维甲酸受体β与前列腺癌关系的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前列腺癌是男性泌尿生殖系统最常见的肿瘤。在美国它的发病率仅次于肺癌,是第二位癌症致死病因。我国前列腺癌的发病率明显上升,已位居泌尿系恶性肿瘤的第三位。抑癌基因失表达可能是前列腺癌形成的机制之一。组蛋白乙酰化/去乙酰化修饰染色质在基因表达中起关键作用。组蛋白乙酰化促进基因表达,而去乙酰化则抑制基因表达。组蛋白乙酰化/去乙酰化是由两种作用不同的酶调节,这两种酶分别是组蛋白乙酰转移酶和组蛋白去乙酰化酶。它们改变抑癌基因的表达并参与肿瘤的形成。
     早期前列腺癌为雄激素依赖性,手术可以治愈,雄激素阻断治疗也可以获得良好的疗效。晚期前列腺癌为雄激素非依赖性,雄激素阻断治疗通常无效。诱导雄激素非依赖性前列腺癌细胞凋亡被认为是较好的控制肿瘤生长的策略。组蛋白去乙酰化酶抑制剂诱导癌细胞凋亡和组蛋白乙酰化,后者可能与抑癌基因的表达相关。目前本实验研究包括以下二部分:
     第一部分RARβ在前列腺癌组织中的表达及与乙酰化组蛋白H3关系的研究
     目的:研究良性前列腺增生和前列腺癌组织RARβ与乙酰化组蛋白H3的表达及其临床意义,并分析两者之间的关系。
     方法:用免疫组织化学方法检测41例前列腺癌和10例良性前列腺增生标本中RARβ和乙酰化组蛋白H3的表达。
     结果:前列腺癌患者中RARβ和乙酰化组蛋白H3总表达率,均低于良性前列腺增生组织(p<0.05)。高分化的前列腺癌RARβ表达高于低分化者(p<0.01):晚期前列腺癌RARβ表达低于早期前列腺癌(p<0.01);雄激素非依赖性前列腺癌RARβ表达低于雄激素依赖性前列腺癌(p<0.05)。组蛋白H3乙酰化程度和前列腺癌分级、分期负相关(p<0.05)。前列腺癌RARβ表达与乙酰化组蛋白H3正相关(p<0.01)。
     结论:RARβ表达与前列腺癌的病变程度呈相反趋势,且与组蛋白H3乙酰化程度密切相关。
     第二部分TSA和ATRA结合对RARβ在雄激素非依赖性前列腺癌细胞DU-145中表达的影响
     目的:探讨组蛋白去酰化酶抑制剂TSA结合ATRA干预维甲酸抵抗的雄激素非依赖性前列腺细胞DU-145,能否诱导RARβ表达并协同抑制DU-145细胞生长。
     方法:将ATRA、TSA或TSA结合ATRA分别干预前列腺癌细胞DU-145 8~24小时,采用MTT检测DU-145细胞生长状况;Western blotting检测乙酰化组蛋白H3的表达程度;RT-PCR检测RARβmRNA转录情况。
     结果:ATRA结合TSA协同抑制DU-145细胞。TSA单独或结合ATRA干预DU-145细胞均能诱导乙酰化组蛋白H3和RARβmRNA表达。
     结论:ATRA结合组蛋白去乙酰化酶抑制剂TSA协同抑制维甲酸抵抗的雄激素非依赖性前列腺癌细胞DU-145生长。这种抑制作用部分和RARβ表达有关。
Prostate cancer is the most common gentitourlogic malignancy. Apart from lung cancer, prostate cancer is the first leading cause of death in American men. The incidence of prostate cancer increase in our country, and it has become the third cancer of gentitourlogic malignancy. A reduction in tumor suppressor gene expression is one of the key mechanisms involved in prostate cancer. Modifications of chromatin structure by acetylation/deacetylation of the histone proteins play a central role in the regulation of gene expression. Histone acetylation contributes to expression of gene, while histone deacetylation leads to repression of gene expression. The levels of acetylation/deacetylation of histone proteins are determined by 2 opposing enzymes, histone acetyltransferases and histone deacetylases. These alterations of gene expression by histone acetyltransferases and histone deacetylases have been implicated in the process of prostate cancer.
     The growth of most prostate tumors depends on androgens during the initial stages of tumor development. In early stage disease, surgery can be curative and anti-androgen therapy can be of significant benefit. In the final stages, it becomes androgen independent and is unresponsive to androgyne ablation therapy. At this stage, induction of apoptosis is considered as a better strategy to control cancer. Histone deacetylases inhibitors induced apoptosis and histone acetylation which can be correlated with the expression of antiproliferative genes. This study includes two parts as follows:
     Part IExpression of the RARβand its relationship to acetylated histone H3 inprostate cancer
     Purpose: To study expression of RARP and acetylated histone H3 in benign prostatic hyperplasia and prostate cancer, and their clinical significances, analyzing the relationship of RARp and acetylated histone H3.
     Methods: The expression levels of RARβprotein and the acetylation levels of histone H3 in 41 prostate cancer and 10 benign prostatic hyperplasia were examined, using immunohistochemistry.
     Results: The expression levels of RARβprotein and the acetylation levels of histone H3 in prostate cancer were lower than which were in the benign prostatic hyperplasia (p<0.05 ) . The expression levels of RARβprotein were higher in the well differentiated group than the poorly differentiated group (p<0.01) , lower in the final stages group than the early stages group (p<0.01) and lower in the hormone refractory ones than hormone dependent ones (p<0.05). The acetylation levels of histone H3 inversely correlated to pathological grade and stage(p<0.05). Immunostaining patterns of RARβand acetylated histone H3 were positively correlated (p<0.01) .
     Conclusion: The expression levels of RARβprotein are inversely related to the development of prostate cancer, which are closely concerned with the acetylation levels of histone H3.
     Part IIEffect of the trichostatin A in combination with all-trans retinoic acid onexpression of RARβin DU-145
     Purpose: We tested whether combining histone deacetylase inhibitor trichostatin A with all-trans retinoic acid would restore RARβreceptor expression, leading to increased growth inhibition in retinoic acid resistant androgen independent prostate cancer cell DU-145.
     Methods: ATRA, TSA or the combination of ATRA and TSA was added to the culture media respectively for 8 to 24 hours. The growth of each group was evaluated by MTT. Western blotting was used to detect the expression levels of acetylated histone H3 protein. RARβmRNA was determined using RT-PCR.
     Results: Enhanced inhibition of the proliferation of DU-145 was observed with the combination of ATRA plus TSA. Western blotting analyses showed increased acetylation of histone H3 on treatment with increasing doses of TSA in the presence or absence of ATRA. Reactivation of RARβmRNA expression was observed in DU-145 treated with TSA alone or TSA in combination with ATRA.
     Conclusion: The combination of ATRA and the histone deacetylase inhibitor TSA elicits an additive inhibition of cell proliferation in the retinoic acid resistant androgen independent prostate cancer cell DU-145. Enhanced inhitition of the proliferation of DU-145 treated with TSA in combination with ATRA in part is concerned with re-expression of RARβ.
引文
[1] Jemal A, Ward E, Hao Y, et al. Trends in the leading causes of death in the United States, 1970-2002. JAMA. 2005; 294(10):1255-9.
    
    [2] Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2007. CA Cancer J Clin. 2007; 57(1): 43-66.
    
    [3] 顾方六. 影响前列腺癌发病的因素. 中华泌尿外科杂志,2000: 21(5):261-262.
    [4] Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer. 2001; 1(1):34-45.
    [5] Sartorelli AC. The 1985 Walter Hubert lecture. Malignant cell differentiation as a potential therapeutic approach. Br J Cancer. 1985; 52(3):293-302.
    [6] Sun SY, Lotan R. Retinoids and their receptors in cancer development and chemoprevention. Crit Rev Oncol Hematol. 2002; 41(1):41-55.
    [7] Klass CM, Shin DM. Current status and future perspectives of chemoprevention in head and neck cancer. Curr Cancer Drug Targets. 2007; 7(7):623-32.
    [8] Howe LR. Rexinoids and breast cancer prevention. Clin Cancer Res. 2007; 13(20): 5983-7.
    [9] Germain P, Chambon P, Eichele G, et al. International Union of Pharmacology. LX. Retinoic acid receptors. Pharmacol Rev. 2006; 58(4):712-25.
    [10] Germain P, Chambon P, Eichele G, et al. International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol Rev. 2006; 58(4):760-72.
    
    [11] Tyler JK, Kadonaga JT. The "dark side" of chromatin remodeling: repressive effects on transcription. Cell. 1999; 99(5):443-6.
    
    [12] Freedman LP. Increasing the complexity of coactivation in nuclear receptor signaling. Cell. 1999; 97(1):5-8.
    [13] Marks P, Rifkind RA, Richon VM, et al. Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer. 2001; 1 (3):194-202.
    [14] Brown R, Strathdee G. Epigenomics and epigenetic therapy of cancer. Trends Mol Med. 2002; 8(4 Suppl):S43-8.
    [15] Kopelovich L, CrowellJA, FayJR. The epigenome as a target for cancer chemoprevention. J Natl Cancer Inst. 2003; 95(23):1747-57.
    [16] Altucci L, Gronemeyer H. The promise of retinoids to fight against cancer. Nat Rev Cancer. 2001; 1(3):181-93.
    [17] Sirchia SM, Ferguson AT, Sironi E, et al. Evidence of epigenetic changes affecting the chromatin state of the retinoic acid receptor beta2 promoter in breast cancer cells. Oncogene. 2000; 19(12):1556-63.
    [18] Widschwendter M, Berger J, Muller HM, et al. Epigenetic downregulation of the retinoic acid receptor-beta2 gene in breast cancer. J Mammary Gland Biol Neoplasia. 2001; 6(2):193-201.
    [19] Touma SE, Goldberg JS, Moench P, et al. Retinoic acid and the histone deacetylase inhibitor trichostatin a inhibit the proliferation of human renal cell carcinoma in a xenograft tumor model. Clin Cancer Res. 2005; 11(9): 3558-66.
    [20] Kato Y, Salumbides BC, Wang XF, et al. Antitumor effect of the histone deacetylase inhibitor LAQ824 in combination with 13-cis-retinoic acid in human malignant melanoma. Mol Cancer Ther. 2007; 6(1):70-81.
    [21] Grunstein M. Histone acetylation in chromatin structure and transcription. Nature. 1997; 389 (6649):349-52.
    [22] Hassig CA, Schreiber SL. Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Curr Opin Chem Biol. 1997; 1(3): 300-8.
    [23] Wang C, Fu M, Mani S, et al. Histone acetylation and the cell-cycle in cancer. Front Biosci. 2001; 6:D610-29.
    [24] Cress WD, Seto E. Histone deacetylases, transcriptional control, and cancer. J Cell Physiol. 2000; 184(1):1-16.
    [25] Brehm A, Miska EA, McCance DJ, et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature. 1998; 391(6667):597-601.
    [26] Magnaghi-Jaulin L, Groisman R, Naguibneva I, et al. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature. 1998; 391(6667): 601-5.
    [27] Marks PA, Richon VM, Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst. 2000; 92(15): 1210-6.
    [28] Marks PA, Rifkind RA, Richon VM, et al. Inhibitors of histone deacetylase are potentially effective anticancer agents. Clin Cancer Res. 2001; 7(4):759-60.
    [29] Bastien J, Rochette-Egly C. Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene. 2004; 328:1-16.
    [30] Gronemeyer H, Gustafsson JA, Laudet V. Principles for modulation of the nuclear receptor superfamily.Nat Rev Drug Discov.2004;3(11):950-64.
    [31]de The H,Vivanco-Ruiz MM,Tiollais P,et al.Identification of a retinoic acid responsive element in the retinoic acid receptor beta gene.Nature.1990;343(6254):177-80.
    [32]Suh YA,Lee HY,Virmani A,et al.Loss of retinoic acid receptor beta gene expression is linked to aberrant histone H3 acetylation in lung cancer cell lines.Cancer Res.2002;62(14):3945-9.
    [33]Ralhan R,Chakravarti N,Kaur J,et al.Clinical significance of altered expression of retinoid receptors in oral precancerous and cancerous lesions:relationship with cell cycle regulators.Int J Cancer.2006;118(5):1077-89.
    [34]Teboul M,Enmark E,Li Q,et al.OR-l,a member of the nuclear receptor superfamily that interacts with the 9-cis-retinoic acid receptor.Proc Natl Acad Sci U S A.1995:92(6):2096-100.
    [35]Glass CK,Rosenfeld MG.The coregulator exchange in transcriptional functions of nuclear receptors.Genes Dev.2000;14(2):121-41.
    [36]Pavan B,Biondi C,Dalpiaz A.Nuclear retinoic acid receptor beta as a tool in chemoprevention trials.Curr Med Chem.2006;13(29):3553-63.
    [37]蔡小强,谢作煊.不同组织学类型人肺癌细胞系的维甲酸受体表达。临床与实验病理学杂,2002;18(3):316-318.
    [38]岳文彬,高珊珊,刘宾等.河南食管癌高、低发区居民食管癌前病变和癌组织维甲酸受体β的表达。郑州大学学报,2002;37(6):766-768.
    [39]王卫理,周士福,费伯健等.乳腺癌维甲酸受体表达的临床研究。南京医科大学学报,2005;25(2):118-120.
    [40]Xu XC,Sozzi G,Lee JS,Lee JJ,et al.Suppression of retinoic acid receptor beta in non-small-cell lung cancer in vivo:implications for lung cancer development.J Natl Cancer Inst.1997;89(9):624-9.
    [41]Widschwendter M,Berger J,Daxenbichler G,et al.Loss of retinoic acid receptor beta expression in breast cancer and morphologically normal adjacent tissue but not in the normal breast tissue distant from the cancer.Cancer Res.1997;57(19):4158-61.
    [42]Houle B,Rochette-Egly C,Bradley WE.Tumor-suppressive effect of the retinoic acid receptor beta in human epidermoid lung cancer cells.Proc Natl Acad Sci U S A.1993;90(3):985-9.
    [43]Muntoni A,Fleming J,Gordon KE,et al.Senescing oral dysplasias are not immortalized by ectopic expression of hTERT alone without other molecular changes, such as loss of INK4A and/or retinoic acid receptor-beta: but p53 mutations are not necessarily required. Oncogene. 2003; 22(49):7804-8.
    [44] Li R, Faria TN, Boehm M, et al. Retinoic acid causes cell growth arrest and an increase in p27 in F9 wild type but not in F9 retinoic acid receptor beta2 knockout cells. Exp Cell Res. 2004; 294(1):290-300.
    [45] Shen Q, Brown PH. Novel agents for the prevention of breast cancer: targeting transcription factors and signal transduction pathways. J Mammary Gland Biol Neoplasia. 2003; 8 (1):45-73.
    [46] Kikugawa T, Tanji N, Miyazaki T, et al. Immunohistochemical study of the receptors for retinoic acid in prostatic adenocarcinoma. Anticancer Res. 2000; 20(50:3897-902.
    [47] Richter F, Joyce A, Fromowitz F, et al. Immunohistochemical localization of the retinoic Acid receptors in human prostate. J Androl. 2002; 23(6):830-8.
    [48] Lotan Y, Xu XC, Shalev M, et al. Differential expression of nuclear retinoid receptors in normal and malignant prostates. J Clin Oncol. 2000; 18(1): 116—21.
    [49] Hu L, Crowe DL, Rheinwald JG, et al. Abnormal expression of retinoic acid receptors and keratin 19 by human oral and epidermal squamous cell carcinoma cell lines. Cancer Res. 1991; 51(15):3972-81.
    [50] Pasquali D, Thaller C, Eichele G. Abnormal level of retinoic acid in prostate cancer tissues. J Clin Endocrinol Metab. 1996; 81(6):2186-2191.
    [51] Reichman ME, Hayes RB, Ziegler RG, et al. Serum vitamin A and subsequent development of prostate cancer in the first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Cancer Res. 1990; 50(8):2311-2315.
    [52] Nakayama T, Watanabe M, Yamanaka M, et al. The role of epigenetic modifications in retinoic acid receptor beta2 gene expression in human prostate cancers. Lab Invest. 2001; 81(7):1049-1057.
    [53] Bovenzi V, Le NL, Cote S, et al. DNA methylation of retinoic acid receptor beta in breast cancer and possible therapeutic role of 5-aza-2' -deoxycytidine. Anticancer Drugs. 1999; 10(5):471-476.
    [54] Yang Q, Sakurai T, Yoshimura G, et al. Hypermethylation does not account for the frequent loss of the retinoic acid receptor beta2 in breast carcinoma. Anticancer Res. 2001; 21(3B):1829-1833.
    [55]顾方六,刘玉立.50年泌尿男生殖系肿瘤发病和构成情况的变迁.中华泌尿外科杂志,2002,23(2):88-90.
    [56]刘服庭,李秀霞,程伟.泌尿外科肿瘤发病情况的变化.临床泌尿外科杂志,1997,12(1):47-48.
    [57]Goodin S,Rao KV,DiPaola RS.State-of-the-art treatment of metastatic hormone-refractory prostate cancer.Oncologist.2002;7(4):360-70.
    [58]Trachtenberg J,Blackledge G.Looking to the future.Advances in the management of hormone-refractory prostate cancer.Eur Urol Suppl.2002;1(7):44-53.
    [59]Campbell MJ,Park S,Uskokovic MR,et al.Expression of retinoic acid receptor-beta sensitizes prostate cancer cells to growth inhibition mediated by combinations of retinoids and a 19-nor hexafluoride vitamin D3 analog.Endocrinology.1998;139(4):1972-80.
    [60]Minucci S,Horn V,Bhattacharyya N,et al.A histone deacetylase inhibitor potentiates retinoid receptor action in embryonal carcinoma cells.Proc Natl Acad Sci U S A.1997;94(21):11295-300.
    [61]Sirchia SM,Ren M,Pill R,et al.Endogenous reactivation of the RARbeta2 tumor suppressor gene epigenetically silenced in breast cancer.Cancer Res.2002;62(9):2455-61.
    [62]Warrell RP Jr,He LZ,Richon V,et al.Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase.J Natl Cancer Inst.1998;90(21):1621-5.
    [63]Thomas MA,Hodgson MC,Loermans SD,et al.Transcriptional regulation of the homeobox gene NKX3.1 by all-trans retinoic acid in prostate cancer cells.J Cell Biochem.2006;99(5):1409-19.
    [64]Hammond LA,Brown G,Keedwell RG,et al.The prospects of retinoids in the treatment of prostate cancer.Anticancer drugs.2002;13(8):781-90.
    [65]Pill R,Kruszewski MP,Hager BW,et al.Combination of phenylbutyrate and 13-cis retinoic acid inhibits prostate tumor growth and angiogenesis.Cancer Res.2001;61(4):1477-1485.
    [66]Santoro R,Li J,Grummt I.The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription.Nat Genet.2002;32(3):393-6.
    [67]Mohamed MA,Greif PA,Diamond J,et al.Epigenetic events,remodelling enzymes and their relationship to chromatin organization in prostatic intraepithelial neoplasia and prostatic adenocarcinoma. BJU Int. 2007; 99(4):908-15.
    [68] Herold C, Ganslmayer M, Ocker M, et al. The histone-deacetylase inhibitor Trichostatin A blocks proliferation and triggers apoptotic programs in hepatoma cells. J Hepatol. 2002; 36(2):233-40.
    [69] Gui CY, Ngo L, Xu WS, et al. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci U S A. 2004; 101(5):1241-6.
    [70] Zhuang Y, Faria TN, Chambon P, et al. Identification and characterization of retinoic acid receptor beta2 target genes in F9 teratocarcinoma cells. Mol Cancer Res. 2003; 1(8): 619-30.
    [1]顾方六.影响前列腺癌发病的因素.中华泌尿外科杂志,2000;21(5):261-262.
    [2]Jemal A,Murray T,Ward E,et al.Cancer statistics,2005.CA Cancer J Clin.2005;55(1):10-30.
    [3]U.S.Mortality Age-Adjusted Rates,Individual States,1969-1999,National Cancer Institute,USA
    [4]Steiner MS,Raghow S,Neubauer BL.Selective estrogen receptor modulators for the chemoprevention of prostate cancer.Urology.2001;57(4 Suppl 1):68-72.
    [5]Gao M,Ossowski L,Ferrari AC.Activation of Rb and decline in androgen receptor protein precede retinoic acid-induced apoptosis in androgen-dependent LNCaP cells and their androgen-independent derivative.J Cell Physiol.1999;179(3):336-346.
    [6]Liang JY,Fontana JA,Rao JN,et al.Synthetic retinoid CD437 induces S-phase arrest and apoptosis in human prostate cancer cells LNCaP and PC-3.Prostate.1999;38(3):228-236.
    [7]Harrison EH.Mechanisms of digestion and absorption of dietary vitamin A.Annu Rev Nutr.2005;25:87-103.
    [8]Ross AC,Zolfaghari R,Weisz J.Vitamin A:recent advances in.the biotransformation,transport,and metabolism of retinoids.Curr Opin Gastroenterol.2001;17(2):184-192.
    [9]Noy N.Retinoid-binding proteins:mediators of retinoid action.Biochem J.2000;348(Pt 3):481-495.
    [10]Napoli JL.Retinoic acid:its biosynthesis and metabolism.Prog Nucleic Acid Res Mol Biol.1999;63:139-188.
    [11]Miller WH Jr.The emerging role of retinoids and retinoic acid metabolism blocking agents in the treatment of cancer.Cancer.1998;83(8):1471-1482.
    [12]Njar VC.Cytochrome p450 retinoic acid 4-hydroxylase inhibitors:potential agents for cancer therapy.Mini Rev Med Chem.2002;2(3):261-269.
    [13]Petkovich PM.Retinoic acid metabolism.J Am Acad Dermatol.2001;45(5):S136-S142.
    [14]Guo X,Ruiz A,Rando RR,et al.Esterification of all-trans-retinol in normal human epithelial cell strains and carcinoma lines from oral cavity,skin and breast:reduced expression of lecithin:retinol acyltransferase in carcinoma lines.Carcinogenesis.2000;21(11):1925-1933.
    [15]Guo X,Nanus D M,Ruiz A,et al.Reduced levels of retinyl esters and vitamin A in human renal cancers.Cancer Res.2001;61(6):2774-2781.
    [16]Guo X,Knudsen BS,Peehl DM,et al.Retinol metabolism and lecithin:retinol acyltransferase levels are reduced in cultured human prostate cancer cells and tissue specimens.Cancer Res.2002;62(6):1654-1661.
    [17]Zhan HC,Gudas L J,Bok D,et al.Differential expression of the enzyme that esterifies retinol,lecithin:retinol acyltransferase,in subtypes of human renal cancer and normal kidney.Clin Cancer Res.2003;9(13):4897-4905.
    [18]Boorjian S,Tickoo SK,Mongan NP,et al.Reduced lecithin:retinol acyltransferase expression correlates with increased pathologic tumor stage in bladder cancer.Clin Cancer Res.2004;10(10):3429-3437.
    [19]Kuppumbatti YS,Bleiweiss IJ,Mandeli JP,et al.Cellular retinol-binding protein expression and breast cancer.J Natl Cancer Inst.2000;92(6):475-480.
    [20]Jeronimo C,Henrique R,Oliveira J,et al.Aberrant cellular retinol binding protein 1(CRBP1)gene expression and promoter methylation in prostate cancer.J Clin Pathol.2004;57(8):872-876.
    [21]Kuppumbatti YS,Rexer B,Nakajo S,et al.CRBP suppresses breast cancer cell survival and anchorage-independent growth.Oncogene.2001;20(50):7413-7419.
    [22]Esteller M,Guo M,Moreno V,et al.Hypermethylation-associated Inactivation of the Cellular Retinol-Binding-Protein 1 Gene in Human Cancer.Cancer Res.2002;62(20):5902-5905.
    [23]Arapshian A,Bertran S,Kuppumbatti YS,et al.Epigenetic CRBP downregulation appears to be an evolutionarily conserved(human and mouse)and oncogene-specific phenomenon in breast cancer.Mol Cancer.2004;3:13.
    [24]Farias EF,Ong DE,Ghyselinck NB,et al.Cellular retinol-binding protein I,a regulator of breast epithelial retinoic acid receptor activity,cell differentiation,and tumorigenicity.J Natl Cancer Inst.2005;97(1):21-29.
    [25]Simmons DP,Peach ML,Friedman JR,et al.Evidence that sequence homologous region in LRAT-like proteins possesses anti-proliferative activity and DNA binding properties:translational implications and mechanism of action.Carcinogenesis.2006;27(4):693-707.
    [26]Okuducu AF,Janzen V,Ko Y,et al.Cellular retinoic acid-binding protein 2 is down-regulated in prostate cancer.Int J Oncol.2005;27(5):1273-1282.
    [27]Budhu A,Gillilan R,Noy N.Localization of the RAR interaction domain of cellular retinoic acid binding protein-Ⅱ.J Mol Biol.2001;305(4):939-949.
    [28]Zhang XK.Vitamin A and apoptosis in prostate cancer.Endocr Relat Cancer.2002;9(2):87-102.
    [29]Budhu AS,Noy N.Direct channeling of retinoic acid between cellular retinoic acid-binding protein Ⅱ and retinoic acid receptor sensitizes mammary carcinoma cells to retinoic acid-induced growth arrest.Mol Cell Biol.2002;22(8):2632-2641.
    [30]Borghi R,Vene R,Arena G,et al.Transient modulation of cytoplasmic and nuclear retinoid receptors expression in differentiating human teratocarcinoma NT2 cells.J Neurochem.2003;84(1):94-104.
    [31]Hewson QC,Lovat PE,Pearson AD,et al.Retinoid signalling and gene expression in neuroblastoma cells:RXR agonist and antagonist effects on CRABP-Ⅱ and RARbeta expression.J Cell Biochem.2002;87(3):284-291.
    [32]Yamashita S,Wakazono K,Sugimura T,et al.Profiling and selection of genes differentially expressed in the pylorus of rat strains with different proliferative responses and stomach cancer susceptibility.Carcinogenesis.2002;23(6):923-928.
    [33]Lehmann S,Paul C,Torma H.The expression of cellular retinoid binding proteins in non-APL leukemic cells and its association with retinoid sensitivity.Leuk Lymphoma.2002;43(4):851-858.
    [34]Manor D,Shmidt EN,Budhu A,et al.Mammary carcinoma suppression by cellular retinoic acid binding protein-Ⅱ.Cancer Res.2003;63(15):4426-4433.
    [35]Schuurman AG,Goldbohm RA,Brants HA,et al.A prospective cohort study on intake of retinol,vitamins C and E,and carotenoids and prostate cancer risk(Netherlands).Cancer Causes Control.2002;13(6):573-582.
    [36]Ekman P,Gronberg H,Matsuyama H,et al.Links between genetic and environmental factors and prostate cancer risk.Prostate.1999;39(4):262-268.
    [37]Eichholzer M,Stahelin HB,Ludin E,et al.Smoking,plasma vitamins C,E,retinol,and carotene,and fatal prostate cancer:seventeen-year follow-up of the prospective base study.Prostate.1999;38(3):189-198.
    [38]Kotake-Nara E,Kim S J,Kobori M,et al.Acyclo-retinoic acid induces apoptosis in human prostate cancer cells.Anticancer Res.2002;22(2A):689-695.
    [39]Ikeda N,Uemura H,Ishiguro H,et al.Combination treatment with lalpha,25-dihydroxyvitamin D3 and 9-cis-retinoic acid directly inhibits human telomerase reverse transcriptase transcription in prostate cancer cells.Mol Cancer Ther.2003;2(8):739-746.
    [40]Sharp RM,Bello-DeOcampo D,Quader ST,et al.N-(4-hydroxyphenyl)retinamide(4-HPR)decreases neoplastic properties of human prostate cells:an agent for prevention.Mutat Res.2001;496(1-2):163-170.
    [41]Van Wauwe JP,Coene MC,Goossens J,et al.Ketoconazole inhibits the in vitro and in vivo metabolism of all-trans-retinoic acid.J Pharmacol Exp Ther.1988;245(2):718-722.
    [42]Van Wauwe JP,Coene MC,Goossens J,et al.Effects of cytochrome P-450 inhibitors on the in vivo metabolism of all-trans-retinoic acid in rats.J Pharmacol Exp Ther.1990;252(1):365-369.
    [43]Van Wauwe J,Van Nyen G,Coene MC,et al.Liarozole,an inhibitor of retinoic acid metabolism,exerts retinoid-mimetic effects in vivo.J Pharmacol Exp Ther.1992;261(2):773-779.
    [44]Van Ginckel R,De Coster R,Wouters W,et al.Antitumoral effects of R 75251 on the growth of transplantable R3327 prostatic adenocarcinoma in rats.Prostate.1990;16(4):313-323.
    [45]De Coster R,Wouters W,Van Ginckel R,et al.Experimental studies with liarozole(R 75,251):an antitumoral agent which inhibits retinoic acid breakdown.J Steroid Biochem Mol Biol.1992;43(1-3):197-201.
    [46]Stearns ME,Wang M,Fudge K.Liarozole and 13-cis-retinoic acid anti-prostatic tumor activity.Cancer Res.1993;53(13):3073-3077.
    [47]Smets G,Van Ginckel R,Daneels G,et al.Liarozole,an antitumor drug,modulates cytokeratin expression in the Dunning AT-6sq prostatic carcinoma through in situ accumulation of all-trans-retinoic acid.Prostate.1995;27(3):129-140.
    [48]Van heusden J,Borgers M,Ramaekers F,et al.Liarozole potentiates the all-trans-retinoic acid-induced structural remodelling in human breast carcinoma MCF-7 cells in vitro.Eur J Cell Biol.1996;71(1):89-98.
    [49]Van heusden J,Wouters W,Ramaekers FC,et al.The antiproliferative activity of all-trans-retinoic acid catabolites and isomers is differentially modulated by liarozole-fumarate in MCF-7 human breast cancer cells.Br J Cancer.1998;77(8):1229-1235.
    [50]Njar VC,Nnane IP,Brodie AM.Potent inhibition of retinoic acid metabolism enzyme(s)by novel azolyl retinoids.Bioorg Med Chem Lett.2000;10(17):1905-1908.
    [51]Patel JB,Huynh CK,Handratta VD,et al.Novel retinoic acid metabolism blocking agents endowed with multiple biological activities are efficient growth inhibitors of human breast and prostate cancer cells in vitro and a human breast tumor xenograft in nude mice.J Med Chem.2004;47(27):6716-6729.
    [52]Petkovieh M,Brand N J,Krust A,et al.A human retinoic acid receptor which belongs to the family of nuclear receptors.Nature.1987;330(6147):444-440.
    [53]Giguere V,Ong ES,Segui P,et al.Identification of a receptor for the morphogen retinoic acid.Nature.1987;330(6149):624-629.
    [54] Brand N, Petkovich M, Krust A, et al. Identification of a second human retinoic acid receptor. Nature. 1988; 332(6167):850-853.
    [55] Zelent A, Krust A, Petkovich M, et al. Cloning of murine alpha and beta retinoic acid receptors and a novel receptor gamma predominantly expressed in skin. Nature. 1989; 339(6227):714-7.
    [56] Krust A, Kastner P, Petkovich M, et al. A third human retinoic acid receptor, hRAR-gamma. Proc Natl Acad Sci U S A. 1989; 86(14):5310-5314.
    [57] Mangelsdorf DJ, Ong ES, Dyck JA, et al. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature. 1990; 345(6272):224-229.
    [58] Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996; 10(9):940-954.
    [59] Leid M, Kastner P, Chambon P. Multiplicity generates diversity in the retinoic acid signalling pathways. Trends Biochem Sci. 1992; 17(10):427-433.
    [60] Lemotte PK, Keidel S, Apfel CM. Phytanic acid is a retinoid X receptor ligand. Eur J Biochem. 1996; 236(1):328-333.
    [61] de Urquiza AM, Liu S, Sjoberg M, et al. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science. 2000; 290(5499):2140-2144.
    [62] Goldstein JT, Dobrzyn A, Clagett-Dame M, et al. Isolation and characterization of unsaturated fatty acids as natural ligands for the retinoid-X receptor. Arch Biochem Biophys. 2003; 420(1): 185-193.
    [63] Renaud JP, Moras D. Structural studies on nuclear receptors. Cell Mol Life Sci. 2000; 57(12):1748-1769.
    [64] Glass CK. Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr Rev. 1994; 15(3):391-407.
    [65] Folkers GE, van der Leede BJ, van der Saag PT. The retinoic acid receptor-beta 2 contains two separate cell-specific transactivation domains, at the N-terminus and in the ligand-binding domain. Mol Endocrinol. 1993; 7(4):616-627.
    [66] Folkers GE, van Heerde EC, van der Saag PT. Activation function 1 of retinoic acid receptor beta 2 is an acidic activator resembling VP16. J Biol Chem. 1995; 270(40):23552-23559.
    [67] Nagpal S, Friant S, Nakshatri H, et al. RARs and RXRs: evidence for two autonomous transactivation functions (AF-1 and AF-2) and heterodimerization in vivo. EMBO J. 1993; 12(6):2349-2360.
    [68] Bour G, Plassat JL, Bauer A, et al. Vinexin beta interacts with the non-phosphorylated AF-1 domain of retinoid receptor gamma (RARgamma) and represses RARgamma-mediated transcription. J Biol Chem. 2005; 280(17):17027-17037.
    [69] Martin PJ, Lardeux V, Lefebvre P. The proliferating cell nuclear antigen regulates retinoic acid receptor transcriptional activity through direct protein-protein interaction. Nucleic Acids Res. 2005; 33(13):4311-4321.
    [70] Rochette-Egly C, Adam S, Rossignol M, et al. Stimulation of RAR alpha activation function AF-1 through binding to the general transcription factor TFIIH and phosphorylation by CDK7. Cell. 1997; 90(1):97-107.
    [71] Bastien J, Adam-Stitah S, Riedl T, et al. TFIIH interacts with the retinoic acid receptor gamma and phosphorylates its AF-1-activating domain through cdk7. J Biol Chem. 2000; 275(29):21896-21904.
    [72] Gianni M, Tarrade A, Nigro EA, et al. The AF-1 and AF-2 domains of RAR gamma 2 and RXR alpha cooperate for triggering the transactivation and the degradation of RAR gamma 2/RXR alpha heterodimers. J Biol Chem. 2003; 278(36):34458-34466.
    [73] Bour G, Gaillard E, Bruck N, et al. Cyclin H binding to the RARalpha activation function (AF)-2 domain directs phosphorylation of the AF-1 domain by cyclin-dependent kinase 7. Proc Natl Acad Sci U S A. 2005; 102(46): 16608-16613.
    [74]Taneja R, Rochette-Egly C, Plassat JL, et al. Phosphorylation of activation functions AF-1 and AF-2 of RAR alpha and RAR gamma is indispensable for differentiation of F9 cells upon retinoic acid and cAMP treatment. EMBO J. 1997; 16(21):6452-6465.
    [75] Rochette-Egly C, Plassat JL, Taneja R, et al. The AF-1 and AF-2 activating domains of retinoic acid receptor-alpha (RARalpha) and their phosphorylation are differentially involved in parietal endodermal differentiation of F9 cells and retinoid-induced expression of target genes. Mol Endocrinol. 2000; 14(9):1398-1410.
    [76] Mascrez B, Mark M, Krezel W, et al. Differential contributions of AF-1 and AF-2 activities to the developmental functions of RXR alpha. Development. 2001; 128(11):2049-2062.
    [77] Aneskievich BJ. Deletion of RAR carboxyl terminus reveals promoter- and receptor-specific AF-1 effects. Biochem Biophys Res Commun. 2001; 289(5):950-956.
    [78] Wei LN. Retinoid receptors and their coregulators. Annu Rev Pharmacol Toxicol. 2003; 43:47-72.
    [79] Horlein AJ, Naar AM, Heinzel T, et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature. 1995; 377(6548):397-404.
    [80] Chen JD, Evans RM. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature. 1995; 377(6548):454-457.
    [81] Heinzel T, Lavinsky RM, Mullen TM, et al. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature. 1997; 387(6628):43-48.
    [82] Hu X, Lazar MA. The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature. 1999 ; 402(6757):93-96.
    [83] Perissi V, Staszewski LM, McInerney EM, et al. Molecular determinants of nuclear receptor-corepressor interaction. Genes Dev. 1999; 13(24):3198-3208.
    [84] Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell. 1995; 83(6):841-850.
    [85] Lohnes D, Kastner P, Dierich A, et al. Function of retinoic acid receptor gamma in the mouse. Cell. 1993; 73(4):643-658.
    [86] Pili R, Kruszewski MP, Hager BW, et al. Combination of phenylbutyrate and 13-cis retinoic acid inhibits prostate tumor growth and angiogenesis. Cancer Res. 2001; 61 (4): 1477-1485.
    [87] Pasquali D, Rossi V, Prezioso D, et al. Changes in tissue transglutaminase activity and expression during retinoic acid-induced growth arrest and apoptosis in primary cultures of human epithelial prostate cells. J Clin Endocrinol Metab. 1999; 84(4): 1463-1469.
    [88] Lotan Y, Xu XC, Shalev M, et al. Differential expression of nuclear retinoid receptors in normal and malignant prostates. J Clin Oncol. 2000; 18(1):116-121.
    [89] Campbell MJ, Park S, Uskokovic MR, et al. Expression of retinoic acid receptor-beta sensitizes prostate cancer cells to growth inhibition mediated by combinations of retinoids and a 19-nor hexafluoride vitamin D3 analog. Endocrinology. 1998; 139(4): 1972-1980.
    [90] Swisshelm K, Ryan K, Lee X, et al. Down-regulation of retinoic acid receptor beta in mammary carcinoma cell lines and its up-regulation in senescing normal mammary epithelial cells. Cell Growth Differ. 1994; 5(2):133-141.
    [91] Xu XC, Ro JY, Lee JS, et al. Differential expression of nuclear retinoid receptors in normal, premalignant, and malignant head and neck tissues. Cancer Res. 1994; 54(13):3580-3587.
    [92] Zhang XK, Liu Y, Lee MO, et al. A specific defect in the retinoic acid response associated with human lung cancer cell lines.Cancer Res. 1994; 54(21):5663-5669.
    [93] McGregor F, Wagner E, Felix D, et al. Inappropriate retinoic acid receptor-beta expression in oral dysplasias: correlation with acquisition of the immortal phenotype. Cancer Res. 1997; 57(18):3886-3889.
    [94] Geisen C, Denk C, Gremm B, et al. High-level expression of the retinoic acid receptor beta gene in normal cells of the uterine cervix is regulated by the retinoic acid receptor alpha and is abnormally down-regulated in cervical carcinoma cells. Cancer Res. 1997; 57(8):1460-1467.
    [95]Wu S,Zhang D,Zhang ZP,et al.Critical role of both retinoid nuclear receptors and retinoid-X-receptors in mediating growth inhibition of ovarian cancer cells by all-trans retinoic acid.Oncogene.1998;17(22):2839-2849.
    [96]Nakayama T,Watanabe M,Yamanaka M,et al.The role of epigenetic modifications in retinoic acid receptor beta2 gene expression in human prostate cancers.Lab Invest.2001;81(7):1049-1057.
    [97]Richter F,Joyce A,Fromowitz F,et al.Immunohistochemical localization of the retinoic Acid receptors in human prostate.J Androl.2002;23(6):830-838.
    [98]Qiu H,Zhang W,El-Naggar AK,et al.Loss of retinoic acid receptor-beta expression is an early event during esophageal carcinogenesis.Am J Pathol.1999;155(5):1519-1523.
    [99]Widschwendter M,Berger J,Daxenbichler G,et al.Loss of retinoic acid receptor beta expression in breast cancer and morphologically normal adjacent tissue but not in the normal breast tissue distant from the cancer.Cancer Res.1997;57(19):415841-61.
    [100]Xu XC,Sneige N,Liu X,et al.Progressive decrease in nuclear retinoic acid receptor beta messenger RNA level during breast carcinogenesis.Cancer Res.1997;57(22):4992-4996.
    [101]Xu XC,Sozzi G,Lee JS,et al.Suppression ofretinoic acid receptor beta in non-small-cell lung cancer in vivo:implications for lung cancer development.J Natl Cancer Inst.1997;89(9):624-629.
    [102]Picard E,Seguin C,Monhoven N,et al.Expression ofretinoid receptor genes and proteins in non-small-cell lung cancer.J Natl Cancer Inst.1999;91(12):1059-1066.
    [103]Aboseif SR,Dahiya R,Narayan P,et al.Effect of retinoic acid on prostatic development.Prostate.1997;31(3):161-167.
    [104]Sun SY,Yue P,Chandraratna RA,et al.Dual mechanisms of action of the retinoid CD437:nuclear retinoic acid receptor-mediated suppression of squamous differentiation and receptor-independent induction of apoptosis in UMSCC22B human head and neck squamous cell carcinoma cells.Mol Pharmacol.2000;58(3):508-514.
    [105]Pfahl M.Nuclear receptor/AP-1 interaction.Endocr Rev.1993;14(5):651-658.
    [106]Fanjul A,Dawson MI,Hobbs PD,et al.A new class of retinoids with selective inhibition of AP- 1 inhibits proliferation.Nature.1994;372(6501):107-111.
    [107]Chen JY,Penco S,Ostrowski J,et al.RAR-specific agonist/antagonists which dissociate transactivation and AP1 transrepression inhibit anchorage-independent cell proliferation.EMBO J.1995;14(6):1187-1197.
    [108]Li J J,Dong Z,Dawson MI,et al.Inhibition of tumor promoter-induced transformation by retinoids that transrepress AP-1 without transactivating retinoic acid response element. Cancer Res. 1996; 56(3):483-489.
    [109] Li H, Kolluri SK, Gu J, et al. Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science. 2000; 289(5482): 1159-1164.
    [110] Gebert JF, Moghal N, Frangioni JV, et al. High frequency of retinoic acid receptor beta abnormalities in human lung cancer. Oncogene. 1991; 6(10): 1859-1868.
    [111] Zhang XK, Hoffmann B, Tran PB, et al. Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature. 1992; 355(6359):441-446.
    [112] Reichman ME, Hayes RB, Ziegler RG, et al. Serum vitamin A and subsequent development of prostate cancer in the first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Cancer Res. 1990; 50(8):2311-2315.
    [113] Pasquali D, Thaller C, Eichele G Abnormal level of retinoic acid in prostate cancer tissues. J Clin Endocrinol Metab. 1996; 81(6):2186-2191.
    [114] Sun SY, Yue P, Lotan R. Induction of apoptosis by N-(4-hydroxyphenyl)retinamide and its association with reactive oxygen species, nuclear retinoic acid receptors, and apoptosis-related genes in human prostate carcinoma cells. Mol Pharmacol. 1999; 55(3):403-410.
    [115] Wu Q, Li Y, Liu R, et al. Modulation of retinoic acid sensitivity in lung cancer cells through dynamic balance of orphan receptors nur77 and COUP-TF and their heterodimerization. EMBO J. 1997; 16(7):1656-1669.
    [116] Lin B, Chen GQ, Xiao D, et al. Orphan receptor COUP-TF is required for induction of retinoic acid receptor beta, growth inhibition, and apoptosis by retinoic acid in cancer cells. Mol Cell Biol. 2000; 20(3):957-970.
    [117] Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002; 3(6):415-428.
    [118]Goessl C, Krause H, Muller M, et al. Fluorescent methylation-specific polymerase chain reaction for DNA-based detection of prostate cancer in bodily fluids. Cancer Res. 2000; 60(21):5941-5945.
    [119] Maruyama R, Toyooka S, Toyooka KO, et al. Aberrant promoter methylation profile of bladder cancer and its relationship to clinicopathological features. Cancer Res. 2001; 61(24):8659-8663.
    [120] Woodson K, Gillespie J, Hanson J, et al. Heterogeneous gene methylation patterns among pre-invasive and cancerous lesions of the prostate: a histopathologic study of whole mount prostate specimens.Prostate.2004;60(1):25-31.
    [121]Bovenzi V,Le NL,Cote S,et al.DNA methylation of retinoic acid receptor beta in breast cancer and possible therapeutic role of 5-aza-2'-deoxycytidine.Anticancer Drags.1999;10(5):471-476.
    [122]Cote S,Momparler RL.Activation of the retinoic acid receptor beta gene by 5-aza-2'-deoxycytidine in human DLD-1 colon carcinoma cells.Anticancer Drags.1997;8(1):56-61.
    [123]Cote S,Sinner D,Momparler RL.Demethylation by 5-aza-2'-deoxycytidine of specific 5-methylcytosine sites in the promoter region of the retinoic acid receptor beta gene in human colon carcinoma cells.Anticancer Drags.1998;9(9):743-750.
    [124]Yang Q,Sakurai T,Yoshimura G,et al.Hypermethylation does not account for the frequent loss of the retinoic acid receptor beta2 in breast carcinoma.Anticancer Res.2001;21(3B):1829-1833.
    [125]Suh YA,Lee HY,Virmani A,et al.Loss of retinoic acid receptor beta gene expression is linked to aberrant histone H3 acetylation in lung cancer cell lines.Cancer Res.2002;62(14):3945-3949.
    [1] Hahn WC, Weinberg RA. Rules for making human tumor cells. N Engl J Med. 2002; 347(20): 1593-603.
    
    [2] Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100(1):57-70.
    [3] de Ruijter AJ, van Gennip AH, Caron HN, et al. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003; 370(Pt 3): 737-49.
    [4] Lindemann RK, Gabrielli B, Johnstone RW. Histone-deacetylase inhibitors for the treatment of cancer. Cell Cycle. 2004; 3(6):779-88.
    [5] Kouzarides T. Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev. 1999; 9(1):40-8.
    [6] Kuo MH, Allis CD. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays. 1998; 20(8):615-26.
    [7] Bannister AJ, Miska EA. Regulation of gene expression by transcription factor acetylation. Cell Mol Life Sci. 2000; 57(8-9):1184-92.
    [8] Brownell JE, Zhou J, Ranalli T, et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell. 1996; 84(6):843-51.
    [9] Ogryzko VV, Schiltz RL, Russanova V, et al. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 1996; 87(5):953-9.
    [10] MizzenCA, Yang XJ, Kokubo T, et al. The TAF(II) 250 subunit of TFIID has histone acetyltransferase activity. Cell. 1996; 87(7):1261-70.
    
    [11] Spencer TE, Jenster G, Burcin MM, et al. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature. 1997; 389(6647):194-8.
    
    [12] Emiliani S, Fischle W, Van Lint C, et al. Characterization of a human RPD3 ortholog, HDAC3. Proc Natl Acad Sci U S A. 1998; 95(6):2795-800.
    [13] Hu E, Chen Z, Fredrickson T, et al. Cloning and characterization of a novel human class I histone deacetylase that functions as a transcription repressor. J Biol Chem. 2000; 275(20):15254-64.
    [14] Verdel A, Curtet S, Brocard MP, et al. Active maintenance of mHDA2/mHDAC6 histone-deacetylase in the cytoplasm. Curr Biol. 2000; 10(12):747-9.
    [15] KaoHY, Downes M, Ordentlich P, et al. Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev. 2000; 14(1):55-66.
    [16] Dressel U, Bailey PJ, Wang SC, et al. A dynamic role for HDAC7 in MEF2-mediated muscle differentiation. J Biol Chem. 2001; 276(20):17007-13.
    [17] Imai S, Armstrong CM, Kaeberlein M, et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent hi stone deacetylase. Nature. 2000; 403(6771):795-800.
    [18] Alland L, Muhle R, Hou H Jr, et al. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature. 1997; 387(6628):49-55.
    [19] Hassig CA, Fleischer TC, Billin AN, et al. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell. 1997; 89(3): 341-7.
    [20]Heinzel T, Lavinsky RM, Mullen TM, et al. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature. 1997; 387(6628): 43-8.
    [21] Zhang Y, Iratni R, Erdjument-Bromage H, et al. Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell. 1997; 89(3): 357-64.
    [22] Nan X, Ng HH, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998; 393(6683):386-9.
    [23] Murphy M, Ahn J, Walker KK, et al. Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev. 1999; 13(19):2490-501.
    [24] Juan LJ, Shia WJ, Chen MH, et al. Histone deacetylases specifically down-regulate p53-dependent gene activation. J Biol Chem. 2000; 275(27): 20436-43.
    [25] Boyes J, Byfield P, Nakatani Y, et al. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature. 1998; 396(6711):594-8.
    [26] Imhof A, Yang XJ, Ogryzko W, et al. Acetylation of general transcription factors by histone acetyltransferases. Curr Biol. 1997; 7(9):689-92.
    [27] Wang C, Fu M, Angeletti RH, et al. Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity. J Biol Chem. 2001; 276(21):18375-83.
    [28] Brehm A, Miska EA, McCance DJ, et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature. 1998; 391(6667):597-601.
    [29] Magnaghi-Jaulin L, Groisman R, Naguibneva I, et al. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature. 1998; 391(6667): 601-5.
    [30] Timmermann S, Lehrmann H, Polesskaya A, et al. Histone acetylation and disease. Cell Mol Life Sci. 2000; 58(5-6):728-36.
    [31] Giles RH, Peters DJ, Breuning MH. Conjunction dysfunction: CBP/p300 in human disease. Trends Genet. 1998; 14(5):178-83.
    [32] Gayther SA, Batley SJ, Linger L, et al. Mutations truncating the EP300 acetylase in human cancers. Nat Genet. 2000; 24(3):300-3.
    [33] Bryan EJ, Jokubaitis VJ, Chamberlain NL, et al. Mutation analysis of EP300 in colon, breast and ovarian carcinomas. Int J Cancer. 2002; 102(2):137-41.
    [34] Petrij F, Giles RH, Dauwerse HG, et al. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature. 1995; 376(6538):348-51.
    [35] Murata T, Kurokawa R, Krones A, et al. Defect of histone acetyltransferase activity of the nuclear transcriptional coactivator CBP in Rubinstein-Taybi syndrome. Hum Mol Genet. 2001; 10(10):1071-6.
    [36] Patel D, Huang SM, Baglia LA, et al. The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J. 1999; 18(18): 5061-72.
    [37] Marks PA, Rifkind RA, Richon VM, et al. Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer. 2001; 1(3):194-202.
    [38]Johnstone RW. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov. 2002; 1(4):287-99.
    [39] Altucci L, Gronemeyer H. The promise of retinoids to fight against cancer. Nat Rev Cancer. 2001; 1(3):181-93.
    [40] Grignani F, De Matteis S, Nervi C, et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature. 1998; 391(6669):815-8.
    [41] Lin RJ, Nagy L, Inoue S, et al. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature. 1998; 391(6669):811-4.
    [42] Hake SB, Xiao A, Allis CD. Linking the epigenetic 'language' of covalent histone modifications to cancer. Br J Cancer. 2004; 90(4):761-9.
    [43] Faretta M, Di Croce L, Pelicci PG. Effects of the acute myeloid leukemia—associated fusion proteins on nuclear architecture. Semin Hematol. 2001; 38(1): 42-53.
    [44] Jones LK, Saha V. Chromatin modification, leukaemia and implications for therapy. Br J Haematol. 2002; 118(3):714-27.
    [45] Moe-Behrens GH, Pandolfi PP. Targeting aberrant transcriptional repression in acute myeloid leukemia. Rev Clin Exp Hematol. 2003; 7(2):139-59.
    [46] Patra SK, Patra A, Dahiya R. Histone deacetylase and DNA methyltransferase in human prostate cancer Biochem Biophys Res Commun. 2001; 287(3):705-13..
    [47] Kim DH, Kim M, Kwon HJ. Histone deacetylase in carcinogenesis and its inhibitors as anti-cancer agents. J Biochem Mol Biol. 2003; 36(1):110-9.
    [48] Bowen NJ, Fujita N, Kajita M, et al. Mi-2/NuRD: multiple complexes for many purposes. Biochim Biophys Acta. 2004; 1677(1-3):52-7.
    [49] Toh Y, Ohga T, Endo K, et al. Expression of the metastasis-associated MTA1 protein and its relationship to deacetylation of the histone H4 in esophageal squamous cell carcinomas. Int J Cancer. 2004; 110(3):362-7.
    [50] Zhang H, Stephens LC, Kumar R. Metastasis tumor antigen family proteins during breast cancer progression and metastasis in a reliable mouse model for human breast cancer. Clin Cancer Res. 2006; 12(5):1479-86.
    [51] Yoo YG, Kong G, Lee MO. Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-lalpha protein by recruiting histone deacetylase 1. EMBO J. 2006; 25(6): 1231-41.
    [52] Zhu P, Martin E, Mengwasser J, et al. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell. 2004; 5(5):455-63.
    [53] Bode AM, Dong Z. Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer. 2004; 4(10):793-805.
    [54] Insinga A, Monestiroli S, Ronzoni S, et al. Impairment of p53 acetylation, stability and function by an oncogenic transcription factor. EMBO J. 2004; 23(5): 1144-54.
    [55] Miller TA, Witter DJ, Belvedere S. Histone deacetylase inhibitors. J Med Chem. 2003; 46(24): 5097-116.
    [56] Drummond DC, Noble CO, Kirpotin DB, et al. Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol. 2005; 45:495-528.
    [57] Sealy L, Chalkley R. The effect of sodium butyrate on histone modification. Cell. 1978; 14(1):115-21.
    [58] Phiel CJ, Zhang F, Huang EY, et al. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 2001; 276(39):36734-41.
    [59] Van Lint C, Emiliani S, Verdin E. The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr. 1996; 5(4-5): 245-53.
    [60] Chambers AE, Banerjee S, Chaplin T, et al. Histone acetylation-mediated regulation of genes in leukaemic cells. Eur J Cancer. 2003; 39(8):1165-75.
    [61] Glaser KB, Staver MJ, Waring JF, et al. Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol Cancer Ther. 2003; 2(2): 151-63.
    [62] Mitsiades CS, Mitsiades NS, McMullan CJ, et al. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci U S A. 2004; 101(2):540-5.
    [63] Peart MJ, Smyth GK, van Laar RK, et al. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci U S A. 2005; 102(10):3697-702.
    [64] SasakawaY, Naoe Y, SogoN, et al. Marker genes to predict sensitivity to FK228, a histone deacetylase inhibitor. Biochem Pharmacol. 2005; 69(4):603-16.
    [65] Gray SG, QianCN, Furge K, et al. Microarray profiling of the effects of histone deacetylase inhibitors on gene expression in cancer cell lines. Int J Oncol. 2004; 24(4): 773-95.
    [66] Richon VM, Sandhoff TW, Rifkind RA, et al. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci U S A. 2000; 97(18):10014-9.
    [67] Gui CY, Ngo L, Xu WS, et al. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci U S A. 2004; 101(5):1241-6.
    [68] Marks PA, Dokmanovic M. Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert Opin Investig Drugs. 2005; 14(12): 1497-511.
    [69] Ungerstedt JS, Sowa Y, Xu WS, et al. Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc Natl Acad Sci U S A. 2005; 102(3): 673-8.
    [70] Xu WS, Perez G, Ngo L, et al. Induction of polyploidy by histone deacetylase inhibitor: a pathway for antitumor effects. Cancer Res. 2005; 65(17):7832-9.
    [71] Rosato RR, Wang Z, Gopalkrishnan RV, et al. Evidence of a functional role for the cyclin-dependent kinase-inhibitor p21WAF1/CIP1/MDA6 in promoting differentiation and preventing mitochondrial dysfunction and apoptosis induced by sodium butyrate in human myelomonocytic leukemia cells (U937). Int J Oncol. 2001; 19(1):181-91.
    [72] Hitomi T, Matsuzaki Y, Yokota T, et al. p15(INK4b) in HDAC inhibitor-induced growth arrest. FEBS Lett. 2003; 554(3):347-50.
    [73] Nimmanapalli R, Fuino L, Stobaugh C, et al. Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Blood. 2003; 101(8): 3236-9.
    [74] Huang L, Pardee AB. Suberoylanilide hydroxamic acid as a potential therapeutic agent for human breast cancer treatment. Mol Med. 2000; 6(10):849-66.
    [75] Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006; 5(9):769-84.
    [76] Burgess A, Ruefli A, Beamish H, et al. Histone deacetylase inhibitors specifically kill nonproliferating tumour cells. Oncogene. 2004; 23(40): 6693-701.
    [77]Liang D, Kong X, Sang N. Effects of histone deacetylase inhibitors on HIF-1. Cell Cycle. 2006; 5(21):2430-5.
    [78] Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004; 4(6): 437-47.
    [79] Jeong JW, Bae MK, Ahn MY, et al. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell. 2002; 111(5):709-20.
    [80] Kong X, Lin Z, Liang D, et al. Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor lalpha. Mol Cell Biol. 2006; 26(6):2019-28.
    [81] Fath DM, Kong X, Liang D, et al. Histone deacetylase inhibitors repress the transactivation potential of hypoxia-inducible factors independently of direct acetylation of HIF-alpha. J Biol Chera. 2006; 281(19):13612-9.
    [82] Kato H, Tamamizu-Kato S, Shibasaki F. Histone deacetylase 7 associates with hypoxia-inducible factor lalpha and increases transcriptional activity. J Biol Chem. 2004; 279(40):41966-74.
    [83] Chobanian NH, Greenberg VL, Gass JM, et al. Histone deacetylase inhibitors enhance paclitaxel-induced cell death in ovarian cancer cell lines independent of p53 status. Anticancer Res. 2004; 24(2B):539-45.
    [84] Marks PA, Miller T, Richon VM. Histone deacetylases. Curr Opin Pharmacol. 2003; 3(4): 344-51.
    [85] Kim MS, Blake M, Baek JH, et al. Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res. 2003; 63(21): 7291-300.
    [86] Bevins RL, Zimmer SG. It's about time: scheduling alters effect of histone deacetylase inhibitors on camptothecin-treated cells. Cancer Res. 2005; 65(15): 6957-66.
    [87] Rundall BK, Denlinger CE, Jones DR. Suberoylanilide hydroxamic acid combined with gemcitabine enhances apoptosis in non-small cell lung cancer. Surgery. 2005; 138(2): 360-7.
    [88]Rosato RR, Almenara JA, Dai Y, et al. Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells. Mol Cancer Ther. 2003; 2(12):1273-84.
    [89] Maggio SC, Rosato RR, Kramer LB, et al. The histone deacetylase inhibitor MS-275 interacts synergistically with fludarabine to induce apoptosis in human leukemia cells. Cancer Res. 2004; 64(7):2590-600.
    [90] Fuino L, Bali P, Wittmann S, et al. Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol Cancer Ther. 2003; 2 (10):971-84.
    [91]Yoshida C, Melo JV. Biology of chronic myeloid leukemia and possible therapeutic approaches to imatinib-resistant disease. Int J Hematol. 2004 ; 79(5): 420-33.
    [92] Kelly WK, Marks PA. Drug insight: Histone deacetylase inhibitors—development of the new targeted anticancer agent suberoylanilide hydroxamic acid. Nat Clin Pract Oncol. 2005; 2(3): 150-7.
    [93] Rahmani M, Yu C, Dai Y, et al. Coadministration of the heat shock protein 90 antagonist 17-allylamino- 17-demethoxygeldanamycin with suberoylanilide hydroxamic acid or sodium butyrate synergistically induces apoptosis in human leukemia cells. Cancer Res. 2003; 63(23):8420-7.