4H-SiC同质外延的表征及深能级分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiC器件和其它半导体器件一样,材料的质量对于SiC器件的制备和性能具有非常重要的意义。高质量的SiC单晶是制备高性能SiC器件的基础,有利于SiC器件研制和进一步推广应用。目前,4H-SiC同质外延单晶薄膜的研究已经取得了可喜的成绩。但是国内才刚起步,且由于同质外延的表征测试存在一定困难:还没有一套系统完整的表征测试方法;对于非刻意掺杂4H-SiC同质外延中存在的影响器件性能的本征深能级,国际上也存在比较大的争议,不同样品的结果也差异很大;对于深能级的起源没有定论,也没有提出一套很好的解决办法。国内对于这一方面的研究还是空白。
     在此背景下,本文对制备4H-SiC同质外延薄膜的机理、方法和特性进行了系统的理论分析和实验验证;提出一套系统完整的4H-SiC同质外延薄膜表征测试方法;对影响器件性能的非刻意掺杂n型4H-SiC外延中的本征深能级等相关问题进行了广泛深入的研究。主要的研究成果如下:
     1.在理论分析的基础上,对4H-SiC同质外延生长的关键工艺进行了实验研究,得出影响这些材料参数的主要因素。确定了关键参数变化趋势,制定了完整的工艺流程。
     2.建立了系统的4H-SiC同质外延薄膜表征测试方法。通过不同掺杂浓度样品Raman光谱中LOCP的不同,提出了一种简易测试外延厚度的方法。利用FTIR反射谱对4H-SiC同质外延晶体薄膜的质量进行评价,完善了用干涉条纹的频率和强弱的方法来计算外延薄膜的厚度。通过van der Paul法霍尔测试技术,对低N掺杂的n型4H-SiC同质外延的迁移率和霍尔系数进行测试表征。用汞(Hg)探针C-V测试获取4H-SiC同质外延纵向杂质浓度分布的信息,并通过多点测试,得到外延片的掺杂浓度均匀性。对样品进行了电阻均匀性测试,测试结果显示电阻率分布较为均匀,最小和最大电阻率分别为0.3768Ω·cm和0.3972Ω·cm,误差仅为1.04%。HRXRD测试显示4H-SiC同质外延薄膜半高宽(FWHM)为36 s,距主峰左侧约41″处出现另外一个衍射峰。经计算分析,该衍射峰偏移主要是由外延和衬底的晶向偏移引起的。借助SEM、AFM和X射线光电子能谱仪对4H-SiC样品表面形貌以及元素进行了定性和定量的测试分析。借助SIMS对Al掺杂和高N掺杂的4H-SiC样品中的主要掺杂杂质浓度及薄膜厚度进行了测试,验证了光学测试的结果。
     3.研究了非刻意掺杂4H-SiC同质外延禁带中形成的缺陷深能级。对样品进行10K到室温的变温光致发光测量,发现4H-SiC存在由本征深受主能级引起的“绿带”发光现象。借助PL mapping对样品的峰值波长(Peak Lambda)和发光强度(Peak Int)进行了测量,结果表明在4H-SiC外延大部分区域存在本征深能级缺陷,且分布均匀。通过理论分析表明存在两个深能级,分别位于导带下E1 = 0.942eV,E2 = 1.190eV处。深能级缺陷形成的原因主要是由于样品中存在着大量的碳空位VC。“绿带”发光谱与碳空位VC及其扩展缺陷都相关,是由二者络合形成的。
     4.为了减少外延层中的C空位,进行了C离子注入4H-SiC外延的理论研究和工艺设计。通过研究离子注入理论和工艺特性,采用蒙特卡罗(Monte Carlo)方法,借助Trim模拟软件对C离子注入4H-SiC的分布进行了统计计算,计算模拟了不同注入能量下C注入4H-SiC的平均投影射程、标准偏差以及浓度分布。在此基础上,提出采用三次C离子注入消除非刻意掺杂4H-SiC中深能级缺陷的方法和工艺流程,包括离子注入工艺参数(能量、剂量)的确定、注入掩膜层SiO2厚度的选取原则,退火温度和时间以及退火保护。成功地进行了注入实验。
     5.研究了C离子注入和高碳硅比生长4H-SiC对深能级的影响。发现1600℃的退火温度对注入引起的晶格损伤起到了很好的修复作用,并可以有效地激活碳离子,使其占据C空位。高温退火使C空位被占据有效地减少了C空位衍生缺陷。通过碳离子注入成功消除了非刻意掺杂n型4H-SiC外延薄膜中的深能级缺陷。
     研究了生长4H-SiC外延薄膜合适的碳硅比区间。综合考虑增大C/Si对4H-SiC外延质量的影响和实验成本两个方面,选取C/Si为1.5和3两种样品,找出增大C/Si对于非刻意掺杂4H-SiC深能级缺陷变化的趋势和效果。结果表明,增大生长碳硅比,能在一定程度上抑制碳空位的产生,减少本征深能级缺陷,但受外延晶体质量等条件限制,有一定的局限性。
As other semiconductor device, the quality of silicon carbide (SiC) material plays a very important role in the fabrication and performance of SiC device. The high quality SiC single crystal material is the base for achieving SiC devices with high performance, and making for the study and the further applications of SiC devices. At present; there are obviously progresses about the formation on the growth of 4H- SiC homoepitaxial layers. But many difficulties and problems are also existed on the characterization of the 4H-SiC homoepitaxial layers materials. It is necessary to systematically develop a series of characterization methods for characteristics of 4H-SiC homoepitaxial layers. Until now, there are still different opinions for the intrinsic deep energy level in unintentionally doped 4H-SiC. The results obtained from measurements are different for different samples. Also the origin of intrinsic deep energy level is not quite clear. However the related researches are just in beginning in mainland China.
     In this dissertation, the formation mechanism, technology, and characteristics on the 4H- SiC homoepitaxial layers are studied theoretically and experimentally. A series of test and characterization methods for characteristics of 4H-SiC homoepitaxial layers are presented. The intrinsic deep energy level in unintentionally doped 4H-SiC homoepitaxial layers, which has a great effect on the device performance, is comprehensively studied. The main studies and contributions of this dissertation are as follows.
     1. The key processes of growth are studied by experiments based on the theoretical analyse, and the major factors to affect the key processes are obtained. The trend of parameters and process are achieved.
     2. Several methods for the characterization of 4H-SiC homoepitaxial layers are investigated. A new simple method is presented according to the difference LOCP peak in Raman spectrum with different dopping concentrations. The quality of 4H-SiC homoepitaxial layers is evaluated and the depth is calculated using the intensity and frequency of interference fringes in FTIR spectrum. The resistivity mapping measurements reveal a good homogeneity of electrical properties in the main area of the wafer, with the maximum resistivity 0.3972Ω·cm and the minimun resistivity 0.3768Ω·cm. The maximum error of resistivity is only 1.04%.
     The FWHW of rocking curve is 36 second measured by X-ray diffraction (XRD), and another peak is found at the left, 41 second away from main peak. It is caused by the misorientation between the substrate and epilayer through mathematical analysis. The surface topography and element of 4H-SiC homoepitaxial layers are qualitatively and quantitatively analysed by SEM, AFM and XPS, and the concentration of heavy N-doping 4H-SiC and the doping of Al-doped sample are measured by secondary ion mass spectroscopy (SIMS). The thickness of different doping layers can also be obtained according to the concentration, which is used to verify the results from FTIR method.
     3. The intrinsic deep energy level in the bandgap of unintentionally doped 4H-SiC is investigated. An undoped 4H-SiC homoepitaxial layer grown by hot-wall chemical vapor deposition has been studied using photoluminescence (PL) technique with temperature varied from 10K to 240K. The broadband green luminescence has been observed. The broadband green luminescence may be composed of two Gauss-type spectra by using nonlinear optimization technique. It shows that the broadband green luminescence originates from the combination of two independent radiative transitions. The centers of two energy levels are located 0.942 eV and 1.190 eV below the conduction band, respectively. The ends of two energy levels are expanding and superimposed to each other. Vacancies of carbon (VC) are found by electron spin resonance (ESR) technique at 110K. The results strongly imply that vacancy of C and the extended defects are responsible for the green band luminescence.The The peak lambda and intensity of PL mapping indicated the intrinsic deep level energy exist in almost the whole wafer, and it is evenly distributed.
     4. In order to reduce vacancy of carbon, the theory and process design of 4H-SiC homoepitaxial layer implanted by carbon ion are studied. From the analysis of theory and process ion-implantation, the ion implantation range, location of peak concentration and longitudinal straggling of carbon are calculated with the Monte Carlo simulator TRIM. Then the process flow for removing deep energy level in undoped 4H-SiC homoepitaxial layer by three times carbon ion-implantation is proposed, including the design of implantation energy, dose, and depth of the SiO2 resist mask, annealing temperature, annealing time and annealing protection.
     5. The effect of carbon ion implantation and high C/Si ratio on deep energy level in the growth of 4H-SiC is investigated. The deep energy level in 4H-SiC material can be significantly improved by with implantation of carbon atoms into a shallow surface layer. The damage of crystal lattice can be repaired well, and the carbon ions are effectively actived after the 1600°C annealing. The vacancies of carbon and their related defects can be decreased by the process of carbon ion implantation and annealing.
     C/Si ratio to be suitable for the growth of 4H-SiC epilayer is discussed according to the quality of 4H-SiC epilyers and the experiment cost. C/Si=1.5 and C/Si=3 are selected to find the tendency of intrinsic deep energy level with the C/Si ratio increasing. The results indicate that the vacancies of canbon are suppressed and the density of deep energy level defects is decreaed in carbon rich growth conditions. But this method is limited by severl factors, such as quality of 4H-SiC epilyers and concentration of N dopping.
引文
[1.1] S. M. Sze. Semiconductor Devices: Physics and Technology, John Wiley & Sons, 1985, 30
    [1.2]张玉明,张义门,罗晋生,“SiC、GaAs和Si的高温特性的比较”,固体电子学研究与进展,1997,17(3): 305
    [1.3] Bahl. I. J. 2–8 GHz 8-W Power Amplifiers MMIC Developed Using MSAG MESFET Technology. IEEE Microwave and Wireless Components Letters. Jan 2008, 18(1):52
    [1.4] Deal. W. R, Mei, X. B, Radisic. V, Yoshida. W, Liu. P. H, Uyeda. J, Barsky. M, Gaier. T, Fung. A, Samoska. L and Lai. R. Demonstration of a 270-GHz MMIC Amplifier Using 35-nm InP HEMT Technology. IEEE Microwave and Wireless Components Letters. 2007, 17(5):391
    [1.5] Mei. X. B, Yoshida. W, Deal. W. R, Liu. P. H, Lee. J, Uyeda. J, Dang. L, Wang. J, Liu. W, Li. D, Barsky. M, Kim. Y. M, Lange. M, Chin. T. P, Radisic. V, Gaier. T, Fung. A, Samoska. L and Lai. R. 35-nm InP HEMT SMMIC Amplifier With 4.4-dB Gain at 308 GHz. IEEE Electron Device Letters. 2007, 28(6):470–472
    [1.6] J. Hornberger, A. B. Lostetter and K. J. Olejniczak, et al. Silicon-carbide (SiC) semiconductor power electronics for extreme high-temperature environments. Aerospace Conference, IEEE. 2004, 4: 2538
    [1.7] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov and M. Burns, Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J. Appl. Phys. 1994, 76(3) :1363
    [1.8] Weitzel. C. E. Comparison of SiC, GaAs, and Si RF MESFET power densities. IEEE Electron Device Letters.1995, 16(10):451
    [1.9] C.E.Weitzel, J.W.Palmour and C.H.Carter, et al. Silicon Carbide High-Power Devices. IEEE Trans. ED. 1996, 43(10):1732
    [1.10] Philip G. Neudeck. SiC TECHNOLOGY. NASA Lewis Research Center. 1998
    [1.11] R. H. Jones. SiC/SiC for advanced reactors. JOM. 2004, 56(11): 344
    [1.12] J. Hornberger, A. B. Lostetter and K. J. Olejniczak, et al. Silicon-carbide (SiC) semiconductor power electronics for extreme high-temperature environments.Aerospace Conference. IEEE. 2004, 4: 2538
    [1.13] D. Surls and M. Crawford. Individual and parallel behavior of high current density, high-voltage 4h-silicon carbide p-i-n diodes. IEEE Transaction on Magnetics. 2005, 41(1): 330
    [1.14] S. H. Ryu, S. Krishnaswami and M. Das, et al. 2KV 4H-SiC DMOSFETs for low loss, high frequency switching applications. International Journal of High Speed Electronics and Systems. 2004, 14(3): 879
    [1.15] J. Yin, Z. X. Liang and W. Van. High temperature embedded SiC chip module (ECM) for power electronics applications. IEEE Transactions on Power Electronics. 2007, 22(2): 392
    [1.16]郝跃,杨银堂. SiC材料和器件发展状况与趋势.电子技术评论. 1998, No. 1: 33
    [1.17] J. F. Seely, B. Kjornrattanawanich and G. E. Holland, et al. Response of a SiC photodiode to extreme ultraviolet through visible radiation. Optics Letters. 2005, 30(23): 3120
    [1.18] J. Hu, X. B. Xin and F. Y, et al. Highly sensitive visible-blind extreme ultraviolet Ni/4H-SiC Schottky photodiodes with large detection area. Optics Letters. 2006, 31(11): 1591
    [1.19] B. J. Baliga. Power semiconductor device figure of merit for high-frequency applications. IEEE Electron Device Letters. 1989, 10(10): 455
    [1.20]任学民. SiC单晶生长技术及器件研究进展.半导体情报. 1998, l35 (4):7-12.
    [1.21] W. F. Knippenberg. Growth Phenomena in Silicon Carbide. Phillips Res. Rep. 1963.18:161
    [1.22] J. A. Lely. Preparation of Single Crystals of Silicon Carbide and Control of the Nature and the Quantity of the Combined Impurities. Berichte der Deutschen Keramischen Gesellschaft. 1955, 32: 229
    [1.23] G. Ziegler, P. Lanig and C. weyrich. Single crystal growth of. Sic substrate material for blue light emitting diodes. IEEE Trans. Electr. Dev. 1983, 20: 227
    [1.24] www.cree.com
    [1.25] D. Lovig. Cree demonstrates 100-mm zero-micropipe silicon carbide substrates. Cree Press Room. Durham, N. C. May 13, 2007
    [1.26] P. G. Neudeck, W. Huang and M. Dudley. Breakdown degradation associated with elementary screw dislocations in 4H-SiC p+n junction rectifiers. Solid-State Electron. 1998, 42(12): 2157
    [1.27] R. Yakimova, M. Syvajarvi and M. Tuominen. Seeded sublimation growth of 6H and 4H-SiC crystals. Mater. Sci. Eng. B. 1999, 61-62: 54
    [1.28] M. Tairov and V. F. Tsvetkov. Investigation of growth processes of ingots of silicon carbide single crystals. J. Cryst. Growth. 1978, 43: 209
    [1.29]周继承,郑旭强,刘福. SiC薄膜材料与器件最新研究进展.材料导报. 2007, 21(3): 112
    [1.30]鲁励.引人注目的SiC材料、器件和市场.世界产品与技术. 2003, 12: 22
    [1.31] D. Lovig. Cree demonstrates 100-mm zero-micropipe silicon carbide substrates. Cree Press Room. Durham, N. C. May 13, 2007
    [1.32] P. G. Neudeck, W. Huang and M. Dudley. Breakdown degradation associated with elementary screw dislocations in 4H-SiC p+n junction rectifiers. Solid-State Electron. 1998, 42(12): 2157
    [1.33] H. Matsunami. Current SiC technology for power electronic devices beyond Si. Microelectron. Eng. 2006, 83: 2
    [1.34] Jian H. Zhao, Kiyoshi Tone, Petre Alexandrov, Leonid Fursin and Maurice Weiner. 1710-V 2.77-m?.cm2 4H-SiC trenched and implanted vertical junction field-effect transistors. IEEE ELECTRON DEVICE LETTERS. 2003, 24(2):81
    [1.35] Yongxi Zhang, Kuang Sheng, Ming Su, Jian H. Zhao, Petre Alexandrov and Leonid Fursin. 1000-V 9.1-m?.cm2 normally off 4H-SiC Lateral RESURF JFET for Power Integrated Circuit Applications. IEEE Electron Device Letters. 2007,28(5):404
    [1.36] Jianhui Zhang, Petre Alexandrov, Terry Burke and Jian H. Zhao. 4H-SiC power bipolar junction transistor with a very low specific ON-resistance of 2.9 m?·cm2. IEEE Electron Device Letters. 2006, 27(5):368
    [1.37] Jianhui Zhang,Xueqing Li,Petre Alexandrov,Leonid Fursin,Xiaohui Wang and Jian H. Zhao. Fabrication and Characterization of High-Current-Gain 4H-SiC Bipolar Junction Transistors. IEEE TRANSACTIONS ON ELECTRON DEVICES. 2008, 55(8):1899
    [1.38] Robert S. Howell, Steven Buchoff, Stephen Van Campen, Ty R. McNutt, Andris Ezis, Bettina Nechay, Christopher F. Kirby, Marc E. Sherwin and R. Chris Clarkeand Ranbir Singh. A 10-kV Large-Area 4H-SiC Power DMOSFET with Stable Subthreshold Behavior Independent of Temperature. IEEE TRANSACTIONS ON ELECTRON DEVICES. 2008, 55(8):1807
    [1.39] J. W. Palmour, S. T. Sheppard and R. P. Smith, et al. Wide bandgapsemiconductor devices and MMICs for RF power applications. International Electron Devices Meeting. 2001. 17
    [1.40] Tanaka. Y, Okamoto. M, Takatsuka. A, Arai. K, Yatsuo. T, Yano. K and Kasuga. M. 700V 1.0?.cm2 Buried Gate SiC-SIT (SiC-BGSIT). Electron Device Letters. 2006, 27(11):908
    [1.41] Choi. Y. C, Cha. H. Y, Chandrashekhar. M, Eastman. L. F and Spencer. M. G. A New Approach to Maximizing the Power Handling Capability in Recessed-Gate Silicon Carbide Static Induction Transistors. IEEE 36th Power Electronics Specialists Conference, 2005. p.2171
    [1.42] Jun Hu, Xiaobin Xin, Xueqing Li, Jian H. Zhao, Brenda L. VanMil, Kok-Keong Lew, Rachael L. Myers-Ward, Charles R. Eddy, Jr. and D. Kurt Gaskill. 4H-SiC Visible-Blind Single-Photon Avalanche Diode for Ultraviolet Detection at 280 and 350 nm. IEEE TRANSACTIONS ON ELECTRON DEVICES. 2008, 55(8):1977
    [1.43] Feng Yan, Xiaobin Xin, Aslam. S, Yuegang Zhao, Franz. D, Zhao. J. H and Weiner. M 4H-SiC UV photo detectors with large area and very high specific detectivity. IEEE Journal of Quantum Electronics. 2004, 40(9):1315
    [1.44] Toru. Hiyoshi, Tsutomu. Hori, Jun. Suda and Tsunenobu Kimoto. Simulation and Experimental Study on the JunctionTermination Structure for High-Voltage 4H-SiC PiN Diodes. IEEE TRANSACTIONS ON ELECTRON DEVICES. 2008, 55(8):1841
    [1.45] Funaki. T, Balda. J. C, Junghans. J, Kashyap. A. S, Mantooth. H. A, Barlow. F, Kimoto. T and Hikihara. T. Power Conversion With SiC Devices at Extremely High Ambient Temperatures. IEEE Transactions on Power Electronics, 2007, 22(4):1321
    [1.46] Omura. I, Tsukuda. M, Saito. W and Domon. T. High Power Density Converter using SiC-SBD. Power Conversion Conference-Nagoya. 2-5 April 2007 p575 - 580
    [1.47] Johji. Nishio, Chiharu. Ota, Tetsuo. Hatakeyama, Takashi. Shinohe, Kazutoshi. Kojima, Shin-Ichi. Nishizawa and Hiromichi Ohashi. Ultralow-Loss SiC Floating Junction Schottky Barrier Diodes. IEEE TRANSACTIONS ON ELECTRON DEVICES. 2008, 55(8):1954
    [1.48]李哲洋,刘六亭,董逊等,4H-SiC同质外延中的缺陷,电子工业专用设备,2005年11月总第130期62-64。
    [1.49]高欣,孙国胜,李晋闽等,水平冷壁CVD生长4H-SiC同质外延薄膜的研究,半导体学报,第26卷第5期936-939。
    [1.50] K. Fujihira, T. Kimoto, H. Matsunami. Growth and characterization of 4H-SiC in vertical hot-wall chemical vapor deposition. Journal of Crystal Growth 2003,255 :13
    [1.51] W. C. Mitchel, W. D. Mitchell and M. E. Zvanut, et al. High temperature Hall effect measurements of semi-insulating 4H-SiC substrates. Solid-State Electron. 2004, 48: 1693
    [2.1] R. Yakimova, M. Syvajarvi and M. Tuominen. Seeded sublimation growth of 6H and 4H-SiC crystals. Mater. Sci. Eng. B. 1999, 61-62: 54
    [2.2] M. Tairov and V. F. Tsvetkov. Investigation of growth processes of ingots of silicon carbide single crystals. J. Cryst. Growth. 1978, 43: 209
    [2.3]杨树人,丁墨元,外延生长技术,国防工业出版社(北京),1992
    [2.4] www.epigress.com
    [2.5]郝跃,彭军,杨银堂,碳化硅宽紧带半导体技术,微电子学丛书,科学出版社,2000年,pp14-15。
    [2.6]张玉明,碳化硅材料和器件的研究,博士论文,1998年,第二章,pp10-11。
    [2.7] M. A. Fanton, R. L. Cavalero and R. G. Ray, et al. Growth of SiC boules with low boron concentration. Mater. Sci. Forum. 2006, 527-529: 47
    [2.8] W. Goetz, A. Schoener and G. Pensl, et al. Nitrogen donors in 4H-silicon carbide. J. Appl. Phys. 1993, 73(7): 3332
    [2.9] P. M. Lofgren, W. Ji, C and Hallin, et al. Modeling of Silicon Carbide Epitaxial Growth in Hot-Wall Chemical Vapor Deposition Processes. J. Electoro. Soc. 2000 147 (1) 164-175
    [2.10] A. Veneroni, F. Omarini and D Moscatelli et al, Modeling of epitaxial silicon carbide deposition. J. Cryst. Growth. 2005, 275: 295
    [2.11] A. I. Kingon, L. J. Lutz and P. Liaw et al. Thermodynamic Calculations for the Chemical Vapor Deposition of Silicon Carbide. Journal of the American Ceramic Society; 1983, 66:558
    [2.12]张永华,西安电子科技大学硕士学位论文,碳化硅宽带隙半导体薄膜的异质外延生长技术及其结构性质分析,2002
    [2.13] A. Ellison, J. Zhang, A. Henry, and E. Janzén, Epitaxial growth of SiC in a chimney CVD reactor. J. Cry. Growth. 2002, 236:225
    [2.14] K. Kojim, S. Kurod and H, Okumura et al. Nitrogen incorporationcharacteristics on a 4H-SiC epitaxial layer Appl. Phys. Lett. 2006, 88: 021907
    [2.15] J. Zhang, A. Ellison and A. Henry et al. Influence of lattice polarity of nitrogen and aluminum doping on 4H-SiC epitaxial layer. J. Cryst. Growth 2001, 226: 267
    [2.16] O. Danielsson, U. Forsberg, E. Janz. Predicted nitrogen doping concentrations in silicon carbideepitaxial layers grown by hot-wall chemical vapor deposition. J. Cryst. Growth. 2003, 250: 471
    [2.17] C. F. Pirri, S. Ferrero and L. Scaltrito et al. In situ etch treatment of bulk surface for epitaxial layer growth optimization. Microelectronic Engineering. 2005
    [3.1] S. Nakashima and H. Harima. Raman investigation of SiC polytypes. Phys. Status Solidi A. 1997, 162(1):39
    [3.2] H. Yaguchi, Narita and Y. Hijikata, et al, Spatial mapping of the carrier concentration and mobility in SiC wafers by micro Fourier-transfrom infrared spectroscopy. Mater. Sci. Forum. 2002, 621:389
    [3.3] F. C. Frank and J. H. van der Merwe. Proc.Roy.Soc. London, 1949. A 198:216
    [3.4] Chu Ryang wie. High resolution X-Ray diffraaction characterization of miconductor structure materials. Science and Engineering. 1994, R13:16
    [3.5]许振嘉,半导体的检测与分析, 2007
    [3.6] S. Nakashima, M. Hangyo. Raman Intensity Profiles and the Stacking Structure in SiC Polytypes. Solid State Communications. 1991, 80(1):21
    [3.7] M. Cardona. Light Scattering in Solids I. Berlin Heidelberg New York : Springer - Verlag , 1983 , 155– 160
    [3.8] H. Harima, Shin– ich and T. Uemura. Raman Scattering from Anisotropic LO - phonon - plasmon - coupled Mode in - type 4H - and 6H - SiC. J. Appl. Phys , 1995 , 78 (3) : 1996
    [3.9] P. F. Kane and G. B. Larrabee. Characterization of semiconductor Materials. McGraw-Hill Book Company. U. S. A. 1970, 226
    [3.10] O. S. Heavens. Optical Properties of Thin Solid Films. Butterworths. London. 1955, 112
    [3.11] M.F. MACMILLAN,A. HENRY and E. JANZéN. Thickness Determination of Low Doped SiC Epi-Films on Highly Doped SiC Substrates. J E M. 1998, 27:4
    [3.12] Fujihira. K, Kimoto T, Matusnami. H. High-purity and high-quality 4H-SiC grown at high speed by chimney-type vertical hot-wall chemical vapordeposition. Appl. Phys. Lett. 2002, 80: 1586
    [3.13] Robert S. Okojie and Thomas Holzheu et al, X-ray diffraction measurement of doping induced lattice mismatch in n-type 4H-SiC epilayers grown on p-type substrates. Appl. Phys. Lett. 2003, 83:10
    [3.14] D.K.Bowen and B.K.Tanner. High Resolution X-ray Diffractometry and Topograyhy(Taylor & Francis Philadelphia,1998)
    [3.15] Kisielowski.C, Kruger and Jruvimov. S, et al. Strain-related phenomena in GaN thin films. Ohys.Rev.B 1996, 54: 17745
    [3.16] Z. C. Feng, A. Rohatgi and C. C. Tin, et al. Structural, optical, and surface science studies of 4H-SiC epilayers grown by low pressure chemical vapor deposition. J. E. M. 1996, 25 No.5 :917
    [3.17] J. S. Pan, T. S. Wee and H. A. Huan, et al. Argon incorporation and silicon carbide formation during low energy argon-ion bombardment of Si (100). J. Appl. Phys. 1996, 79(6): 2934
    [3.18] H. F. Li, S. Dimitrijev and D. Sweatman, et al. Investigation of nitric oxide and Ar annealed SiO2/SiC interfaces by X-ray photoelectron spectroscopy. J. Appl. Phys. 1999, 86(8): 4316
    [3.19] Kimoto. T, Miyamoto. N and Matsunami. H. Performance limiting surface defects in SiC epitaxial pn junctiondiodes. IEEE. Trans. Electron Devices. 1999, 46 471.
    [3.20] Chen. L, Guy. O. J, Jennings, et al. Study of a novel Si/SiC hetero-junction MOSFETSolid-State Electron. 2007, 51:662.
    [3.21] Skowronski. M, Ha. S. Degradation of hexagonal silicon-carbide-based bipolar devices J. Appl. Phys. 2006, 99: 011101
    [3.22] Kimoto T, Chen Z Y, Tamura S, et al. Surface Morphological Structures of 4H-, 6H- and 15R-SiC (0001) Epitaxial Layers Grown by Chemical Vapor Deposition. J J Appl. Phys. 2001, 40:3315
    [3.23] Kazutoshi K, Satoshi. K and Hajime O, et al. Kazuo A. Nitrogen incorporation characteristics on a 4H-SiC epitaxial layer. Appl. Phys. Lett. 2006,88: 021907
    [4.1] Ellison. A, Magnusson. B and Son. N. T, et al. HTCVD grown semi-insulating SiC substrates. Mater. Sci. Forum. 2003, 33: 433
    [4.2] Muller. S. G, Brady. M. F and Brixius. W. H, et al. Sublimation-grown semi-insulating SiC for high frequency devices. Mater. Sci. Forum. 2003, 39: 433
    [4.3] Zvanut. M. E and Konovalov. V. V. The level position of a deep intrinsic defect in 4H-SiC studied by photoinduced electron paramagnetic resonance.Appl. Phys. Lett. 2002, 80: 410
    [4.4] Carlos. W. E, Glaser. E. R and .Shanabrook. B, et al. The Role of the Carbon Vacancy-Carbon Antisite Defect in Semi-Insulating 4h Silicon Carbide. Bull. Am. Phys. Soc. 2003, 48: 1322
    [4.5] Carlos. W. E, Glaser. E. R and Shanabrook. B. V. Optical and magnetic resonance signatures of deep levels in semi-insulating 4H SiC. Physica B. 2003, 151: 340
    [4.6] Son. N. T, Magnusson. B and Zolnai. Z, et al. Defects in High-Purity Semi-Insulating SiC. Mater. Sci. Forum. 2004, 437 : 457
    [4.7] J. Zhang, L. Storasta and J. P. Bergman, et al. Electrically active defects in n-type 4H–silicon carbide grown in a vertical hot-wall reactor. J. Appl. Phys. 2003, 93: 4708
    [4.8] P. B. Klein, B. V. Shanabrook and S. W. Huh. Lifetime-limiting defects in n-4H-SiC epilayers. Appl. Phys. Lett. 2006, 88: 052110
    [4.9] C. Hemmingsson, N. T. Son and O. Kordina, et al. Deep level defects in electron-irradiated 4H SiC epitaxial layers. J. Appl. Phys. 1997, 81: 6155
    [4.10] D. ?berg, Ph. D. thesis, Royal Institute of Technology, 2001.
    [4.11] A. Gali, N. T. Son and E. Janzén. Electrical characterization of metastable carbon clusters in SiC: A theoretical study.Phys. Rev. B. 2006, 73: 033204
    [4.12] T. Kimoto, K. Hashimoto, and H. Matsunami. Effects of C/Si Ratio in Chemical Vapor Deposition of 4H-SiC (11 2) and (03 3). Jpn. J. Appl. Phys. 2003, Part 142: 7294
    [4.13] I. Pintilie, U. Grossner and B. G. Svensson, et al. Influence of growth conditions on irradiation induced defects in low doped 4H-SiC epitaxial layers.Appl. Phys. Lett. 2007, 90:062113
    [4.14] Son N T, Carlsson P, Gallstrom A, Magnusson B and Janzen E. 2007 Physica B 67 401
    [4.15] T. Umeda and J. Isoya. EPR and theoretical studies of positively charged carbon vacancy in 4H-SiC.PHY. REV. B, 2004, 70: 235212
    [4.16] Janze′n E, Son N T, Magnusson B and Ellison A. 2006 Microelectronic Engineering 83 130
    [4.17] G. Dearnaley, J. H. Freeman and R. S. Nelson, et al. Ion implantation, Amsterdam: North-Holland publishing company. 1973, 20
    [4.18] W. K. Hofker. Philips Res. Repts. Suppl. 1975, 8
    [4.19] S. Mahajan and K. S. Harsha. Principles of growth and processing of semiconductors. New York: McGraw-Hill, 1999, 378
    [4.20] M. V. Rao, J. Tucker and O. W. Holland. Donor ion-implantation doping into SiC. J. Electron. Mater. 1999, 28(3): 334
    [4.21] T. D. Rubia and G. H. Gilmer. Structural transformations and defect production in ion implanted silicon: a molecular dynamics simulation study. Phys. Rev. Lett. 1995, 174: 2507
    [4.22] A. Ster, M. Posselt and A. Hallen, et al. Atomistic simulation of ion implantation into different polytypes of SiC. Ion Implantation Technology, IEEE. Conference on. 2000, 17-22: 220
    [4.23] T. Henkel, Y. Tanaka and N. Kobayashi, et al. Diffusion of implanted beryllium in silicon carbide studied by secondary ion mass spectrometry. Appl. Phys. Lett. 2001, 78(2): 231
    [4.24] R. Devanathan and W. J.Weber. Displacement energy surface in 3C and 6H SiC. Journal of Nuclear Materials. 2000, 278: 258
    [4.25] M. Ishimaru and K. E. Sickafus. Dose dependence of microstructural evolution in oxygen-ion-implanted silicon carbide. Appl. Phys. Lett. 1999, 75(10): 1392
    [4.26] A. Ster, M. Posselt and A. Hallen, et al. Atomistic simulation of ion implantation into different polytypes of SiC. Ion Implantation Technology, IEEE. 2000, 220.
    [5.1] M. Laube, F. Schmid and G. Pensl, et al. Electrical activation of high concentration of N+ and P+ ions implanted into 4H-SiC. J. Appl. Phys. 2002, 92(1): 549
    [5.2] M. A. Capano, S. Ryu and M. R. Melloch, et al. Dopant activation and surface morphology of ion implanted 4H- and 6H-silicon carbide. J. Electron. Mater. 1998, 27(4): 370
    [5.3] M. A. Derenge, K. A. Jones and K. W. Kirchner, et al. A comparison of the AlN annealing cap for 4H-SiC annealed in nitrogen versus argon atmosphere. Solid-State Electron. 2004, 48: 1867
    [5.4] O. J. Guy, D. Doneddu and L. Chen, et al. Improved Schottky contacts to annealed 4H-SiC using a protective carbon cap: Investigated using current voltage measurements and atomic force microscopy. Diamond. Relat. Mater. 2006, 15: 1472
    [5.5] S. Rao, F. Bergamini and R. Nipoti, et al. Silane overpressure post-implant annealing of Al dopants in SiC: Cold wall CVD apparatus. Appl. Sur. Sci. 2006, 252: 3837
    [5.6] Subba Ramaiah Kodigala, I.Bhat and T.P.Chow, et al. Surface studies of SiCepitaxial layers grown by chemical vapor deposition. Materials Science and Engineering B 2006, 10683:9
    [5.7] T. Kimoto, A. Itoh, H. Matsunami. Step-controlled epitaxial growth of high-quality SiC layers. Phys. Status Solid (b). 1997, 202: 247.
    [5.8] I. Pintilie, U. Grossner and B. G. Svensson, et al. Influence of growth conditions on irradiation induced defects in low doped 4H-SiC epitaxial layers. Appl. Phys. Lett. 90. 2007, 062113
    [5.9] T. Kimoto, K. Hashimoto, and H. Matsunami. Effects of C/Si Ratio in Chemical Vapor Deposition of 4H-SiC (112_0) and (033_8). Jpn. J. Appl. Phys. Part 1 2003, 42:7294