纳米陶瓷制备工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米陶瓷因优异的强度、韧性、抗氧化性、耐腐蚀及与金属类似的超塑性,展现出诱人的应用前景。然而,高致密度的纳米陶瓷的制备却非常困难。在高温烧结促进致密化的过程中,总是伴随着晶粒的快速长大。目前,最具商业价值的无压烧结工艺在这一领域中的进展并不如预想的那样迅速,极大地制约了纳米陶瓷的广泛应用。
     本文考察了当前纳米陶瓷的致密化研究状况,梳理出无压烧结制备致密纳米陶瓷的关键环节,并有针对性地提出了解决问题的途径。作者认为,无压烧结制备致密纳米陶瓷应着重解决下述问题:
     A.制备粒径细小、分散良好的无团聚纳米粉体。
     B.制备出高密度、微观结构均匀的生坯。
     C.采用动态控制烧结技术,利用晶粒长大和致密化的动力学差异,促使竞争向有利于致密化的方向转化。对于某些体系,相变辅助致密化效应尤其值得关注。
     在此基础上,论文选择了粉体制备、凝胶注模成型、相变辅助致密化结合动态控制烧结三个问题为重点加以研究。并获得如下主要结论:
     A.采用不同湿化学工艺,制备出Al_2O_3、Nb_2O_5、TiO_2纳米粉体。结果表明:碳酸铵铝(AACH)经1100℃煅烧1.5 h,可以获得平均晶粒尺寸为30nm的α-Al_2O_3纳米粉体,添加α-Al_2O_3籽晶后,煅烧温度可降至1050℃。AACH在煅烧中的相变历程:AACH→amorphous→γ→δ→θ→α,与γ-AlOOH中γ→α相变没有本质的区别,缺乏δ-Al_2O_3并非AACH相变历程的特征。使用粗晶氧化铌及浓硫酸为原料,采用沉淀法可低成本制备出各种晶型的纳米Nb_2O_5粉体。在煅烧过程中纳米Nb_2O_5粉体历经amorphous→δ→γ→β→α相变历程。
     B.在水基凝胶注模中,分散剂PAA-Na有效降低氧化铝的等电点并增加Zeta电势,分散效果良好,分散剂的最佳用量为1.6 wt%。pH值对料浆颗粒表面的Zeta电势的影响非常大,当pH值在10.5左右时,料浆最稳定。悬浮体的粘度随着球磨时间的延长而降低,当球磨时间达到10h时,粘度最小,球磨时间继续延长时,粘度有增大的趋势。固相量的增大,使氧化铝陶瓷料浆的粘度迅速增大。采用水基凝胶注模工艺对于所用纳米氧化铝粉体所能达到的最高固相量仅为30 vol%。无法满足凝胶注模的需求。采用有机溶剂基凝胶注模工艺对所选纳米氧化铝粉体可以获得40 vol%固相量的料浆。提高料浆温度可以显著降低体系粘度,在阻聚剂0.5mmol/L对苯二酚协助下,70℃料浆固化诱导期延长至约60 min。所得料浆成功浇铸出结构致密均匀的生坯。尽管烧结样品结构均匀性良好,相对密度仍然偏低,进一步提高料浆固相量仍有待进一步开发。
     C.论文采用动态控制烧结、相变辅助致密化效应,研究纳米γ-Nb_2O_5、β-Nb_2O_5、TiO_2陶瓷的致密化和晶粒长大过程。结果表明:动态控制烧结技术和相变辅助致密化效应有效利用了晶粒长大和致密化的动力学差异,促进致密化的同时,晶粒尺寸维持在纳米范畴;可以用无压烧结工艺获得致密的、晶粒尺寸分别为~80 nm和~40nm,接近完全致密的γ-Nb_2O_5和β-Nb_2O_5纳米陶瓷。在δ-Nb_2O_5→γ-Nb_2O_5相变温度附近,纳米Nb_2O_5致密化速率显著提高。在1000℃以前,随着相变的进行,Nb-O-Nb键强持续降低,键的松弛和断裂导致大量单空位尺度的缺陷,导致原子可迁移性大幅提高,是导致致密化速率提升的主要原因。在TiO_2烧结过程中,伴随着锐钛矿→金红石相变的是大量单空位尺度缺陷的生成,这是相变促进纳米TiO_2致密化的主要原因。“相变促进致密化”、“添加剂活化晶格”、“(位错)自激活烧结”等,均有着相似的活化烧结机制,可以划归为传统的强化烧结的范畴。在γ-Nb_2O_5→β-Nb_2O_5相变温度附近,晶界上高密度的缺陷数量急剧上升,意味着β-Nb_2O_5相拥有充足的形核位置,每个γ-Nb_2O_5晶粒可以生成若干β-Nb_2O_5晶粒,获得极为细小的β-Nb_2O_5晶粒结构。因此相变过程中新相较高的形核率对于产生细小的晶粒尺寸十分重要。
Fully dense speciments with nanosize features are most important for structural,magnetic or electronic applications. But there are currently some difficults inachieving fully dense nanocrystalline ceramics. Pressureless sintering is still a mostpromising method because of its low cost and easy technique. Unfortunately, theadvancement of this domain is not as rapidly as one might expect.
     According to the current advancement in nanocrystalline ceramics processtechniques, especially for the pressureless sintering, there were three enlighten pointsmust be emphasized here:
     A. The presence of agglomerates in the nanocrystalline particles was the mostimportant obstacle to obtain the dense nanocrystalline ceramics.
     B. Extremely fine-structured, homogeneous green-body microstructures andhigher green body density will improve the sinterability.
     C. The transformation-assisted consolidation is a useful method for consolidatingoxide-ceramic powders in selected systems. Dynamically controlled sintering is oneof the most promising methods to fabricate dense nanocrystalline ceramics by usingthe competition of sintering mechanisms on heating to minimize the grain growthwithout affecting the densification behavior.
     Based upon the analyses mentioned above, the aim of this work is to synthesizeAl_2O_3, Nb_2O_5, TiO_2 non-agglomerated nanopowders by conventional chemicaltechniques, to synthesize nanocrystalline ceramics using gelcasting process andpressureless sintering method and to investigate the application of thetransformation-assisted consolidation method and the dynamically controlledsintering method in the selected systems. The main conclusions include:
     A. Theα-Al_2O_3 nanoparticles with an average particle size of 30 nm could beprepared by thermal decomposition of the NH_4Al(OH)_2CO_3(AACH). The AACHundergoes the following phase transformations during heating:AACH→amorphous→γ→δ→θ→α, somewhat similar to that ofγ-AlOOH(γ-AlOOH→γ→δ→θ→α). The existence ofδ-Al_2O_3 in the phase transformationsequence is found, which is different from results reported in literatures. Theα-Al_2O_3seed crystals can reduce the formation temperature ofα-Al_2O_3 to 1050℃. Niobiumpentoxide nanopowders of amorphous,δ-Nb_2O_5,γ-Nb_2O_5,β-Nb_2O_5 andα-Nb_2O_5with grain size in the nanoscale using coarse-grain Nb_2O_5 as precursor was developed.Nanocrystalline titania crystals were prepared by a sol-gel method. Results showedthat the phase transformation from anatase to rutile will occur at 750~950℃
     B. The dispersion and rheology of nano alumina aqueous suspension forgelcasting have been investigated. The results showed that both pH value and amountof dispersant can affect the dispersion effect and rheology, the optimum had beenachieved when pH10.5 and the amount of dispersant was 1.6 wt%.The solid contenteffect on rheology of alumina aqueous suspension has been investigated, and the solidcontent of alumina aqueous suspension with 30 vol % has been prepared which is not enough for gelcasting.
     The dispersion and rheology of nano alumina nonaqueous suspension withvarious solid contents for gelcasting have been investigated. Nano aluminanonaqueous suspension with 40 vol % which fits into gelcasting has been prepared. Itwas found that the apparent viscosity decrease with the increase of the temperature.The inhibitor of hydroquinone can delay solidication of nano alumina slurry effectlyunder 70℃.
     C. According to our research, the enhanced densification process of niobiumpentoxide was acquired around theγ-Nb_2O_5 toβ-Nb_2O_5 phase transformationtemperature. The bond order varied continually until 1000℃. The atoms were verymobile because of the bond laxation and breakage, and the large numbers ofcrystallite defects, thus an enhanced sintering can be expected. During the phasetransformation ofγ-Nb_2O_5 toβ-Nb_2O_5, large numbers of crystallite interfaces containshigh-density defects beneficial to nucleation inβ-Nb_2O_5 emerged. Theγ-Nb_2O_5 graincould be divided into several domains and the overall grain size can be refined. Inconclusion, near-denseγ-Nb_2O_5 andβ-Nb_2O_5 nanostructured ceramics with grain sizeof about 80 nm and 35 nm respectively were fabricated by exploiting the difference inkinetics between the competitive mechanism such as grain-growth, densification andphase transformation using a dynamically controlled sintering accompanied by atransformation-assisted consolidation method. The transformation-assistedconsolidation effect can be owed to the mobility of the atoms during the phasetransformation from anatase to rutile, with the occurrence of the bond laxation andbreakage, and a large numbers of crystallite defects.
引文
[1]. R. Birringer, H. Gleiter, H. P. Klein, and P. Marquardt, "Nanocrystalline materials, an approach to a novel solid structure with gas like disorder", Phys.Lett. A, 102A (8) (1984) 365-369.
    [2]. J. Karch, R. Brringer and H. Gleiter, "Ceramics ductile at low temperature", Nature, 330 (1987) 556-558.
    [3]. M. J. Mayo, D. C. Hague and D.-J. Chen, "Processing nanocrystalline ceramics for applications in superplasticity", Mater. Sci. Eng. A, A166 (1993) 145-159.
    [4]. C. Herring, "Effect of change of scale on sintering phenomena", J. Appl. Phys., 21 (1950) 301-303.
    [5]. J. E. Bonevich and L. D. Marks, "The sintering behavior of ultrafine alumina particles", J. Mater. Res., 7(6) (1992) 1489-1500.
    [6]. Messing G. L. and Kumagai M., "Low-temperature sintering of alumina-seeded boehmite gels", Am. Ceram. Soc. Bull., 73(10) (1994) 88-91..
    [7]. F. F. Lange, "Sinterability of Agglomerated Powder", J. Am. Ceram. Soc, 67(2) (1984)596-601.
    [8]. S. Rajendran, "Production of ultrafine alpha alumina powder and fabrication of fine grained strong ceramics", J. Mater. Sci., 29 (1994) 5664-5672.
    [9]. A. Krell, "Improved hardness and hierarchic influences on wear in submicron sintered alumina", Mater. Sci. Eng. A., 209(1-2) (1996) 156-163.
    [10]. M. J. Mayo, "Synthesis and applications of nanocrystalline ceramics",Materials & Design, 14(6) (1993) 323-329.
    [11]. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to ceramics, Wiley, New York, 1976, p.486,2nd edn.
    [12]. H. Hahn, J. Logas and R. S. Averback, "Sintering characteristics of nanocrystalline TiO_2", J. Mater. Res., 5 (3) (1990) 609-614.
    [13]. M. J. Mayo, "Processing of nanocrystalline ceramics from ultrafine particles", Int. Mater. Rev., 41(3) (1996) 85-115.
    [14]. Shi Jianlin, "Solid state sintering I: Poremicrostural model and thermodynamic stability, densification equations", J. Chinese Ceram. Soc. (in Chinese), 25(5) (1997) 499-513.
    [15]. G. Skandan, H. Hahn, M. Roddy, and W. R. Cannon, "Ultrafme-grained dense monoclinic and tetragonal zirconia", J. Am. Ceram. Soc. 77(7) (1994) 1706-1710.
    [16]. H. Ferkel and R. J. Hellmig, "Effect of nanopowder deagglomeration on the densities of nanocrystalline ceramic green bodies and their sintering behaviour", NanoStruct. Mater., 11(5) (1999) 617-622.
    [17]. Zheng, J. and Reed, J. S., "Effects of particle packing characteristics on solid-state sintering", J. Am. Ceram. Soc, 72 (1988) 810-817.
    [18]. Nettleship, I. and McAfee, R., "Microstructural pathways for the densification of slip cast alumina", Mater. Sci. Eng., A352 (2003) 287-293.
    [19]. Dynys, F. W. and Halloran, J. W., "Influence of aggregates on sintering" J. Am. Ceram. Soc, 67 (1984) 596-601.
    [20]. Shi Jianlin, "Solid state sintering I: Pore microstructural model and thermodynamic stability, densification equations", J. Chinese Ceram. Soc. (in Chinese), 25(5) (1997) 499-513.
    [21]. J. P. Ahn, M. Y. Huh and J. K. Park, "Effect of green density on subsequent densification and grain growth of nanophase SnO_2 powder during isothermal sintering", Nanostruct. Mater., 8(5), (1997) 637-643.
    [22]. P. L. Chen and I. W. Chen, "Sintering of fine oxide powders: I, microstructural evolution", J. Am. Ceram. Soc, 79(12) (1996) 3129-41.
    [23]. M. Azar, P. Palmero, M. Lombardi, V. Garnier, L. Montanaro, G. Fantozzi, J. Chevalier, "Effect of initial particle packing on the sintering of nanostructured transition alumina", J. Eur. Ceram. Soc 28 (2008) 1121-1128
    [24]. V. Ivanov, Y. A. Kotov and O. H. Samatov,R. Bohme, H. U. Karow and G. Schumacher, "Synthesis and dynamic compaction of ceramic nano powders by techniques based on electric pulsed power", Nanostruct. Mater. 6[l-4] (1995) 287-290.
    [25]. W. Z. Yuan, L. E. Lao, W. Tian, Y. Liu, D. Z. Wang, K. Yao, Z. Wang, "The densification and conductivity of nano ZrO_2 (4Y) by air pressure sintering using continuous compacting.", Mater. Sci. Eng. (in Chinese), 18(3) (2000) 57-60.
    [26]. L. Gao, W. Li, H. Z. Wang, J. X. Zhou, Z. J. Chao, Q. Z. Zai, "Fabrication of nano Y-TZP materials by superhigh pressure compaction", J. Eur. Ceram. Soc., 21(2001) 135-138.
    [27]. W. Li, L. Gao, H. Kume, Y. Nishikawa, H. Miyamoto, "Preparation of Nano ZrO_2(3Y) Green Compact by RIP", J. Inorg. Mater, (in Chinese), 17(6) (2002) 1297-1300.
    [28]. E. Emeruwa, J. Jarrige, J. Mexmain, M. Billy, and K. Bouzouita., "Powder compaction with ultrasonic assistance" J. Mater. Sci., 25 (1990) 1459-1462.
    [29]. G. J. Venz, P. D. Killen, N. W. Page, "Hot shock compaction of nanocrystalline alumina", J. Mater. Sci., 38 (2003) 2935-2944.
    [30]. S-S Shang, K.Hokamoto, M.A.Meyers. "Hot dynamic consolidation of hard ceramics", J. Mater. Sci. 27 (1992) 5470-5476.
    [31]. T. Taniguchi and K. Kondo, "Hot shock compaction of α-alumina powder.", Adv. Ceram. Mater. 3 (1988) 399-402.
    [32]. S. L. Wang, M. A. Meyers and A. Szecket, "Warm shock consolidation of IN 718 powder", J. Mater. Sci. 23 (1988) 1786.
    [33]. A. Ferreira, M.A. Meyers, N.N. Thadhani, S.N. Chang, and J.R. Kough, "Dynamic compaction of titanium aluminides by explosively generated shock waves: experimental and materials systems", Metall. Trans. A, 22A (1991) 685-695.
    [34]. A. Ferreira, M.A. Meyers, and N.N. Thadhani, "Dynamic compaction of titanium aluminides by explosively generated shock waves: microstructure and mechanical properties", Metall. Trans. 23A (1992) 3251-3261.
    [35]. G. J. Venz, P. D. Killen, N. W. Page, "Hot shock compaction of nanocrystalline alumina", J. Mater. Sci. 38 (2003) 2935-2944.
    [36]. F.F. Lange, "Powder processing science and technology for increasedreliability", J. Am. Ceram. Soc. 72 (1) (1989) 3-15
    [37]. J.N. Israelachvili, "Intermolecular and surface forces", 2nd ed., Academic Press, NY, 1992.
    [38]. Liu Dean-Mo, "Influence of dispersant on powders dispersion and properties of zirconia green compacts", Ceram. Int., 26 (2000) 279-287.
    [39]. John K. Montgomery, Adele S. Botha, Peter L. Drzal, Kenneth R. Shull, K.T. Faber, "A thermoreversible gelcasting technique for ceramic laminates", Scripta Materialia 48 (2003) 785 - 789
    [40]. L.A. Wang, F. Aldinger, "Near-net shape forming of advanced ceramics", Adv. Eng. Mater. 3 (2) (2000) 110-113.
    [41]. W.M. Sigmund, N.S. Bell, L. Bergstrom, "Novel powder-processing methods for advanced ceramics", J. Am. Ceram. Soc. 83 (7) (2000) 1557-1574.
    [42]. J.A. Lewis, "Colloidal processing of ceramics", J. Am. Ceram. Soc. 83 (10) (2000)2341-2359.
    [43]. Hsieh H.L. and Fang T.T., "The effects of Powder Processing on the Green Compacts of High Purity BaTiO_3", J. Am. Ceram. Soc, 72 (1989) 142-145.
    [44]. F. Boschini, B. Guillaume, A. Rulmont, R. Cloots, R. Moreno, "Slip casting of barium zirconate aqueous concentrated suspensions", J. Eur. Ceram. Soc. 26 (2006)1591-1598.
    [45]. Isabel Santacruz, M. Isabel Nieto, Jon Binner, Rodrigo Moreno, "Gel casting of aqueous suspensions of BaTiO_3 nanopowders.", Ceram. Int., 35 (2009) 321-326
    [46]. R. Moreno, J.S. Moya, J. Requena, "Slip casting of zircon by using an organic surfactant", Ceram. Int. 17 (1991) 1737-1740.
    [47]. O.O. Omatete, M.A. Janney, S.D. Nunn, "Gel casting: from laboratory development toward industrial production", J. Eur. Ceram. Soc. 17 (1997) 407-413.
    [48]. A.J. Fanelli, R.D. Silvers, W.S. Frei, J.V. Burlew, G.B. Marsh, "New aqueous injection molding process for ceramic powders", J. Am. Ceram. Soc. 72 (10) (1989) 1833-1836.
    [49]. I. Santacruz, M.I. Nieto, R. Moreno, P. Ferrandino, A. Salomoni, I. Stamenkovic, "Aqueous injection moulding of porcelains", J. Eur. Ceram. Soc. 23 (2003) 2053-2060.
    [50]. I. Santacruz, M.I. Nieto, R. Moreno, "Alumina bodies with near-totheoreticl density by aqueous gel casting using concentrated agarose solutions", Ceram. Int. 31 (2005) 439-445.
    [51]. I. Santacruz, C. Wells, J. Binner, "Microwave two stage sintering of nanostructured barium titanate", in: Proceedings of the 10th International Conference on Microwave and High Frequency Heating, 10-Ampere, Italy, 2005.
    [52]. S. Ananthakumar, K. Prabhakaran, U. S. Hareesh, P. Manoharb, K. G. K. Warrier, "Gel casting process for Al_2O_3-SiC nanocomposites and its creep characteristics", Mater. Chem. Phy. 85 (2004) 151-157
    [53]. X. Kuang, G. Carotenuto and L. Nicolais, "A review of ceramic sintering and suggestions on reducing sintering temperatures", Adv. Perform. Mater., 4 (1997) 257-274.
    [54]. M.N. Rahaman, Ceramic processing and sintering, Marcel Dekker, Inc., New York, 1995, p. 23-24.
    [55]. G.J. Li and X. D. Sun, "Synthesis and sintering behavior of a nanocrystalline α-alumina powder", Acta. Mater. 48 (2000) 3103-3112.
    [56]. R.L. Coble, "Sintering crystalline solids", J. Appl. Phys., 32 (1961) 787-793.
    [57]. Joanna R. Groza, "Nanosintering", NanoStruct. Mater., 12 (1999) 987-992
    [58]. H. Zu and R. S. Averbach, "Molecular dynamics simulations of densification processes in nanocrystalline materials", Mater. Sci. Eng. A, 204 (1995) 96
    [59]. P. Zeng, S. Zajac, P. C. Clapp, J. A. Rifkin, "Nanoparticle sintering simulations", Mater. Sci. Eng. A., 252 (1998) 301-306.
    [60]. T.K. Gupta, "Possible correlation between density and grain size during sintering", J. Am. Ceram. Soc., 55(5) (1972) 276-277..
    [61]. I.-W. Chen and L. A. Xue, "Development of superplastic structural ceramics", J. Am. Ceram. Soc., 73(9) (1990) 2585-2609.
    [62]. L. GAO, H. Miyamoto, "Fabrication of Al_2O_3-ZrO_2 nano-ceramics by HIP", J. Inorg. Mater., 14(3) (1999) 495-498
    [63]. M.L. Balmer, H. Eckert, N. Das, and F. F. Lange, "~(27)Al NMR of Zr_(1-x)Al_xO_(2-x/2) solid solutions synthesized with solution precursors", J. Am. Ceram. Soc., 79(2) (1996) 321-326
    [64]. A.Sturm, U. Betz, G. Scipione, and H. Hahn, "Grain growth and phase stability in a nanocrystalline ZrO_2-15% Al_2O_3 ceramic", NanoStruct. Mater., 11 (5) (1999) 651-661.
    [65]. Y. Liu, B. R. Patterson, "A stereological model of the degree of grain boundary-pore contact during sintering", Metall. Trans. 24A, (1993) 1497-1505.
    [66]. M.L. Huckabee, M. J. Paisley, R. L. Russell, H. Palmour, "RCS: taking the mystery out of dendification profiles", Ceram. Bull., 73(9) (1994) 82-86
    [67]. T. Ohji, L. C. De Jonghe, "Presintering heat treatment, densification and mechanical properties of silicon carbide", J. Am. Ceram. Soc., 77(1994) 1685-1687.
    [68]. M.P. Harmer, R. J. Brook, "Fast firing: microstructural benefits", J. Brit. Ceram. Soc., 80 (1981) 147-148
    [69]. M.L. Huckabee, T. M. Hare, H. Palmour, "Rate controlled sintering as a processing method", in: H. Palmour, R. F. Davis, T. M. Hare (eds.), Processing of crystalline ceramics, Plenum Press, NY, 1978, p.205-215
    [70]. A.V. Ragulya, "Rate-controlled synthesis and sintering of nanocrystalline barium titanate powder", NanoStruct. Mater., 10(3) (1998) 349-355.
    [71]. I.-Wei Chen and X.-H. Wang, "Sintering dense nanocrystalline ceramics without final-stage grain growth", Nature 404 (2000) 168-171.
    [72]. C. Kim, J. H. Lee, J. J. Kim, T. Ikegami, "Rapid rate sintering of nanocrystalline indium tin oxide ceramics: particle size effect", Mater. Lett., 52 (2002) 114-119.
    [73]. J. Chen and M. J. Mayo, "Rapid rate sintering of nanocrystalline ZrO_2-3mol%Y_2O_3", J. Am. Ceram. Soc., 79 (1996) 906-912.
    [74]. Yo Shimura M , Ohji T , Sando M , et al. "Rapid rate sintering of nano-grained ZrO_2-based composite using pulsing pulse electric current sintering method". Mater. Lett., 17[16] (1998) 1389-1391.
    [75].郑秀华,钟家湘,刘洪涛。“Y-PSZ对Al_2O_3纳米粉烧结特性及性能的影响”,材料研究学报,10[3](1996)307-309.
    [76].陈奕帆,卢冬梅,万乾炳。“纳米氧化铝一氧化锆全瓷材料微波烧结的实验研究”,华西口腔医学,24[1](2006)73-77.
    [77]. R. Peelamedu, A. Badzian, R. Roy, and R. P. Martukanitz, "Sintering of zirconia nanopowder by microwave-laser hybrid process", J. Am. Ceram. Soc., 87(9) (2004) 1806-1809.
    [78]. W. Li and L. Gao, "Rapid sintering of nanocrystalline ZrO_2(3Y) by spark plasma sintering", J. Eur. Ceram. Soc., 20 (2000) 2441-2445.
    [79]. T. Yamamoto, H. Kitaura, Y. Kodera, T. Ishii, M. Ohyanagi, and Z. A. Munir, "Consolidation of nanostructured β-SiC by spark plasma sintering", J. Am Ceram. Soc., 87(8) (2004) 1436-1441.
    [80]. Rajiv S Mishra, Charles E Lesher and Amiya K Mukherjee. "High-pressure sintering of nanocrystalline γ-Al_2O_3", J. Am. Ceram. Soc., 79 [11] (1996) 2989-2992.
    [81].李蔚,高濂,洪金生,等,“快速烧结制备纳米Y-TZP材料”,无机材料学报,15(2)(2000)269-274.
    [82].栾奇,钟涛兴,王澈,等,“放电等离子烧结(SPS)YAG陶瓷的初步研究”,功能材料与器件学报,112[12](2006)113-117.
    [83]. K.P. Kumar, K. Keizer, A. J. Burggraaf, T. Okubo, H. Nagamoto and S. Morooka, "Densification of nanostructured titania assisted by a phase transformation", Nature, 358 (1992)48-52.
    [84]. S.C. Liao, Y. J. Chen, W. E. Mayo and B. H. Kear, "Transformation-assisted consoldation of bulk nanocrystalline TiO_2", NanoStruct. Mater., 11(4) (1999) 553-557.
    [85]. Mehdi Mazaheri, Z. Razavi Hesabi and S.K. Sadrnezhaad, "Two-step sintering of titania nanoceramics assisted by anatase-to-rutile phase transformation", Scripta Materialia 59 (2008) 139-142.
    [86]. P. Nair, J. Nair, A. Raj, K. Maeda, F. Mizukami, T. Okubo, and H. Izutsu, "Critical nuclei size effect in the densification of nanostructured niobia ceramics", Mater. Res. Bull., 34(2) (1999) 225-231.
    [87]. M.H. Rice, R. G. MeQueen, J.M.Walsh,."Compression of solids by strong shock waves", Solid State Physies, Vol.Ⅵ, F. Sietz and D. Turnbull, eds., Academic Press, NY, 1958, 1-63.
    [88]. R. Pr(u|¨)mmer, P.Weimar, "Explosive consolidation of nanopowders", Int. Ceram. Rev., 51[6] (2002) 394-398.
    [89]. R.A.Varin, L.Zbronisc, T.Czujko, et al, "Fracture toughness of intermetallic compacts consolidated from nanocrystalline powders", Mater. Sci. Eng. A 300 (2001)1-11.
    [90]. R. Pr(u|¨)mme, "Prospects of hot explosive Pressinging Powder metallurgy".(Materials Science Forum, 465-466), Explosion shock wave and hypervelocity phenomena in materials, (2004) 85-92.
    [91].张越举,李晓杰,赵铮,王小红。“纳米γ-Al_2O_3陶瓷粉末的预热爆炸压实实验研究”,爆炸与冲击,28[3](2008)220-224.
    [92].钟盛文,焦永斌,叶雪均。“预热粉末爆炸烧结单相纳米氧化铝陶瓷的研究”,无机材料学报,16[3](2001)572-576.
    [93].张越举,博士学位论文:爆炸压实烧结纳米陶瓷粉末研究,大连理工大学2006
    [94]. D.E.Grady, "Shock-wave compression of brittle solids.", Mechanies of Materials, 29 (1998) 181-203
    [95]. Vladimir V. Srdic, Markus Winterer, and Horst Hahn, "Sintering behavior of nanocrystalline zirconia prepared by chemical vapor synthesis", J. Am. Ceram. Soc., 83[4] (2000) 729-736
    [96]. H.G. Kim and K. T. Kim, "Densification behavior of nanocrystalline titania powder compact under high temperature", Acta. Mater. 47[13] (1999) 3561-3570.
    [97]. Liao, W. E. Mayo, And K. D. Pae, "Theory of High Pressure / Low Temperature Sintering of Bulk Nanocrystalline TiO_2", Acta Mater., 45[10] (1997)4027-4040.
    [98]. S.J. Lukasiewicz, and J. S. Reed, "Character and compaction response of spray-dried agglomerates", Am. Ceram. Soc. Bull., 57 (1978) 798-801.
    [1]. R. Birringer, H. Gleiter, H. P. Klein, and P. Marquardt, "Nanocrystalline materials, an approach to a novel solid structure with gas like disorder", Phys.Lett. A, 102A [8] (1984) 365-369.
    [2]. J. Karch, R. Brringer and H. Gleiter, "Ceramics ductile at low temperature", Nature, 330 (1987) 556-558.
    [3]. M. J. Mayo, D. C. Hague and D.-J. Chen, "Processing nanocrystalline ceramics for applications in superplasticity", Mater. Sci. Eng. A, A166 (1993) 145-159.
    [4]. K. P. Kumar, K. Keizer, A. J. Burggraaf, T. Okubo, H. Nagamoto, and S. Morooka, "Densification of. nanostructured titania assisted by a phase transformation", Nature 358 (1992) 48-51.
    [5]. G. Skandan, H. Hahn, M. Roddy, and W. R. Cannon, "Ultrafine-Grain Dense Monoclinic and Tetragonal Zirconia", J. Am. Ceram. Soc. 77[7] (1994) 1706-1710.
    [6]. I.-Wei Chen and X.-H. Wang, "Sintering Dense Nanocrystalline Ceramics without Final-Stage Grain Growth", Nature, 409[9] (2000) 168-171.
    [7]. F. W. Dynys and J. W. Halloran, "Alpha alumina formation in alum derived gamma alumina", J. Am. Ceram. Soc 65[9] (1982) 442-448.
    [8]. S. Rajendran, "Production of ultrafme alpha alumina powder and fabrication of fine grained strong ceramics", J. Mater. Sci., 29 (1994) 5664-5672.
    [9]. A. Krell, "Improved hardness and hierarchic influences on wear in submicron sintered alumina", Mater. Sci. Eng. A., 209[l-2] (1996) 156-163.
    [10]. I. Levin and D. Brandon, "Metastable alumina polymorphs: crystal structures and transition sequences", J. Am. Ceram. Soc, 81 [8] (1995) 1995-2012
    [11]. J. L. Henry and H. J. Kelly, "Preparation and properties of ultrafme high-purity alumina", J. Am. Ceram. Sci., 48 (1965) 217-218.
    [12]. K. Hayashi, S. Toyoda, K. Nakashima, and K. Morinaga, "Optimum synthetic conditions of ammonium aluminum carborate hydroxide (AACH) as starting material for α-alumina fine powders", J. Ceram. Soc. Japan. 98, (1990) 444-449 (in Japanese).
    [13]. Lin Yuanhua, Zhang Zhongtai, Huang Chuanyong, Tang Zilong, and Chen Qingming, Preparation of high purity and ultrafine α-Al_2O_3 powders by pyrolysis of NH4A1O(OH)HCO_3, J. Chinese Ceram. Soc. 28 (2000) 268-271 (in Chinese).
    [14]. Ji-Guang Li, Xu-Dong Sun, Min Zhang, Xiao-dong Li, and Hong-Qiang Ru, "Synthesis of ultrafine a-alumina powder by pyrolysis of ammonium aluminium carbonate hydroxide", J. Chinese Inorg. Mater. 13 (1998) 803-807 (in Chinese).
    [15]. Ji-Guang Li and Xu-dong Sun, "Synthesis and sintering behavior of a nanocrystalline a-alumina powder", Acta Mater. 48 (2000) 3103-3112.
    [16]. T. Iga and S. Kato, J. Ceram. Soc. Japan 86[11] (1978)509-512(in Japanese)
    [17]. Chi-Cheng Ma, Xue-Xi Zhou, Xin Xu, and Tun Zhu, "Synthesis and thermal decomposition of ammonium aluminum carbonate hydroxide (AACH)", Mater. Chem. Phys., 72, (2001) 374-379.
    [18]. V. E. Erdos and H. Altorfer, Corrosion of unalloyed steel and aluminium in aqueous solution of ammonia and carbonic acid-1. Communication:Corrosion products", Materials and Corrosion, 27 (1976) 611-618.
    [19]. S. Kato, T. Iga, S. Hatano, and Y. Izawa, J. Ceram. Soc. Japan. 84, (1976) 215-219 (in Japanese).
    [20]. K. Hayashi, S. Toyoda, H. Takebe, and K. Morinaga, "Phase Transformations of alumina derived from ammonium aluminum carbonate hydroxide (AACH)", Collected Papers of Japan Ceramics Society 99(7) (1991) 550-555 (in Japanese).
    [21]. K. Morinaga, T. Torikai, K. Nakagawa, and S. Fujino, "Fabriction of fine α-alumina powders by thermal decomposition of ammonium aluminum carbonate hydroxide (AACH)", Acta Mater. 48 (2000) 4735-4741.
    [22]. S. J. Wilson, "Phase transformations and development of microstructure in boehmite-derived transition aluminas", Proc. Br. Ceram. Soc, 28 (1979) 281-294.
    [23]. V. Jayaram and C. G. Levi, "The structure of δ-alumina evolved from the melt and the γ→δtransformation", Acta Metall, 37[2] (1989) 569-578.
    [24]. A. Dauger, D. Fargeot, and J. P. Laval, "Metastable phase of alumina", Mater. Res. Soc. Symp. Proc, 21 (1984) 207-211.
    [25]. R. S. Zhou and R. L. Snyder, "Structures and transformation mechanisms of the η,γ , and θ transition aluminas", Acta Crystallogr., Sect. B: Struct. Sci., 47 (1991)617-630.
    [26]. E. M. Moroz, O. A. Kirichenko, A. V. Ushakov, and E. A. Levitski, "Phase composition of aluminium oxides promoted by Cr, Cu, and Ni additives", React. Kinet. Catal. Lett., 28[9] (1985) 9-15.
    [27]. Kumagai, M. and Messing, "Controlled Transformation and Sintering of a Boehmite Sol-Gel by a-Alumina Seeding", G. L., J. Am. Ceram. Soc., , 68[11] (1985) 500-505.
    [28]. Messing, G. L. and Kumagai, M., "Low-Temperature Sintering of Alumina-Seeded Boehmite Gels", ,Am. Ceram. Soc. Bull., 73[10] (1994) 88-91.
    [29]. J. L. Mcardle, and G. L. Messing, "Transformation and microstructure control in boehmite-derived alumina by ferric oxide seeding", Adv. Ceram. Mater.,, 3[4] (1988) 387-392.
    [30]. Shelleman, R. A., Messing, G. L. and Kumagai, M., "Alumina transformation in seeded boehmite gels", J. Non-Cryst. Solids, , 82 (1996) 277-85.
    [31]. C.O. Avellaneda, A. Pawlicka and M.A. Aegerter, "Two methods of obtaineng sol gel Mb_2O_5 thin films for electrochromic devices", J. Mater. Sci. 33 (1998)2181-2185
    [32]. P. Nair, J. Nair, A. Raj, K. Maeda, F. Mizukami, T. Okubo, and H. Izutsu, "Critical nuclei size effect in the densification of nanostructured niobium ceramics", Mater. Res. Bull. 34(2) (1999) 225-231
    [33]. Kozo Tanabe, "Catalytic application of niobium compounds", Catal. Today, 78 (2003) 65-77
    [34]. A. Kohli, C.C. Wang, S.A. Akbar, "Niobium pentoxide as a lean-range oxygen sensor", Sensors and Actuators B Chem. 56[l-2] (1999) 121-128
    [35]. D. Velten, E. Eisenbarth, N. Schanne and J. Breme, "Biocompatible Nb_2O_5 thin films prepared by means of the sol-gel process", J. Mater. Sci. Med, 15(4) (2004)457-461
    [36]. C. Alquier, M. T. Vandenborre, and M. Henry, "Synthesis of niobium pentoxide gels", J. Non-Cryst. Solids, 79[3] (1986) 383-395
    [37]. M. A. Aegerter, "Sol-gel niobium pentoxide: A promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis", Solar Energy Mater. Solar Cells, 68 (2001) 401-422
    [38]. M. Ristic, S. Popovic, S. Music, "Sol-gel synthesis and characterization of Nb_2O_5 powders", Mater. Lett., 58[21] (2004) 2658-2663
    [39]. P.R. Bueno, CO. Avellaneda, R.C. Faria, L.O.S. Bulhoes, Electrochromic properties of undoped and lithium doped Nb_2O_5 films prepared by the sol-gel method", Electrochimica Acta, 46 (2001) 2113-2118
    [40]. Nilg(?)n (?)zer, Timothy Barreto, Temel B(?)y(?)klimanli, Carl M. Lampert, "Characterization of sol-gel deposited niobium pentoxide films for electrochromic devices", Solar Energy Materials and Solar Cells 36 (1995) 433-443
    [41]. Nilgiin Ozer, Din-Guo Chen, Carl M. Lampert, "Preparation and properties of spin-coated Nb_2O_5 films by the sol-gel process for electrochromic applications", Thin Solid Film, 277 (1996) 162-168
    [42]. D. A. B. de Filho, D. W. Franco, P. P. A. Filho, and O. L. Alves, "Niobia films: surface morphology, surface analysis, photoelectrochemical properties and crystallization process", J. Mater. Sci., 33 (1998) 2607-2616
    [43]. G. Rob Lee and Joe A. Crayston, Electrochromic Nb_2O_5 and Nb_2O_5/silicone composite thin films prepared by sol-gel processing", J. Mater. Chem., 1 (1991) 381-386
    [44]. M. Schmitt, S. Heusing, M.A. Aegerter, A. Pawlicka, C. Avellaneda, "Electrochromic properties of Nb_2O_5 sol-gel coatings", Solar Energy Materials and Solar Cell, 54 (1998) 9-17
    [45]. B. Orel, U. Opara Kra(?)ovec, M. Ma(?)ek, F. (?)vegl, U. Lavaren(?)i(?) (?)tangar, "Comparative studies of all sol-gel electrochromic devices with optically passive counter-electrode films, ormolyte Li+ ionconductor and WO_3 or Nb_2O_5 electrochromic films", Solar Energy Materials & Solar Cells 56 (1999) 343-373
    [46]. M. Schmitt 1, M.A. Aegerter, "Electrochromic properties of pure and doped Nb_2O_5 coatings and devices", Electrochimica Acta 46 (2001) 2105-2111
    [47]. A. Pawlicka, M. Atik, M.A. Aegerter, "Synthesis of multicolor Nb2O5 coatings for electrochromic devices", Thin Solid Films, 301 (1997) 236-241
    [48]. M. Macek, B. Orel, Electrochromism of sol-gel derived niobium oxide films", Solar Energy Materials and Solar Cells 54 (1998) 121-130
    [49]. R.C. Faria, L.O.S. Bulhoes, "A novel synthetic route to Nb_2O_5 thin films for electrochromic devices", J. Electrochem. Soc. Lett., 141[3] (1994)L29-L30.
    [50]. P.R. Bueno,T, R.C. Faria, L.O.S. Bulh(?)es, "EQCM study during lithium insertion/deinsertion processes in Nb_2O_5 films prepared by polymeric precursor method", Solid State Ionics 176 (2005) 1175-1180
    [51]. A.V. Rosario, E.C. Pereira, "Optimisation of the electrochromic properties of Nb_2O_5 thin films produced by sol-gel route using factorial design", Solar Energy Materials and Solar Cells, 71 (2002) 41-50
    [52]. Ikuyori and N. Terada, Jpn. Patent JP08143314 (1996).
    [53]. B. Orel, M. Macek, J. Grdadolnik, and A. Meden, "In situ UV-Vis and ex situ IR spectroelectrochemical investigations of amorphous and crystalline electrochromic Nb_2O_5 films in charged/discharged", J. Solid State Electrochem., 2 (1998) 221-236.
    [54]. T. Ikeya and M. Senna, "Change in the structure of niobium pentoxide due to mechanical and thermal treatments", J. Non-Crys.t Solids, 105 (1988) 243-250
    [55]. J. Gonzalez, M. Del C. Ruiz, D. Pasquevich, and A. Bohe, "Formation of niobium-tantalum pentoxide orthorhombic solid solutions under chlorine-bearing atmospheres", J. Mater. Sci. 36 (2001) 3299-3311
    [1]. Janney M. A., Omatete O. O, "Method for molding ceramic powders using a water-based gelcasting", US Patent: 5028362, 1991.
    [2]. Janney M. A., Omatete O. O., "Method for molding ceramic powders", US Patent : 4894194,1990.
    [3]. Omatete O. O., Janney M.A., Strehlow R. A., "Gelcasting - a new ceramic forming process", Am. Ceram. Soc. Bull.,, 70[10] (1991)1641-1649
    [4]. Younga C., Omatete O. O., Janney M.A., et al. "Gelcasting of alumina", J. Am. Ceram. Soc., 74[3] (1991) 612-618
    [5]. Omatete, M.A. Janney, S.D. Nunn, "Gel casting: from laboratory development toward industrial production", J. Eur. Ceram. Soc., 17 (1997)407-413.
    [6]. John K. Montgomery, Adele S. Botha, Peter L. Drzal, Kenneth R. Shull, K.T. Faber, "A thermoreversible gelcasting technique for ceramic laminates", Scripta Materialia 48 (2003) 785 - 789
    [7]. Chang-Gi Ha, Yeon-Gil Jung, Jae-Won Kim, Chang-Yong Jo, Ungyu Paik, "Effect of particle size on gelcasting process and green properties in alumina", Mater. Sci. Eng. A337 (2002)212-221
    [8].孙静,高濂,郭景坤。“纳米Y-TZP凝胶注模成型的研究”,无机材料学报,13[5](1998)733-738
    [9]. Rolf W(a|¨)sche, Gabriele Steinborn, Influence of the dispersants in gelcasting of nanosized TiN" , J. Eur. Ceram. Soc., 17(1997) 421-426
    [10]. Z.C.Chen, T.A.Ring, J.Lemaitre, "Stabilization and processing of aqueous BaTiO_3 suspension with polyacrylic acid.", J. Am. Ceram. Soc., 75 [12] (1992) 3201-3208
    [11]. L,Guo, Y.Zhang, N.Uchida, K.Uematsu, "Adsorption effects on the rheological properties of aqueous alumina suspensions with polyelectrolyte.", J. Am. Ceram. Soc., 81 [3] (1998) 549-556
    [12].唐竹兴,王树海,陈达谦,江培秋,吴伯麟,赵宏伟。“注凝成型微孔梯度陶瓷材料制备新工艺的研究”,硅酸盐通报,2(2001)23-29
    [13].周竹发,王淑梅。“氧化铝陶瓷凝胶注模成型工艺的研究”,材料工程,7(2005)55-57。
    [14]. J.S. Reed, Principles of Ceramic Processing, 2nd Ed., John Wiley and Sons, Inc, New York, USA, 1995, pp. 277-309.
    [15].秦雪峰,孙俊全,“复合引发体系合成超高相对分子质量水解聚丙烯酰胺的研究”,石油与天然气化工,34[5](2005)405-406
    [16].向军辉,黄勇,谢志鹏,杨金龙。“Al_2O_3凝胶固化成型的影响因素”,无机材料学报,16[6](2001)1101-1107
    [17]. Zhao Lei, Yang Jinlong, Ma Liguo, Yong Huang, "Influence of minute metal ions on the idle time of acrylamide polymerization in gelcasting of ceramics", Mater. Lett., 56[6] (2006) 990-994
    [18]. A.Chrambach, D. Rodbard, "Polyacrylamide gel electrophoresis", Science, 172(1971), 440-451.
    [19]. R.R. Landham, P. Nahass, D.K. Leung, M. Ungureit, W.E.Bowen, H.K. Bowen, P.D. Calvert, Potential use of polymerizable solvents and dispersants for tape casting of ceramics, Am.Ceram. Soc. Bull., 66 (10) (1987) 1513-1516.
    [20]. Jung-Soo Ha, "Effect of atmosphere type on gelcasting behavior of Al_2O_3 and evaluation of green strength", Ceram. Int., 26(2000) 251-254.
    [21]. Jingtao Ma, Zhipeng Xie, Hezhuo Miao, etc, "Gelcasting of ceramic suspension in acrylamide/polyethylene glycol systems", Ceram. Int., 28(2002) 859-864.
    [22]. Fei Li, Hai-yan Chen, Rui-zhi Wu and Bao-de sun, "Effect of polyethylene glycol on the surface exfoliation of SiC green bodies prepared by gelcasting", Mat. Sci. Eng. A, A368(2004)255-259.
    [23]. Ma Jing-Tao, Xie Zhi-Peng, Miao He-Zhuo, etc., Inhibitive role and mechanism of water-soluble polymer PVP on the surface-exfoliation problem of ceramic green bodies prepared by gelcasting, J. Inorg. Mater., 3(2002) 480-488.
    [24].戴春雷,杨金龙,黄勇。“凝胶注模成型延迟固化研究”,无机材料学报,20[1](2005)83-89
    [1]. M. J. Mayo, D. C. Hague, D.-J. Chen, "Processing nanocrystalline ceramics for applications in superplasticity", Mater. Sci. Eng. A., 166 (1993) 145-159.
    [2]. R. Vaβen, D. St(o|¨)ver, "Processing and properties of nanophase ceramics", J. Mater. Proc. Tec., 92-93 (1999) 77-84.
    [3]. Padmakumar Nair, Jalajakumari Nair, Anuj Raj, Kazuyuki Maeda, Fujio Mizukarni, Tatsuya Okubo, and Hiroyuki Izutsu, "Critical nuclei size effect in the densification of nanostructured nibia ceramics", Mater. Res. Bull., 34[2] (1999) 225-231.
    [4]. S.-C. Liao, Y.-J. Chen, W. E. Mayo and B. H. Kear, "Transformation-assisted consolidation of bulk nanocrystalline TiO_2", NanoStruct. Mater., 11[4] (1999) 553-557.
    [5]. K-N. P. Kumer, K. Keizer, A. J. Burggraaf, et al., "Densification of nanostructured titania assisted by a phase transformation", Nature, 358, (1992) 48-51.
    [6]. I.-Wei Chen& X.-H. Wang, "Sintering dense nanocrystalline ceramics without final-stage grain growth", Nature, 404, (2000) 168-171.
    [7]. A.V. Ragulya, "Rate-comtrolled synthesis and sintering of nanocrystalline barium titanate powder", NanoStruct. Mater., 10[3] (1998) 349-355.
    [8]. Mehdi Mazaheri, Z. Razavi Hesabi and S.K. Sadrnezhaad, "Two-step sintering of titania nanoceramics assisted by anatase-to-rutile phase transformation", Scripta Materialia 59 (2008) 139-142.
    [9]. Palmour, H. Ⅲ, Johnsson, R. D., "Sintering and Related Phenomena", Gordon & Breach Publishers, New York, 1967, P. 779.
    [10]. Izabela Nowak, Maria Ziolek, "Niobium compounds: preparation, characterization, and application in heterogeneous catalysis", Chem. Rev., 99[12] (1999)3603-3624.
    [11]. Jih-Mirn Jehng and Israel E. Wachs, "Structural chemistry and Raman spectra of niobium oxides", Chem. Mater., 3 (1991) 100-107.
    [12]. J. Gonzalez, M. Del C. Ruiz, D. Pasquevich, A. Bohe, "Formation of niobium-tantalum pentoxide orthorhombic solid solution under chlorine-bearing atmospheres", J. Mater. Sci., 36[13] (2001) 3299-3311.
    [13]. T. E. M. Staab, R. Krause-Rehberg, B. Vetter and B. Kieback, "The influence of microstructure on the sintering process in crystalline metal powders investigated by positron lifetime spectroscopy: I. Electrolytic and spherical copper powders", J. Phys.: Condens. Matter, 11 [7] (1999) 1757-1786.
    [14]. Xiong Hong, W.Deng, J.Zhu,A.Dupasquier, X.J.Wu, and X.L.Ji, "Positron lifetime in nanophase ceramic TiO_2 with differencnt sintering temperature", Mater. Sci. Forum, 175-178, PT1, Positron Annihilation ICPA-10,(1994), p577-580.
    [15]. H. -E. Schaefer, R. Wurschum, R. Birringer , H. Gleiter, "Structure of nanometer-sized polycrystalline iron investigated by positron lifetime spectroscopy", Phys. Rev. B Condens Matter, 38[14] (1988) 9545-9554.
    [16]. T.E.M. Staab, R. Krause-Rehberg, B. Kieback, "Positron annihilation in fine-grained materials and fine powders-an application to the sintering of metal powders", J. Mater. Sci. 34, (1999) 3833-3851
    [17]. R. Pareja, R. de la Cruz, L. D(?)az, "Sintering of CuO investigated by positron lifetime spectroscopy",.J. Mater. Sci. 26, (1991) 593
    [18]. D. Segers, S. van Petegem, J.F. Loffler. H. Van Swygenhoven, W. Wagner, C. Dauwe, "Positron annihilation study of nanocrystalline iron", NanoStruct. Mater. 12,(1999) 1059-1062
    [19]. J. Kuriplach, S. van Petegem. M. Hou, E.E. Zhurkin, H. van Swygenhoven, F. Dalla Torre, G. van Tendeloo, M. Yandouzi, D. Schryvers, D. Segers, A.L.Morales, S. Ettaoussi, C. Dauwe, Mater. Sci. Forum 363, 94 (2001).
    [20]. O. Dominguez, J. Bigot, "Material transport mechanisms and activation energy in nanometric Fe powders based on sintering experiments", NanoStruct. Mater. 6[5-8], (1995) 877-880
    [21]. O. Dominguez, Y. Champion, J. Bigot, "Liquidlike Sintering Behavior of Nanometric Fe and Cu Powders: Experimental Approach", Metall. Mater. Trans. A 29, (1998)2941-2949
    [22]. R. Sundaresan, A.C. Raghuram, R.M.Mallya, K.I. Vasu, "Sintering of (3-tirtanium: role of dislocation pipe diffusion". Powder Metall. 39, (1996) 138-142
    [23]. Eldrup, M.; Pedersen, N.J.; Larsen, B.; Bentzon, M.D.; Linderoth, S., The reduction of surface oxide on ultra-fine FeNi particles. In: Positron Annihilation. Part 3. 9. International conference on positron annihilation, Szombathely (HU), 26-31 Aug 1991. Kajcsos, Z.; Szeles, C. (eds.), (Trans Tech Publications, Aedermannsdorf, 1992) (Materials Science Forum, 105/110) p. 1553-1556
    [24]. M. Eldrup, N.J. Pedersen, S.A. Sethi, A.S. Pedersen, B. Larsen, "Ultrafine particles of Ni and FeCr studied by positron annihilation", Mater. Sci. Forum, 175-178(Pt. 1) (1995) 149-152
    [25]. D.R.Amador. M.A.Monge, J.M.Torralba, R.Pareja, "Strain-enhanced sintering of iron powders", Appl. Phys. A., 80 (2005) 803-811
    [26]. W. Schatt, J. Boiko, and E. Friedrich, "Shrinkage by particle sliding in sintering powder compacts", Powder Metall. Int.,16[l] (1984)9-11.
    [27]. J. T. Jones, P. K. Maitra, and I. B. Cutler, "Role of Structural Defects in the Sintering of Alumina and Magnesia", J. Am. Ceram. Soc., 41(1958)353-357
    [28]. Bagley R. D., Cutler I. B. & Johnson D. L., "Effect of TiO_2 on initial sintering of A1_2O_3", J. Am. Ceram. Soc. 53(1970)136-141
    [29]. Brook J, "Effect of TiO_2 on the initial sintering of A1_2O_3", J. Am. Ceram. Soc., 55(1972)114-115;
    [30]. Coble R L , "Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models", J.Appl. phys., 32[5] (1961) 787-799
    [31]. Ikegami Takayasu, Kazuo Kotani Katsuya Eguchi, "Some Roles of MgO and TiC_2 in Densification of a Sinterable Alumina", J. Am. Ceram. Soc., 70 (1987)885-890.
    [32]. Akira Fujishima, Kenichi Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode", Nature, 238 (1972) 37-38.
    [33]. Marye Anne Fox, Maria T. Dulay, "Heterogeneous photocatalysis", Chem. Rev.,93[1] (1993) 341-357.
    [34]. M. Gr(?)Ntzel, "Photoelectrochemical cells", Nature 414 (2001) 338-344.
    [35]. Bin Li, Jin Zhao, Ken Onda, Kenneth D. Jordan, Jinlong Yang, Hrvoje Petek, "Ultrafast Interfacial Proton-Coupled Electron Transfer", Science, 311 (2006) 1436-1440.
    [36]. Xiaoyan Pan, Xueming Ma, "Phase transformations in nanocrystalline TiO_2 milled in different milling atmospheres", J. Solid State Chem., 177 (2004) 4098-4103
    [37]. L.G. Liu, "A fluorite isotype of SnO_2 and a new modification of TiO_2: implications for the earth's lower mantle", Science, 199 (1978) 422-425.
    [38]. Robert D. Shannon, Joseph A. Pask, "Kinetics of the Anatase-Rutile Transformation", J. Am. Ceram. Soc., 48[8] (1965) 391-398.
    [39]. K.J.D. MacKenzie, "The Calcination of Titania, Part IV", Trans. J. Br. Ceram. Soc., 74 (1975) 121-125.
    [40]. J.A. Gamboa, D.M. Pasquevich, "Effect of Chlorine Atmosphere on the Anatase-Rutile Transformation", J. Am. Ceram. Soc., 75 (1992) 2934-2938.
    [41]. M.K. Akhtar, S.E. Pratsinis, S.V.R. Mastrangelo, "Dopants in Vapor Phase Synthesis of Titania Powders", J. Am. Ceram. Soc, 75 (1992) 3408-3416.
    [42]. J. F. Mammone, M. Nicol, S.K. Sharma, "Raman Spectra of TiO_2-Ⅱ, TiO_2-Ⅲ, SnO_2, and GeO_2 at High Pressure", J. Phys. Chem. Solids, 42 (1981) 379-384.
    [43]. A.A. Gribb, J.F. Banfield, "Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO_2", Am. Mineral., 82 (1997) 717-729.
    [44]. H. Zhang, J.F. Banfield, "Thermodynamic analysis of phase stability in nanocrystalline titania", J. Mater. Chem., 8 (1998) 2073-2076.
    [45]. X.-Z. Ding, X.-H. Liu, Y.-Z. He, "Grain size dependence of anatase-to-rutile structural transformation in gel-derived nanocrystalline titania powders", J. Mater. Sci. Lett., 15 (1996) 1789-1791.
    [46]. H. Zhang, J.F. Banfield, "Phase transformation of nanocrystalline anatase to rutile via combined interface and surface nucleation", J. Mater. Res., 15 (2000) 437-448.
    [47]. H. Zhang, J.F. Banfield, "Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO_2", J. Phys. Chem., B 104 (2000) 3481-3487.
    [48]. T.B. Ghosh, Sampa Dhabal, A.K. Datta, "On crystallite size dependence of phase stability of nanocrystalline TiO_2", J. Appl. Phys., 94[7] (2003) 4577-4582.
    [49]. Krishnankutty-Nair P. Kumer, K. Keizer, A. J. Burggraaf, Tatsuya Okubo, Hidetoshi Nagamoto, Shigeharu Morooka, "Densification of nanostructured titania assisted by a phase transformation", Nature, 358, (1992) 48-51.
    [50]. K. Porkodi, S. Daisy Arokiamary, "Synthesis and spectroscopic characterization of nanostructured anatase titania: A photocatalyst", Mater. Charact, 58 (2007) 495-503.
    [51]. JCPDS-International Center for Diffraction Data, No. 21 -1272 (1998).
    [52]. JCPDS-International Center for Diffraction Data, No. 21 -1276 (1998)
    [53]. Bersani D, Lottici P, Ding XZ. "Phonon confinement effects in the Raman scattering by TiO_2 nanocyrstals", Appl. Phys. Lett., 72 (1998) 73-75.
    [54]. Ohsaka T, Izumi F, Fujiki Y. "Raman spectrum of anatase TiO2". J. Raman Spectrosc 7 (1978)321-328.
    [55]. D. Bersani, P.P. Lottici, M. Braghini and A. Montenero, "Crystallization of gel-derived glassy TiO_2: a Raman study", Phys. Stat. Sol. (b) 170 (1992) K5-10
    [56]. J.C. Parker and R.W. Siegel, "Raman microprobe study of nanophase TiO_2 and oxidation-induced spectral changes", J. Mater. Res., 5 (1990) 1246-1248.
    [57]. Ming-Sheng Zhang, Weifeng Zhang, Zhen YIN, "Phase transition and phonon confinement effect in nanophase titanium dioxide", Chinese J. Light Scattering, Vol.13, No.2,(2001) 95-101.
    [58]. A. Felske and W.J. Plieth, "Raman spectroscopy of titanium dioxide layers", Electrochim. Acta., 34[1] (1989) 75-77.
    [59]. S. Tanigawa, K. Hinode, N. Owada, M. Doyama, E. Iguchi and A. Inoue, in "Proceedings of 5th International Conference on Positron Annihilation", edited by R. R. Hasiguti and K. Fujiwara (The Japan Institute of Metals,Sendai, 1979) p.475
    [60]. Robert D. Shannon, Joseph. A. Pask, "Kinetics of the anatase-rutile transformation", J. Am. Ceram. Soc. 48 (1965) 391-398.
    [61]. Julio Andrade Gamboa, Daniel M. Pasquevich, "Effect of Chlorine Atmosphere on the Anatase-Rutile Transformation", J. Am. Ceram. Soc. 75 (1992) 2934-2938.
    [62]. Xiaoyan Pan, Xueming Ma, "Phase transformations in nanocrystalline TiO_2 milled in different milling atmospheres", J. Solid State Chem. 177 (2004) 4098-4103