455-1458.
    [27]Dua M,Singh A,Sethunathan N,Johri AK.Biotechnology and bioremediation:successes and limitations[J].Appl Microbiol Biotechnol.2002,59(2-3):143-152.
    [28]Tabak HH.,Lazorchak JM,Lei L,Khodadoust AP,Antia JE,Bagchi R,Suidan MT.Studies on bioremediation of polycyclic aromatic hydrocarbon contaminated sediments:bioavailability,biodegradability,and toxicity issues[J].Environ Toxicol Chem,2003,22(3):473-482.
    [29]Sims.Fate of polynuclear aromatic compounds(PNA's) in soil-plant systems[J].Residue Rev,1983,88:1-68.
    [30]Story SP,Parker SH,Kline JD,Tzeng TRJ,Mueller JG,Kline EL.Identification of four structural genes and two putative promoters necessary for utilization of naphthalene,phenanthrene,and fluoranthene by Sphingomonas paucirnobilis var.EPAS05[J].Gene.2000,260:155-169.
    [31]Pinyakong O,Habe H,Supaka N,Pinpanichkarn P,Juntongjin K,Yoshida T,Furihata K,Nojiri H,Yamane H,Omori T.Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp.strain P2[J].FEMS Microbiol Lett.2000,19(1):115-121.
    [32]Romine MF,Stillwell LC,Wong KK,Thurston SJ,Sisk EC,Sensen C,Gaasterland T,Fredrickson JK,Saffer JD.Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199[J].J.Bacteriol.1999,181:1585-1602.
    [33]Aitken MD,Stringfellow WT,Nagel RD,Kazunga C,Chen SH,Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons[J].Canadian Journal of Microbiology.1998,44:743-752.
    [34] Kiyohara H, Nagao K, Kouno K, Yano K. Phenanthrene-degrading phenotype of Alcaligenes faecalis AFK2 [J]. Applied and Environmental Microbiology. 1982, 43:458-461.
    [35] Juhasz AL, Britz ML, Stanley GA. Degradation of fluoranthene, pyrene, benz[a ]anthracene and dibenz[a,h ]anthracene by Burkholderia cepacia [J]. Journal of Applied Microbiology. 1997, 83, 189-198.
    [36] Goyal AK, Zylstra GJ. Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni [J]. Applied and Environmental Microbiology. 1996,62: 230-236.
    [37] Lal B, Khanna S. Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans [J]. Journal of Applied Bacteriology. 1996, 81: 355-362.
    [38] Hedlund BP, Geiselbrecht AD, Bair TJ, Staley JT,. Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov [J]. Applied and Environmental Microbiology. 1999,65:251-259.
    [39] Geiselbrecht AD, Hedlund BP, Tichi MA, Staley JT. Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from the gulf of mexico and comparison of their PAH degradation ability with that of Puget Sound Cycloclasticus strains [J]. Applied and Environmental Microbiology. 1998,64: 4703-4710.
    [40] Kiyohara H, Nagao K, Nomi R. Degradation of phenanthrene through o-phthalate by an Aeromonas sp [J]. Agricultural Biology and Chemistry. 1976,40:1075-1082.
    [41] Juhasz AL, Stanley GA, Britz ML. Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003 [J]. Letters in Applied Microbiology. 2000,30 (5), 396.
    [42] Juhasz, AL. Hydrocarbon degradation by antarctic microorganisms isolated from the saline lakes of the Vestfold Hills [M]. Honours Thesis, University of Tasmania, Australia. 1991.
    [43] Khan AA, Wang RF, Cao WW., Doerge DR, Wennerstrom D, Cerniglia CE. Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl. Environ. Microbiol. 2001, 67:3577-3585.
    [44] Saito A, Iwabuchi T, Harayama S. A novel phenanthrene dioxygenase from Nocardioides sp. strain KP7: expression in Escherichia coli [J]. J. Bacteriol. 2000, 182:2134-2141.
    [45] Tongpim S., Pickard MA. Growth of Rhodococcus S1 on anthracene. Canadian [J]. Journal of Microbiology .1996,42, 289-294.
    [46] Dua RD, Meera S. Purification and characterisation of naphthalene oxygenase from Corynebacterium renale [J]. European Journal of Biochemistry. 1981, 120, 461-465.
    [47] Sutherland JB, Freeman JP, Selby AL, Fu PP, Miller DW, Cerniglia CE. Stereoselective formation of a k-region dihydrodiol from phenanthrene by Streptomyces flavovirens [J]. Archives of Microbiology. 1990,154:260-266.
    [48] Keuth S., Rehm H.J. Biodegradation of phenanthrene by Arthrobacter polychromogenes isolated from a contaminated soil [J]. Applied Microbiology and Biotechnology. 1991,34:804-808.
    [49] Ghosh DK, Mishra AK. Oxidation of phenanthrene by a strain of Micrococcus: evidence of a protocatechuate pathway [J]. Current Microbiology. 1983, 9:219-224.
    [50] Kastner M., Breuer-Jammali M., Mahro B. Enumeration and characterisation of the soil micro(?)ora from hydrocarbon-contaminated soil sites able to mineralise polycyclic aromatic hydrocarbons (PAH) [J]. Applied Microbiology and Biotechnology. 1994,41:267-273.
    [51] Trzesicka-MLynarz D, Ward OP. Degradation of fluor anthene in a soil matrix by indigenous and introduced bacteria [J]. Biotechnology Letters. 1996.18:181-186.
    [52] Simon MJ, Osslund TD, Saunders R, Ensley BD, Suggs S, Harcourt A, Suen W C, Cruden DL, Gibson DT, Zylstra GJ. Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4 [J].Gene. 1993,127(1):31-37.
    [53] Barriault D, Vedadi M, Powlowski J, Sylvestre M. cis-2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase and cis-1, 2-dihydro-l,2-dihydroxynaphathalene dehydrogenase catalyze dehydrogenation of the same range of substrates [J]. Biochem Biophys Res Commun. 1999, 260(1):181-187.
    [54] Park W, Padmanabhan P, Padmanabhan S, Zylstra GJ, Madsen EL. nahR, encoding a LysR-type transcriptional regulator, is highly conserved among naphthalene-degrading bacteria isolated from a coal tar waste-contaminated site and in extracted community DNA [J]. Microbiology. 2002, 148:2319-2329.
    [55] Sota M, Yano H, Ono A, Miyazaki R, Ishii H, Genka H, Top EM, Tsuda M. Genomic and functional analysis of the IncP-9 naphthalene-catabolic plasmid NAH7 and its transposon Tn4655 suggests catabolic gene spread by a tyrosine recombinase [J]. J Bacteriol. 2006,188(11): 4057-67.
    [56] Piskonen R, Nyyssonen M., Itavaara M. Evaluating the biodegradation of aromatic hydrocarbons by monitoring of several functional genes [J]. Biodegradation. 2008, Apr 20
    [57] Ensley BD, Gibson DT, Laborde AL. Oxidation of naphthalene by a multicomponent enzyme system from Pseudomonas sp. strain NCIB 9816 [J]. J Bacteriol. 1982, 149(3): 948-954.
    [58] Kurkela S, Lehvaslaiho H, Palva ET, Teeri TH. Cloning, nucleotide sequence and characterization of genes encoding naphthalene dioxygenase of Pseudomonas putida strain NCIB9816 [J]. Gene. 1988. 73(2):355-362.
    [59] Haigler BE, Gibson DT. Purification and properties of NADH-ferredoxinNAP reductase, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816 [J]. J Bacteriol. 1990,172(1): 457-464.
    [60] Jonathan JD, Gerben JZ. Complete Sequence and Genetic Organization of pDTG1, the 83 Kilobase Naphthalene Degradation Plasmid from Pseudomonas putida strain NCIB 9816-4 [J]. Journal of molecular biology. 2004, 341(3):753-768.
    [61] Moody JD, Freeman JP, Doerge DR. Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1[J]. Appl Environ Microbiol, 2001, 67(4): 1476-1483.
    [62] Kim SJ, Jones RC, Cha CJ, Kweon 0, Edmondson RD, Cerniglia CE. Identification of proteins induced by polycyclic aromatic hydrocarbon in Mycobacterium vanbaalenii PYR-1 using two-dimensional polyacrylamide gel electrophoresis and de novo sequencing methods [J]. Proteomics. 2004, 4(12): 3899-3908.
    [63] Kim SJ, Kweon O, Freeman JP, Jones RC, Adjei MD, Jhoo JW, Edmondson RD, Cerniglia CE. Molecular Cloning and Expression of Genes Encoding a Novel Dioxygenase Involved in Low- and High-Molecular-Weight Polycyclic Aromatic Hydrocarbon Degradation in Mycobacterium vanbaalenii PYR-1 [J]. Appl. Envir. Microbiol. 2006, 72(2): 1045-1054.
    [64] Kim, SJ, Kweon O, Jones RC, Freeman JP, Edmondson RD, Cerniglia CE. Complete and Integrated Pyrene Degradation Pathway in Mycobacterium vanbaalenii PYR-1 Based on Systems Biology [J]. J. Bacteriol. 2007, 189(2): 464-472.
    [65] Barkay T, Navon-Venezia S, Ron EZ, Rosenberg E. Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan [J]. Appl Environ Microbiol. 1999,65(6):2696-2702.
    [66] Desai AM, Autenrieth RL, Dimitriou-Christidis P, McDonald TJ. Biodegradation kinetics of select polycyclic aromatic hydrocarbon (PAH) mixtures by Sphingomonas paucimobilis EPA505 [J]. Biodegradation. 2008, 19(2):223-233.
    [67] Dimitriou-Christidis P, Autenrieth RL. Kinetics of biodegradation of binary and ternary mixtures of PAHs [J]. Biotechnol Bioeng. 2007,97(4):788-800.
    [68] Lloyd-Jones G, Lau PC. Glutathione S-transferase-encoding gene as a potential probe for environmental bacterial isolates capable of degrading polycyclic aromatic hydrocarbons[J].Appl Environ Microbiol.1997,63(8):3286-3290.
    [69]Johnsen AR,Karlson U.Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons[J].Appl Microbiol Biotechnol.2004,63(4):452-459.
    [70]Demaneche S,Meyer C,Micoud J,Louwagie M,Willison JC,Jouanneau Y.Identification and functional analysis of two aromatic-ring-hydroxylating dioxygenases from a Sphingomonas strain that degrades various polycyclic aromatic hydrocarbons[J].Appl Environ Microbiol.2004,70(11):6714-6725.
    [71]Jouanneau Y,Meyer C.Purification and characterization of an arene cis-dihydrodiol dehydrogenase endowed with broad substrate specificity toward polycyclic aromatic hydrocarbon dihydrodiols[J].Appl Environ Microbiol.2006,72(7):4726-4734.
    [72]Jouanneau Y.,Meyer C.,Jakoncic J.,Stojanoff V.,Gaillard J.Characterization of a naphthalene dioxygenase endowed with an exceptionally broad substrate specificity toward polycyclic aromatic hydrocarbons[J].Biochemistry.2006,45,12380-12391.
    [73]Jakoncic J,Jouanneau Y,Meyer C,Stojanoff V.The crystal structure of the ring-hydroxylating dioxygenase from Sphingomonas CHY-1[J].Febs J.2007,274(10):2470-2481.
    [74]Jouanneau Y,Micoud J,Meyer C.Purification and characterization of a three-component salicylate 1-hydroxylase from Sphingomonas sp.strain CHY-1[J].Appl Environ Microbiol.2007,73(23):7515-7521.
    [75]Cerniglia CE.Biodegradation of polycyclic aromatic hydrocarbons[J]Biodegradation.1992,3:351-368.
    [76]陈来国,冉勇.多环芳烃生物修复中的表面活性剂[J].牛态环境2004,13(1):88-91.
    [77]Chen SH.,Aitken MD.,Salicylate stimulates the degradation of high molecular weight polycyclic aromatic hydrocarbons by Pseudomonas.saccharophila P15[J].Environmental Science and Technology 1999.33,435-439.
    [78]Harayama S.Polycyclic aromatic hydrocarbon bioremediation design[J]. Current Opinion in Biotech,1997,8:268-273.
    [79]金志刚,张彤,朱怀兰等编著.污染物生物降解[M].华东理工大学出版社.1997.
    [80]Zhou HW,Guo CL,Wong YS,Tam NFY.Genetic diversity of dioxygenase genes in polycyclic aromatic hydrocarbon-degrading bacteria isolated from mangrove sediments.FEMS Microbiol Lett.2006,262:148-157.
    [81]罗义,毛大庆.生物修复概述及国内外研究进展[J].辽宁大学学报自然科学版.2003,30(4):298-302.
    [82]Juhasz AL,Naidu R.Bioremediation of high molecular weight polycyclic aromatic hydrocarbons:a review of the microbial degradation of benzo[a]pyrene [J].International Biodeterioration & Biodegradation.2000,(45):57-88.
    [83]Chang W,Um Y,Holoman TRP.Polycyclic aromatic hydrocarbon(PAH)degradation coupled to methanogenesis[J].Biotechnol Lett.2006,28(6):425-430.
    [84]王亚馥,戴灼华主编.遗传学[M].北京:高等教育出版社.1999
    [85]王冰冰,孙宝启.RAPD技术进展及其在小麦遗传育种中的应用(综述)[J].农业生物技术学报.1997,5(3):227-233.
    [86]Yang Y,Yao J,Hu S,Qi Y.Effects of agricultural chemicals on DNA sequence diversity of soil microbial community:A study with RAPD marker[J].Mierobiol Ecol,2000.39(1):72-79.
    [87]Roane TM,Pepper IL.Microbial responses to environmentally toxic cadmium [J].Microbiol Eeol,1999.38(4):358-364.
    [88]钟鸣,周启星.微生物分子生态学技术及其在环境污染研究中的应用[J].应用生态学报.2002,13(2):247-251.
    [89]骆苑蓉.海洋环境中高分子量多环芳烃——苯并[a]芘的生物降解初步研究[D].厦门大学硕士论文,2004.
    [90]Muyzer GE,Waal C,Uittednden AG.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16SrRNA[J].Appl.Environ.Microbiol.1993,(59):695-700.
    [91]Schwieger F,Tebbe CC.A new approach to utilize PCR-single-strand-conformation polymorphism of 16S rRNA gene based microbial community analysis[J].Appl.Environ.Microbiol.1998,64:4870-4876.
    [92]Ranjard L,Poly F.,Nazaret S.Monitoring complex bacterial communities using culture independent molecular techniques[J].Application to Soil Environment.2000,151:167-177.
    [93]Macnaughton SJ,Stephen AD,Venosa GA,Davis YJ,Chang,White DC.Microbial population changes during bioremediation of an experimental oil spill [J].Appl.Environ.Microbiol.1999,65:3566-3574.
    [94]Abed RM.Microbial diversity of a heavily pollutedmicrobial mat and its community changes following degradation ofpetroleum compounds[J].Appl.Environ.Microbiol.,2002.,68:1674-1683.
    [95]M(u|¨)ller AK,Westergaard K.The effect of long-term mercury pollution on the soil microbial community[J].FEMs Microbial Ecol,2001,36:11-19.
    [96]Kanaly RA,Bartha R,Watanabe K,Harayama S.Rapid Mineralization of Benzo[a]pyrene by a Microbial Consortium Growing on Diesel Fuel[J].Applied and Environmental Microbiology.2000,66(10):4205-4211.
    [97]李慧,陈冠雄,张颖,张成刚.分子生物学方法在污染土壤微生物多样性研究中的应用[J].土壤学报.2004,41(4):612-617.
    [98]Eriksson M,Sodersten E,Yu Z,Dalhammar G,Mohn WW.Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils[J].Appl Environ Microbiol.2003,69(1):275-284.
    [99]Kuo WS,Chak JF.Identification of Novel Cry-type Genes from Bacillus Thuringiensis Strains on the Basis of Restriction Fragment Length Polymorphism of the PCR-amplified DNA[J].Applied Environmental Microbiology,1996,62(4):1369-1377.
    [100]Edlund A,Jansson JK.Changes in Active Bacterial Communities before and after Dredging of Highly Polluted Baltic Sea Sediments.Appl Environ Microbiol. 2006, 72(10): 6800-6807.
    [101] Muckian L, Grant R, Doyle E, Clipson N. Bacterial community structure in soils contaminated by polycyclic aromatic hydrocarbons [J]. Chemosphere. 2007,68(8): 1535-1541.
    [102] Saito A, Iwabuchi T, Harayama S. A novel phenanthrene dioxygenase from Nocardioides sp. strain KP7 [J]. Journal of Bacteriology. 2000, 182(8): 2134-2141.
    [103] Meyer S, Moser R, Neef A, Stahl U, Kampfer P. Differential detection of key enzymes of polyaromatic hydrocarbon degrading bacteria using PCR and gene probes [J]. Microbiol. 1999,145(7): 1731-1741.
    [104] Kim E, Aversano PJ, Romine MF, Schneider RP, Zylstra GJ. Homology between genes for aromatic hydrocarbon degradation in surface and deep-subsurface Sphingomonas strains [J]. Appl. Environ. Microbiol, 1996, 62(4): 1467-1470.
    [105] Lindsay DE, Jeffrey TB. Evolutionary relationships among extradiol dioxygenases [J]. Journal of bacteriology. 1996,178(20): 5930-5937.
    [106] Matthew BM, Cindy HN. Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR [J]. Appl. Environ. Microbiol. 2000,66(2):678-683.
    [107] Brett R, Cindy H, Nakatsu NL. Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR [J]. Appl. Environ. Microbiol, 2003,69(6): 3350-3358.
    [108] Ensley BD, Ratzkin BJ, Expression naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo [J]. Science. 1983,222:167-169.
    [ 109] Anil KG, Gerben JZ. Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39 [J]. Appl. Environ. Mirobiol. 1995, 62(1):230-236.
    [110] Yuki K, Kazutoshi S, Shigeaki H, Norhiko M, Molecular characterization and substrate preference of a polycyclic aromatic hydrocarbon dioxygenase from Cycloclasticus sp. Strain A5 [J]. Appl. Environ. Microbiol. 2003, 69(11):6688-6697.
    
    [111] Kulakov LA, Delcroix VA, Larkin MJ, Ksenzenko VN, Kulakova AN. Cloning of new Rhodococcus extradiol dioxygenase genes and study of their distribution in different Rhodococcus strains[J]. Microbiology. 1998,144: 955-963.
    
    [112] Rafael B, Elena GV, Edward RBM. Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas Stutzeri AN10[J]. Gene. 1999, 236:149-157.
    
    [113] Rafael B, Elena G.V., Edward R.B.M. Complete nucleotide sequence and evolutionary significance of a chromosomally encoded naphthalene-degradation lower pathway from Pseudomonas stutzeri AN10 [J]. Gene. 2000, 245:65-74.
    
    [114] Yabuuchi E, Yano I, Oyanzu H. Proposais of Sphingomonas paucimobilis gen nov. And comb, nov. Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulate comb. nov. and two genospecies of the genus Sphingomonas[J]. Microbiol Immunol, 1990,34: 99-119.
    
    [115] Kawahara K., Moll H., Knirel Y.A., Seydel U., Zainger U. Structural analysis of two glycosphingolipids from the lipopolysaccharide-lacking bacterium Sphingomonas capsulate [J]. Eur. J. Biochem. 2000,267:1837-1846.
    
    [116] Kawasaki S, Moriguchi R, Seklya K, Nakai T, Ono E, Kime K, Kawahara K. The cell envelope structure of the lipopolysaccharide-lacking gram-negative bacterium Sphingomonas paucimobilis [J]. J. Bacteriol., 1994, 176:284-290.
    
    [117] Naka T, Fujiwara N, Yabuuchi E, Doe M, Kobayashi K, Kato Y, Yano I. A novel sphingolipid containing liqids of Sphingomonas yanoikuyae [J]. J. Bacteriol. 2000,182:2660-2663.
    
    [118] Pinyakong O, Habe H, Omori T. The unique aromatic catabolic genes in Sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs) [J]. J. Gen. Appl. Microbiol. 2003,49:1-19.
    
    [119] Story SP, Parker SH, Hayasaka SS, Riley MB, Kline EL. Convergent and divergent points in catabolic pathways involved in utilization of fluoranthene, naphthalene anthracene, and phenanthrene by Sphingomonas paucimobilis var. EPA505[J].J.Indian Microbiol.Biotechnol.2001,26:369-382.
    [120]Kim E,Zylstra GJ.Molecular and biochemical characterization of two meta-cleaage dioxygenases involved in biphenyl and m-xylene degradation by Beijerinckia sp.Strain B1[J].J.Bacteriol.1995,177:3095-3103.
    [121]Kim E,Zylstra GJ.Functional analysis of genes involved in biphenyl,naphthalene,phenanthrene and m-xylene degradation by Sphingomonas yanoikuyae B1[J].J.Indian Microbiol.Biotechnol.1999,23:294-302.
    [122]Gibson DT,Mahadevan V,Jerina RM,Yagi H,Yeh HJC.Oxidation of the carcinogensbenzo[a]pyrene and benzo[a]anthracene to dihydrodiols by a bacterium[J].Science.1975,189:295-297.
    [123]Schneider J,Grosser R,Jayasimhulu K,Xue W,Warshawsky D,Degradation of pyrene,benzo[a]anthracene and benzo[a]pyrene by mycobacterium sp.Strain RJGⅡ-135,isolated from a former coal gasification site[J].Appl.Environ.Microbiol.1996,62:13-19.
    [124]Wilkins M.Australia backs off telescope promise[J].Nature,1995,378(6558):653.
    [125]钱小红.蛋白质组与生物质谱技术[J].质谱学报,1998,19(3):48-54.
    [126]皇甫海燕,官春云,郭宝顺,张秀英.蛋白质组学及植物蛋白质组学研究进展[J].作物研究,2006,(5):577-581.
    [127]Scott D,Patterson RH.Proteomics:the first decade and beyond[J].Nature genetics.supplement.2003,33(3):311-323.
    [128]Rabilloud T.Solubilization of proteins in 2-D electrophoresis:an outline[J].Methods Mol Biol,1999,112:9-19.
    [129]Macri J,McGee B,Thomas JN,Du P,Stevenson TI,Kilby GW,Rapundalo ST.Cardiac sarcoplasmic reticulum and sarcolemmal proteins separated by two-dimensional electrophoresis:surfactant effects on membrane solubilization [J].Electrophoresis.2000,21:1685-1693.
    [130]Molloy MP.Two-dimensional electrophoresis of membrane proteins using immobilized pH gradients[J].Analytical Biochemistry.2000,280:1-10.
    [131]Link AJ.Internal Standards for 2-D Methods[J].Methods in Molecular Biology.1999,112:281-284.
    [132]O'Farrel PH.High resolution two dimensional electrophoresis of proteins[J].J BioChem,1975,250(10):4007-4021.
    [133]Klose J,Kobalz U.Two-dimensional electrophoresis of proteins:an updated protocol and implications for a functional analysis of the genome[J].Electrophoresis.1995,16:1034-1059.
    [134]王岚,刘骁勇,张华宁,高虹.生物质谱技术在蛋白质组学研究中的应用[J].生物技术通讯.2007,18(1):166-168.
    [135]Aebersold R,Goodlett DR.Mass spectrometry in proteomics[J].Chem Rev,2001,101(2):269.
    [136]Lay JO.MALDI-TOF mass spectrometry of bacteria[J].Mass Spectrom Rev,2002,20(4):172.
    [137]Sandra K,Devreese B,Beeumen VJ,Stals I.,Claeyssens M.The Q-Trap mass spectrometer,a novel tool in the study of protein glycosylation[J].J.Am.Soc.Mass.Spectrom.2004,5(3):413.
    [138]Spengler SJ.Bioinformatics in the Information Age[J].Science.2000,287(18):1221-1223.
    [139]赵渝.芳香烃生物降解途径蛋白质组学研究.华东师范大学博士论文[D],2007.
    [140]骆建新,郑崛村,马用信,张思仲.人类基因组计划与后基因组时代[J].中国生物工程杂志.2003,23(11):87-94.
    [141]Liang Y,Gardner DR,Miller CD,Cheng D,Anderson AJ,Weimer BC,Sims R C.Study of biochemical pathways and enzymes involved in Pyrene degradation by Mycobacterium sp.Strain KMS[J].Appl.Environ.Microbiol.2006,72(12):7821-7828.
    [142]Dean-Ross D,Moody J,Cerniglia CE.Utilization of mixtures of polycyclic arrmatic hydrocarbons by bacteria isolated from contaminated sediment[J].FEMS MicrobiolEcol.2002,41:1-7.
    [143]Strachan PD,Freer AA,Fewson CA.Purification and characterization of catechol 1,2-dioxygenase from Rhodococcus rhodochrous NCIMB 13259 and cloning and sequencing of its catA gene[J]. Biochemical Journal. 1998, 333: 741-747.
    1.Huang X,Tian Y,Luo YR,Liu HJ,Zheng W,Hong HS,Zheng TL.Modified sublimation to isolate phenanthrene degrading bacteria of the genera Sphingomonas and Burkholderia from Xiamen Oil Port.Mar.Pollut.Bull.(2008),doi:10.1016/j.marpolbul.2007.12.013
    2.Sohn JH,Kwon KK,Kang JH,Jung HB,Kim SJ.Novosphingobium pentaromativorans sp.nov.,a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment[J].Int J Syst Evol Microbiol.2004,54:1483-1487.
    3.崔志松,邵宗泽.一株海洋新鞘氨醇杆菌phe-8(Novosphingobium sp.)的PAHs 降解基因和降解特性[J].厦门大学学报(自然科学版).2006,S1:257-261.
    4.Takeuchi M,Hamana K,Hiraishi A.Proposal of the genus Sphingomonas sensustricto and three new genera,Sphingobium,Novosphingobium and Sphingopyxis,on the basis of phylogenetic and chemotaxonomic analyses[J].Int.J.Syst.Evol.Microbiol.,2001,51:1405-1417.
    5.Mueller JG,Chapman PJ,Blattmann BO,Pritchard PH.Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas pqucimobilis [J].Appl.Environ.Microbiol.1990,56:1079-1086.
    6.Basta T,Keck A,Klein J,Stolz A.Detection and characterization of conjugative degradative plasmids in xenobiotic-degrading Sphingomonas strains[J].J Bacteriol.2004,186(12):3862-3872.
    7.Willison JC.Isolation and characterization of a novel sphingomonad capable of growth with chrysene as sole carbon and energy source[J].FEMS Microbiol Lett.2004,241(2):143-150.
    8.Keck A,Conradt D,Mahler A,Stolz A,Mattes R,Klein J.Identification and functional analysis of the genes for naphthalenesulfonate catabolism by Sphingomonas xenophaga BN6 [J]. Microbiology. 2006,152:1929-1940.
    
    9. Kim SJ, Chun J, Bae KS, Kim YC. Polyphasic assignment of an aromatic-degrading Pseudomonas sp., strain DJ77, in the genus Sphingomonas as Sphingomonas chungbukensis sp. Nov [J]. Int. J. Syst. Evol. Microbil. 2000, 50:1641-1647.
    
    10. Peng X, Shindo K, Kanoh K, Inomata Y, Choi SK, Misawa N. Characterization of Sphingomonas aldehyde dehydrogenase catalyzing the conversion of various aromatic aldehydes to their carboxylic acids [J]. Applied Microbiology and Biotechnology, 2005, 69(2): 141-150.
    
    11. Wang Y, Lau PC. Sequence and expression of an isocitrate dehydrogenase-encoding gene from a polycyclic aromatic hydrocarbon oxidizer, Sphingomonad yanoikuyae B1 [J]. Gene. 1996,168:15-21.
    
    12. Pinyakong O, Habe H, Supaka N, Pinpanichkarn P, Juntongjin K, Yoshida T, Furihata K, Nojiri H, Yamane H, Omori T. Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2 [J]. FEMS Microbiol Lett. 2000, 19(1): 115-121.
    
    13. Khan AA, Wang RF, Cao WW, Flankin W, Cerniglia CE. Reclassification of a polycyclic aromatic hydrocarbon-metabolizing bacterium, Beijerinckia sp. Strain B1, as Sphingomonas yanoikuyae by fatty acid analysis, protein pattern analysis, DNA-DNA hybridization, and 16S ribosomal DNA sequencing [J]. Int. J. Syst. Bacteriol. 1996,46:466-469.
    
    14. Schneider J,Grosser R, Jayasimhulu K, Xue W,Warshawsky D. Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site [J]. Appl Environ Microbiol. 1996,62(1): 13-19
    
    15. Grosser R J, Warshewsky D, Robie V J. Indigenous and enhanced mineralization of pyrene, benzo(a) pyrene and carbazole in soil [J].Appl. Environ. Microbiol. 1991,57:3462-3469.
    
    16. Pagnout C, Rast C, Veber AM, Poupin P, Ferard JF. Ecotoxicological assessment of PAHs and their dead-end metabolites after degradation by Mycobacterium sp. strain SNP11 [J]. Ecotoxicol Environ Saf. 2006,65(2): 151-158.
    
    17. Dandie CE, Thomas SM, Bentham RH, McClure, NC. Physiological characterization of Mycobacterium sp. strain 1B isolated from a bacterial culture able to degrade high-molecular-weight polycyclic aromatic hydrocarbons [J]. J Appl Microbiol. 2004,97(2):246-255.
    
    18. Wick LY, Pasche N, Bernasconi SM, Pelz 0, Harms H. Characterization of multiple-substrate utilization by anthracene-degrading Mycobacterium frederiksbergense LB501T [J]. Appl Environ Microbiol. 2003,69(10):6133-6142.
    
    19. Hormisch D, Brost I, Kohring GW, Giffhorn F, Kroppenstedt RM, Stackebrandt E, Farber P, Holzapfel WH. Mycobacterium fluoranthenivorans sp. nov., a fluoranthene and aflatoxin Bl degrading bacterium from contaminated soil of a former coal gas plant [J]. Syst Appl Microbiol, 2004,27(6):653-660.
    
    20. Moody JD, Freeman JP, Doerge DR. Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1[J]. Appl Environ Microbiol, 2001, 67(4): 1476-1483.
    
    21. Lee SE, Seo JS., Keum YS, Lee KJ, Li QX. Fluoranthene metabolism and associated proteins in Mycobacterium sp. JS14 [J]. Proteomics. 2007,7(12):2059-2069.
    
    22. Habe H, Kanemitsu M, Nomura M, Takemura T, Iwata K, Nojiri H, Yamane H, Omori T. Isolation and characterization of an alkaliphilic bacterium utilizing pyrene as a carbon source [J]. J Biosci Bioeng. 2004,98(4):306-308.
    
    23. Krivobok S, Kuony S, Meyer C, Louwagie M, Willison JC, Jouanneau Y. Identification of Pyrene-Induced Proteins in Mycobacterium sp. Strain 6PY1: Evidence for Two Ring-Hydroxylating Dioxygenases [J]. J Bacteriol. 2003, 185, (13): 3828-3841.
    
    24. Vander MJR, Vos WM, Harayama S, Zehnder AJB. Molecular mechanisms of genetic adaptation to xenobiotic compounds [J]. Microbiol. Rev. 1992, 56:677—694.
    
    25. Heitkamp MA, Cerniglia CE. Efects of chemical structure and exposure on the microbial degradation of PAHs in freshwater and estuarine ecosystems[J].Environ Toxicol Chem.1987,6:535-546.
    26.Wang X,Bartha R.Effect of bioremediation on polycyclic aromatic hydrocarbon residues in siol[J].Environmental Science and Technology,1990,24:1086-1089.
    27.郭楚玲,郑天凌,洪华生.多环芳烃的微生物降解与生物修复[J].海洋环境科学.2000,19(3):24-29.
    28.Kiyohara H,Nagao K,Kouno K,Yano K.Phenanthrene-degrading phenotype of Alcaligenes faecalis AFK2[J].Applied and Environmental Microbiology.1982,43,458-461.
    29.Alley J,Brown L.Use of Sublimation To Prepare Solid Microbial Media with Water-Insoluble Substrates[J].Appl Environ Microbiol.2000;66(1):439-442.
    30.Juhasz AL,Stanley GA,Britz ML.Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophoraonas maltophilia strain VUN 10,003.Letters in Applied Microbiology.2000,30(5):396-401.
    31.Boonchan S,Britz ML,Stanley GA.Surfactant-enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia[J].Biotechnol Bioeng.1998,59(4):482-94.
    32.Caldini G,Cenci G,Manenti R,Morozzi G.The ability of an environmental isolate of Pseudomonas fluorescens to utilize chrysene and other four-ring polynuclear aromatic hydrocarbons[J].Applied Microbiology and Biotechnology.1995,44:225-229.
    33.Bugg T,Foght JM,Pickard MA,Gray MR.Uptake and Active Efflux of Polycyclic Aromatic Hydrocarbons by Pseudomonas fluorescens LP6a[J].Appl Environ Microbiol.2000 December;66(12):5387-5392.
    34.Holmes B,Popoff M,Kiredjian M,Kersters K.Ochrohactrum anthropigen,nov.,sp.nov.from human clinical specimens and previously known as group Vd[J].Int.J.Syst.Bacteriol.,1988,38:406-416.
    35.Velasco J,Romero C,Lopez G,Leiva J,Diaz R,Moriyon I.Evaluation of the relatedness of Brucella spp. and Ochrobactrum anthropi and description of Ochrobactrum intermedium sp. nov., a new species with a closer relationship to Brucella spp. [J]. Int. J. Syst. Bacteriol., 1998,48:759-768.
    
    36. Lebuhn M, Achouak W, Schloter M, Berge 0, Meier H, Barakat M, Hartmann A, Heulin T. Taxonomic characterization of Ochrobactrum sp. isolated from soil samples and wheat roots, and description of Ochrobactrum tritici sp. nov. and Ochrobactrum grignonense sp. nov [J]. Int. J. Syst. Evol. Microbiol., 2000,50:2207-2223.
    
    37. Lechner U, Baumbach R, Becker D, Kitunen V., Auling G., Salkinoja-Salonen M. Degradation of 4-chloro-2-methylphenol by an activated sludge isolate and its taxonomic description [J]. Biodegradation, 1995,6: 83-92.
    
    38. Bongkeun S, Norberto JP, Max MH. Isolation and Characterization of Diverse Halobenzoate-Degrading Denitrifying Bacteria from Soils and Sediments [J]. Appl. Environ. Microbiol., 2000, 66(8): 3446-3453.
    
    39. Wael SE, Mohamed KI, Mohamed A, Fawkia E , Naoya O, Hiroshi S, Akikazu A. Isolation and Identification of a Novel Strain of the Genus Ochrobactrum with Phenol-Degrading Activity [J]. Journal of Bioscience and Bioengineering., 2003,96(3):310-312.
    
    40. Marc V, Jordi S, Maria J, Anna MS. Bacterial Community Dynamics and Polycyclic Aromatic Hydrocarbon Degradation during Bioremediation of Heavily Creosote-Contaminated Soil [J]. Appl. Environ. Microbiol., 2005, 71(11): 7008-7018.
    
    41. Pinyakong, O., Habe H., and Omori T. The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J. Gen. Appl. Microbiol. 2003. 49:1-19.
    1.Muyzer G.DGGE/TGGE a method for identifying genes from natural ecosystems [J].Curr.Opin.Microbiol.1999,2,317-322.
    2.Katsivela E,Moore ERB,Maroukli D,Strompl C,Pieper D,Kalogerakis N.Bacterial community dynamics during in-situ bioremediation of petroleum waste sludge in landfarming sites[J].Biodegradation.2005.16,169-180.
    3.施晓东,常学秀.重金属污染土壤的微生物响应[J].生态环境.2003, 12(4):498-499.
    
    4. Yang Y, Yao J, Hu S, Qi Y.Effects of agriculture chemicals on DNA sequence diversity of soil microbial community: a study with RAPD marker [J]. Microbiol. Ecol. 2000, 39(1):72-79.
    
    5. Andreoni V. Bacterial communities and enzyme activities of PAHs polluted soils [J]. Chemosphere. 2004, 57: 401-412.
    
    6. Cerniglia CE. Biodegradation of polycyclic aromatic hydrocarbons [J] Biodegradation. 1992, 3: 351-368.
    
    7. Fogel GB, Collins CR, Li J, Brunk C F. Prokaryotic genome size and SSU rDNA copy number: estimation of microbial relative abundance from a mixed population [J]. Microb. Ecol. 1999. 38:93-113.
    1.Volkering F,Breure AM.Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons[J].Appl.Environ. Microbiol.,1995,61(5):1699-1705.
    2.郭楚玲,郑天凌,洪华生.多环芳烃的微生物降解与生物修复[J].海洋环境科学.2000,19(3):24-29.
    3.Kim IS,Park JS,Kim KW.Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry[J].Appl Geochem.2001,16:1419-1428.
    4.Brusseau ML,Wang X,Hu Q.Enhanced Transport of Low-Polarity Organic Compounds through Soil By Cyclodextrin[J].Environmental Science and Technology.1994,28(5):952-956.
    5.尹萍,杨彦希.微生物降解多环芳烃及其在环境保护中的应用[J].环境科学.1998,19(6):79-83.
    6.东秀珠,蔡妙英,常见细菌系统鉴定手册[M].2001,北京:科学出版社.
    7.Heitkamp MA,Cerniglia CE.Efects of chemical structure and exposure on the microbial degradation of PAHs in freshwater and estuarine ecosystems[J].Environ Toxicol Chem.1987,6:535-546.
    8.Wang X,Bartha R.Efect of bioremediation on polycyclic aromatic hydrocarbon residues in siol[J].Environmental Science and Technology.1990,24:1086-1089.
    9.崔志松,邵宗泽.一株海洋新鞘氨醇杆菌phe-8(Novosphingobium sp.)的PAHs 降解基因和降解特性.厦门大学学报(自然科学版).2006,S1:257-261.
    10.Liu YS,Zhang J,Zhang ZZ,.Isolation and characterization of polycyclic aromatic hydrocarbons-degrading Sphingomonas sp.strain ZL5[J].Biodegradation.2004,15(3):205-212.
    11.Cho JC,Kim S.Detection of mega plasmid from polycylic aromatic hydrocarbon-degrading Sphingomonas sp strain KS[J].Microbiol Biotechnol.2001,3(4):503-506.
    12.Moody JD,Freeman JP,Doerge DR.Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp.strain PYR-1[J].Appl Environ Microbiol,2001,67(4):1476-1483.
    13.Abdelhay A,Magnin JP,Gondrexon N,Baup S,Willison J.Optimization and modeling of phenanthrene degradation by Mycobacterium sp.6PY1 in a biphasic medium using response-surface methodology.Appl Microbiol Biotechnol.2008,78(5):881-888.
    14.Pagnout C,Rast C,Veber AM,Poupin P,Ferard JF.Ecotoxicological assessment of PAHs and their dead-end metabolites after degradation by Mycobacterium sp.strain SNP11.Ecotoxicol Environ Saf.2006,65(2):151-158.
    15.Mahaffey WR,Gibson DT,Cerniglia CE.Bacterial oxidation of chemical carcinogens,formation of polycyclic aromatic acids from benz[a]anthracene[J].Appl.Environ.Microbiol.1988,54(10):2415-2423.
    16.Mueller JG,Chapman PJ,Pritchard PH.Action of a fluoranthene-utilizing bacterial community on polycyclic aromatic hydrocarbon components of creosote[J].Appl.Environ.Microbiol.1989,55(12):3085-3090.
    17.Tam NFY,Guo CL,Yau WY,Wong YS.Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in Hong Kong[J].Marine pollution bulletin.2002,45:316-324.
    18.Ravelet C,Krivobok S,Sage L,Steiman R.Biodegradation of pyrene by sediment fungi[J].Chemosphere.2000,40(5):557-563.
    19.Wang SJ,Loh KC.Facilitation of cometabolic degradation of 4-chlorophenol using glucose as an added growth substrate[J].Biodegradation.1999,10(4):261-269.
    20.Dabrock B,Bahl H,Gottschalk G.Parameters Affecting Solvent Production by Clostridium pasteurianum[J].Appl Environ Microbiol.1992,58(4):1233-1239.
    21.宋玉芳,孙铁珩,许华夏.表面活性剂TW-80对土壤中多环芳烃生物降解的影响[J].应用生态学报,1999,10(2):230-232.
    22.Dries J,Ratte D,Yang Y.The effect of surfactant biodegradability on bioremediation of polycyclic aromatic hydrocarbons(PAHs) in aged soils[J].Mededelingen Faculteit Landbouwkundigeen Toegepaste Biologische Wetenschappen Universiteit Gent,2000,65(3A):129-132.
    1.田蕴,郑天凌,胡忠.海洋环境中多环芳烃的微生物降解研究进展[J].应用与环境生物学报.2003,9(4):439-443.
    2.Pinyakong O,Habe H,Omori T.The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons(PAHs)[J].J.Gen. Appl.Microbiol.2003.49:1-19.
    3.萨姆布鲁克,J.,D.W.拉塞尔,黄培堂等译,分子克隆实验指南(上,下册)[M].科学出版社.2002.
    4.Onruthai P,Hiroshi H,Nuttapun S.Identification of novel metabolites of phenanthrene by Sphingomonas sp.strain P2[J].FEMS microbiology letters,2000,191:115-121.
    5.Goyal AK,Zylstra GJ.Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39[J].Applied and environment microbiology.1996,62(1):230-236.
    6.Prabhu Y,Phale PS.Biodegradation of phenanthrene by Pseudomonas sp.strain PP2:novel metabolic pathway,role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation[J].Appl Microbiol Biotechnol.2003,61(4):342-351.
    7.Moody JD,Freeman JP,Doerge DR.Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp.strain PYR-1[J].Appl Environ Microbiol.2001,67(4):1476-1483.
    8.Gibson DT,Parales RE.Aromatic hydrocarbon dioxygenases in environmental biotechnology[J].Current opinion in biotechnology.2000,11(3):236-243.
    1.Kim SJ,Jones RC,Cha CJ,Kweon O,Edmondson RD,Cerniglia CE.Identification of proteins induced by polycyclic aromatic hydrocarbon in Mycobacterium vanbaalenii PYR-1 using two-dimensional polyacrylamide gel electrophoresis and de novo sequencing methods[J].Proteomics.2004,4(12):3899-3908.
    2.Kim SJ,Kweon O,Freeman JP,Jones RC,Adjei MD,Jhoo JW,Edmondson RD,Cerniglia CE.Molecular Cloning and Expression of Genes Encoding a Novel Dioxygenase Involved in Low- and High-Molecular-Weight Polycyclic Aromatic Hydrocarbon Degradation in Mycobacterium vanbaalenii PYR-1[J].Appl.Envir.Microbiol.2006,72(2):1045-1054.
    3.Kim SJ,Kweon O,Jones RC,Freeman JP,Edmondson RD,Cerniglia CE.Complete and Integrated Pyrene Degradation Pathway in Mycobacterium vanbaalenii PYR-1 Based on Systems Biology[J].J.Bacteriol.2007,189(2):464-472.
    4.Krivobok S,Kuony S,Meyer C,Louwagie M,Willison JC,Jouanneau Y.Identification of Pyrene-Induced Proteins in Mycobacterium sp.Strain 6PY1: Evidence for Two Ring-Hydroxylating Dioxygenases[J].J Baeteriol.2003,185,(13):3828-3841.
    5.Lee SE,Seo JS,Keum YS,Lee KJ,Li QX.Fluoranthene metabolism and associated proteins in Mycobacterium sp.JS14[J].Proteomics.2007,7(12):2059-2069.
    6.Liang Y,Gardner DR,Miller CD,Cheng D,Anderson AJ,Weimer BC,Sims RC.Study of biochemical pathways and enzymes involved in Pyrene degradation by Mycobacterium sp.Strain KMS[J].Appl Environ Microbiol.2006,72(12):7821-7828.
    7.Demaneche S,Meyer C,Micoud J,Louwagie M,Willison JC,Jouanneau Y.Identification and functional analysis of two aromatic-ring-hydroxylating dioxygenases from a sphingomonas strain that degrades various polycyclic aromatic hydrocarbons[J].Appl Environ Microbiol.2004,70(11):6714-6725.
    8.汪家政,范明主编.蛋白质技术手册[M].北京:科学技术出版社,2002.
    9.Pinyakong O,Habe H,Omori T.The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons(PAHs)[J].J.Gen.Appl.Microbiol.2003.49:1-19.
    10.Vuilleumier S.Bacterial glutathione S-transferases:what are they good for[J].J.Bacteriol.,1997,179(5):1431-1441.
    11.夏颖,闵航,周德平,韩如砀.两株菲降解菌株的特性及其系统发育分析[J].中国环境科学.2003,23(2):162-166.
    12.Strachan PD,Freer AA,Fewson CA.Purification and characterization of catechol 1,2-dioxygenase from Rhodococcus rhodochrous NCIMB 13259 and cloning and sequencing of its catA gene[J].Biochemical Journal 1998,333:741-747.