APOE亚型特异性影响继发性神经细胞损伤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
创伤性脑损伤(traumatic brain injury, TBI)是神经外科最常见的一种疾病,其死亡率、致残率居各类创伤之首。脑伤后以细胞凋亡为主要特征的继发性脑损伤是影响伤情转归的主要因素。载脂蛋白E基因(apolipoprotein E, APOE)主要有ε2、ε3、ε4三个等位基因,我们前期工作和国外研究显示,携带ε4的患者对脑损伤的耐受性降低,更易出现伤情加重及不良预后。但是,APOE影响脑损伤病情转归的机制尚未阐明。Ca~(2+)超载是细胞死亡的“最终共同通路”,Ca~(2+)超载实质是细胞内外离子失衡的结果。K~+是维持细胞内离子环境最主要的阳离子,目前认为钾通道也是细胞凋亡的重要环节之一。本课题以APOE亚型特异性与延迟整流钾通道的关系作为切入点,构建人源性ε2、ε3、ε4的真核表达载体,分别转染APOE敲除鼠胚神经干细胞(neural stem cells, NSCs),筛选稳定表达细胞株,建立神经元/胶质细胞共培养划痕损伤模型,采用流式细胞技术及膜片钳技术分析伤后APOE亚型特异性与细胞早期凋亡、延迟整流钾通道的关系,探讨APOE影响继发性神经细胞损伤的作用机制。
     一、人源性APOE基因真核细胞表达载体的构建和鉴定
     人源胎脑组织中提取Total RNA后,设计引物调取APOEε3基因CDS区域,克隆至pMD19-T simple载体中并测序验证,采用定点突变技术,得到APOEε2及APOEε4的重组突变体载体。EcoR I/BamH I双酶切切下编码APOE的片段,插入真核表达载体pEGFP-N1。对重组质粒进行双酶切、PCR和测序验证后,采用阳离子脂质体Lipofectamine 2000将重组质粒转染至真核细胞(293-T细胞)中,用荧光显微镜观察基因在239-T细胞中的表达情况。结果:双酶切、PCR和质粒测序结果证明APOE各等位基因正确地克隆到真核表达载体pEGFP-N1中,并能在293-T真核细胞中进行融合表达。结论:成功构建了人源性pEGFP-N1-APOE各亚型的真核表达载体,并成功转染真核细胞,为下一步实验中各重组质粒转染APOE敲除鼠的NSCs奠定了基础。
     二、稳定表达pEGFP-N1-APOE的神经干细胞克隆的建立和鉴定
     采用APOE敲除鼠(E15d)的胎鼠脑组织为细胞来源,常规分离,培养和鉴定所得到的NSCs。将前期构建好的人源性APOE各等位基因重组质粒以阳离子脂质体Lipofectamine 2000转染至NSCs中,在含有200μg/ml G418培养液中培养14d,以筛选稳定表达pEGFP-N1-APOE的NSCs克隆。将稳定表达的细胞克隆进行单细胞克隆培养以纯化稳定表达人源性APOE各等位基因的NSCs。扩增稳定表达目的基因的NSCs,用RT-PCR、Western Blot、激光共聚焦显微镜检测目的基因在转基因NSCs中的表达情况。结果:成功将前期构建的人源性APOE各重组质粒转入APOE敲除鼠NSCs,经检测证明稳定表达EGFP的NSCs可表达人APOE各等位基因。结论:采用阳离子脂质体法可有效地将APOE各重组质粒转染到NSCs,经过G418筛选后可以获得稳定表达pEGFP-N1-APOE的NSCs克隆。
     三、APOE亚型特异性对神经细胞伤后早期凋亡的影响
     本实验采用稳定表达人APOE各等位基因的APOE敲除鼠NSCs,优化诱导分化条件,构建神经元/胶质细胞共培养体系。控制条件,利用微量移液器枪头切割培养的神经元、胶质细胞,造成神经细胞机械性损伤,构建细胞划痕损伤模型。参考文献及预实验结果设置时间点(6h、12h、24h、48h),通过Annexin V/PI联合流式细胞技术检测损伤后各组细胞早期凋亡率,分析人APOE各等位基因影响继发性神经细胞损伤的差异。结果:成功构建携带人源性APOE各等位基因的细胞划痕损伤模型;伤后各时间点均能检测到早期凋亡细胞,24h时间点各组细胞早期凋亡率较6h、12h明显增高,有显著性差异(P<0.05),且人APOEε4组及鼠APOE(?)组较其余组早期凋亡率明显增高,有显著性差异(P<0.05)。结论:转染人APOEε4的细胞早期凋亡率高于其他组,从细胞水平为APOE多态性影响TBI病情及预后的临床研究结果提供了实验依据。
     四、APOE亚型特异性影响神经细胞早期凋亡的机制探讨
     以APOE亚型特异性与延迟整流钾通道相关性作为切入点,采用膜片钳技术检测各实验组延迟整流钾电流(I_D)的差异。选择边缘清晰、大小相似的神经元样细胞作为实验对象,记录致伤前后I_D情况,并进行组间比较,进一步探讨APOE影响神经细胞早期凋亡的病理机制。结果:(1)依据电生理特性证实各细胞组所记录到的外向电流为I_D。且发现未受伤状态下各组神经细胞的I_D无明显差异(p>0.05)。(2)在机械损伤后,各组神经细胞的I_D均明显增加,但是人APOEε4组与鼠APOE(-)组抑制神经细胞I_D幅度增加的作用较其余组明显(p<0.05)。结论:APOEε4对伤后神经细胞的I_D抑制作用更明显,造成APOEε4细胞内Ca~(2+)超载较APOEε2和APOEε3细胞严重,这可能是其影响TBI后病情转归及预后的机制之一。
Traumatic brain injury (TBI) is an important global public health problem and a leading cause of morbidity and mortality worldwide in the neurosurgery field. Secondary brain injury featuring apoptosis following primary damage is one of the major factors which affected the outcome of TBI. In humans, apoE is the polymorphic protein, with three common isoforms (apoE2, E3, E4), encoded by three alleles (ε2,ε3,ε4) of a single gene on chromosome 19q13.2. Overseas and our previous studies suggests that the patients with APOEε4 predispose to clinical deterioration in acute and chronic phase after TBI and this may contribute to the poor outcome after head injury. But the mechanism involving why the APOEε4 can adversely affect the outcome is unclear. It has been suggested that calcium-mediated mechanisms were the“final common pathway”leading to cell death following CNS injury. K~+ efflux can affect Ca~(2+) influx and may play an important role in Ca~(2+) overload. The decrease of intracellular potassium concentration ([K~+]_i) is one of the features of cell apoptosis. This study focuses on the relationship between the APOE genotype and delayed rectification potassium channel to explore the mechanism. Construct of eucaryotic expression vector carrying each APOE genotype (ε2,ε3,ε4) was performed. The recombinant plasmid was transfected into neural stem cells (NSCs) from APOE knock-out mice with Lipofectamine 2000. NSCs stablely expressing APOE were purified by single cell cloning culture. An in vitro model of mechanical injured neuron/glial co-culture system was established. Flow cytometry and patch clamp technique were used to analyze the relationship among APOE genotype, early cell apoptosis and delayed rectification potassium channel to elucidate the mechanism invoving APOE genotype affecting secondary neuron cell damage.
     1. Construct and identification of eucaryotic expression vector carrying human APOE genotype
     APOE was amplified from human embryo pallium of fetus by PCR, inserted the products of APOE PCR products into pMD19-T simple. Sequence analysis was performed to identify the correctness of APOEε3. Site-directed mutagenesis was used to obtain the cDNA encoding apoE2 and apoE4 isforms. The sections of APOE gene (ε2,ε3,ε4) were obtained by the restriction digested with EcoR I and BamH I and inserted into pEGFP-N1 respectively. Recombinant plasmid was identified by enzyme digestion, PCR and sequence analysis. Recombinant plasmid was transfected into 293-T cells with Lipofectamine 2000 and the expression of the plasmid was detected by fluorescence microscope. Results: Results of enzyme digestion, PCR and sequence analysis of recombinant plasmid demonstrated that APOE gene (ε2,ε3,ε4) were correctly inserted into eucaryotic expression vector pEGFP-N1. Recombinant plasmids were expressed successfully in 293-T cells transfected. Conclusion: A green fluorescent protein reporter gene vector containing human APOE genotype is successfully constructed, which providing an important and convenient tool to transfect NSCs of APOE knock-out mice.
     2. Stable transfection and identification of pEGFP-N1-APOE into NSCs
     Isolation, cultivation and purification of the primary NSCs from rat embryo pallium of APOE knock-out mice were performed. Recombinant plasmid was transfected into NSCs with Lipofectamine 2000. NSCs were selectively cultured for 14 days in the medium containing 200μg/mL G418. NSCs stablely expressing pEGFP-N1-APOE were purified by single cell cloning culture. After NSCs stablely expressing EGFP gene and APOE were amplified, expression of target gene in amplified NSCs was analyzed by RT-PCR, Western Blot and laser confocal microscope. Results: Plasmid was transfected successfully into NSCs by Lipofectamine 2000. NSCs were able to express EGFP after transfection. Some clones stablely expressing EGFP were formed 14d after selective culture. Purified clones were obtained through single cell cloning culuture. RT-PCR, Western Blot and laser confocal microscope analysis demonstrated human APOE gene (ε2,ε3,ε4) were expressed in the NSCs. Conclusion: pEGFP-N1-APOE is transfected successfully into NSCs by Lipofectamine 2000 and clones stablely expressing target gene are obtained.
     3. The subtype-specific effects of APOE on early apoptosis of neurons and glial cells after injury
     The 2nd generation NSCs carrying human APOE isoform were inoculated into 6 shadow mask, and differentiated after 2d adherent culture using optimized culture condition to establish the neuron/glial co-culture system. Mechanical injury was produced with a plastic tip fixed on the special device crossing onto the cultured cells. The time point for detecting apoptosis at 6h, 12h, 24h and 48h after injury was determined according to the references and our pre-experiment. Annexin V/PI flow cytometry was used to analyze the relationship between APOE genotype and early cell apoptosis. Results: The mechanical injury cell model was established successfully on neuronal/glial co-culture system. Early cell apoptosis after injury were identified in all cell groups with or without APOE genotype. Early cell apoptosis rate at 24h were higher than 6h and 12h (p<0.05) in each group. APOEε4 group and rat APOE(-) group showed severe early cell apoptosis at 24h which were statistically different in early cell apoptosis rate from another groups ( rat APOE(+) group, human APOEε2 group and human APOEε3 group) (p<0.05). Conclusion: Our results provide experimental evidence on cellular basis for the clinical findings that the patients with APOEε4 predispose to clinical deterioration in acute phase after TBI.
     4. The investigation into mechanism of the subtype-specific effects of APOE on early cell apoptosis after injury
     This study focuses on the relationship between the APOE genotype and delayed rectification K~+ current. The neuronal-like cells with clear edges and similar size were chosen to record current. Patch clamp technique was used to analyze the changes between APOE genotype and delayed rectification K~+ current (I_D) following mechanical injury to elucidate the mechanism invoving APOE genotype affecting secondary neuron cell damage. Results: (1) Delayed rectifying K~+ current was identified and recorded in all cell groups with or without APOE genotype and no significant differences in I_D among the groups were found before injury. (2) The increases of I_D were observed in all groups after injury, but the amplitude of increase of I_D in human APOEε4 and rat APOE(-) were significantly lower comapared repectively with any other group (p<0.05). Conclusion: The finding suggests that APOEε4 can exsert inhibition effect on delayed rectifying K~+ current after injury resulting in reduced K~+ efflux and aggravating Ca~(2+) overload, which may be one of the mechanisms APOEε4 can adversely affecting the outcome of TBI.
引文
[1] Xiaochuan Sun and Yong Jiang. Traumatic brain injury: Prognostic factors and genetic influence. In: John H Zhang, ed. Advancements in Neurological Research[M]. Kerala, India: Research Signpost, 2008: 121-139.
    [2] Büki A, Povlishock JT. All roads lead to disconnection?--Traumatic axonal injury revisited[J]. Acta Neurochir (Wien). 2006, 148(2): 181-194.
    [3] 江基尧. 弥漫性轴突损伤的概念和病理机制[J]. 中华神经外科杂志. 2006,22(11):645-646.
    [4] 周良辅,胡锦. 加强和重视颅脑创伤的救治工作[J]. 中华神经外科疾病研究杂志. 2005,4(3):193-196.
    [5] 毛清,江基尧. 颅脑外伤后继发性脑损害发病机制的研究进展[J]. 中华神经医学杂志. 2005,14(2):200-202.
    [6] Schaffer DV. Genetic approaches to tissue repair[J]. Ann N Y Acad Sci. 2002, 961: 68-70.
    [7] Qiu C, Coutinho P, Frank S, et al. Targeting connexin43 expression accelerates the rate of wound repair[J]. Curr Biol. 2003, 13(19): 1697-1703.
    [8] 付小兵,程飚. 创伤修复和组织再生几个重要领域研究的进展与展望[J]. 中华创伤杂志. 2005,21(1):40-44.
    [9] Yang XF, Zheng XS, Liu WG, et al. Bcl-2 gene therapy for apoptosis following traumatic brain injury[J]. Chin J Traumatol. 2006, 9(5): 276-281.
    [10] Lau A, Arundine M, Sun HS, et al. Inhibition of caspase-mediated apoptosis by peroxynitrite in traumatic brain injury[J]. J Neurosci. 2006, 26(45): 11540-11553.
    [11] Pang Y, Fan LW, Zheng B, et al. Role of interleukin-6 in lipopolysaccharide-induced brain injury and behavioral dysfunction in neonatal rats[J]. Neuroscience. 2006, 141(2): 745-755.
    [12] Weidong Zhou, Di Xu, Xiaoxia Peng, et al. Meta-Analysis of APOE4 allele and outcome after traumatic brain injury[J]. J Neurotrauma. 2008, 25(4): 279-290.
    [13] 江涌,孙晓川,夏玉先,等. 载脂蛋白 E 基因多态性与颅脑损伤的相关性[J]. 中华创伤杂志. 2005, 21(7):520-523.
    [14] Jiang Y, Sun X, Xia Y, et al. Effect of APOE polymorphisms on early responses to traumatic brain injury[J]. Neuroscience letters. 2006, 408(2): 155-158.
    [15] 江涌, 孙晓川, 夏玉先, 等. 载脂蛋白 E 基因型及启动子区多态性与颅脑损伤病情发展的相关性研究[J]. 中国神经精神疾病杂志. 2006,32(5):431-435.
    [16] Jiang Y, Sun X, Gui L, et al. Correlation between APOE -491AA promoter in ε4 carriers and clinical deterioration in early stage of traumatic brain injury[J]. J Neurotrauma. 2007, 24(12): 1802-1810.
    [1] Nathan BP, Bellosta S, Sanan DA, et al. Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro[J]. Science. 1994, 264(5160): 850-852.
    [2] Uterman G, Langenbeck U, Beisiegel U, et al. Genetics of the apolipoprotein E system in man[J]. Am J Hum Genet. 1980, 32(3): 339-347.
    [3] Roses AD, Saunders AM. ApoE, Alzheimer's disease, and recovery from brain stress[J]. Ann N Y Acad Sci. 1997, 826: 200-212.
    [4] Rall SC Jr, Mahley RW. The role of apolipoprotein E genetic variants in lipoprotein disorders[J]. J Intern Med. 1992, 231(6): 653-659.
    [5] 江涌,孙晓川. 载脂蛋白 E 多态性与颅脑损伤[J]. 中华创伤杂志. 2005, 21(2):154-157.
    [6] Shore VG. and Shore B. Heterogeneity of human plasma very low density lipoproteins. Separation of species differing in protein components[J]. Biochemistry. 1973, 12(3) : 502–507.
    [7] Utermann G. Isolation and partial characterization of an arginine-rich apolipoprotein from human plasma very-low-density lipoproteins: apolipoprotein E[J]. Hoppe Seylers Z Physiol Chem. 1975, 356(7): 1113-1121.
    [8] Olaisen B, Teisberg P, Gedde-Dahl T Jr. The locus for apolipoprotein E (apoE) is linked to the complement component C3 (C3) locus on chromosome 19 in man[J]. Hum. Genet. 1982, 62(3): 233–236.
    [9] Zannis VI, Breslow JL, Utermann G, et al. Proposed nomenclature of apoe isoproteins, apoe genotypes, and phenotypes[J]. J Lipid Res. 1982, 23(6): 911-914.
    [10] Das HK., McPherson J, Bruns GA, et al. Isolation, characterization, and mapping to chromosome 19 of the human apolipoprotein E gene[J]. J Biol Chem. 1985, 260(10): 6240-6247.
    [11] Utermann G, Langenbeck U, Beisiegel U, et al. Genetics of the apolipoprotein E system in man[J]. Am J Hum Genet. 1980, 32(3): 339-347.
    [12] Martins RN, Clarnette R, Fisher C, et al. APOE genotypes in australia: roles inearly and late onset Alzheimer’s disease and down syndrome[J]. Neuroreport. 1995, 6(1): 1513-1516.
    [13] Elshourbagy NA, Liao WS, Mahley RW, et al. Apolipoprotein E mRNA is abundant in the brain and adrenals, as well as in the liver, and is present in other peripheral tissues of rats and marmosets[J]. Proc Natl Acad Sci. 1985, 82(1): 203-207.
    [14] Merched A, Blain H, Visvikis S, et al. Cerebrospinal fluid apolipoprotein E level is increased in late-onset Alzheimer’s disease[J]. J Neurol Sci. 1997, 145(1): 33-39.
    [15] Stone DJ, Rozovsky I, Morgan TE, et al. Astrocytes and microglia respond to estrogen with increased apoE mRNA in vivo and in vitro[J]. Exp Neurol. 1997, 143(2): 313-318.
    [16] Xu PT, Gilbert JR, Qiu HL, et al. Regionally specific neuronal expression of human APOE gene in transgenic mice[J]. Neurosci Lett. 1998, 246(2): 65-68.
    [17] Hatters DM, Peters-Libeu CA, Weisgraber KH. Apolipoprotein E structure: insights into function[J]. Trends Biochem Sci. 2006, 31(8): 445-454.
    [18] Lomnitski L, Oron L, Sklan D, et al. Distinct alterations in phospholipid metabolism in brains of apolipoprotein E-deficient mice[J]. J Neurosci Res. 1999, 58(4): 586-592.
    [19] Horsburgh K, McCulloch J, Nilsen M, et al. Intraventricular infusion of apolipoprotein E ameliorates acute neuronal damage after global cerebral ischemia in mice[J]. J Cereb Blood Flow Metab. 2000, 20(3): 458-462.
    [20] Buttini M, Orth M, Bellosta S, et al. Expression of human apolipoprotein E3 or E4 in the brains of ApoE-/- mice: isoform-specific effect on neurodegeneration[J]. J Neurosci. 1999, 19(12): 4867-4880.
    [21] 刘洪恩,孙晓川. β淀粉样前体蛋白与弥漫性轴索损伤[J]. 创伤外科杂志. 2005,7(1):73-75.
    [22] Ezra Y, Oron L, Moskovich L, et al. Apolipoprotein E4 decreases whereas apolipoprotein E3 increases the level of secreted amyloid precursor protein after closed head injury[J]. Neuroscience. 2003, 121(2): 315-325.
    [23] Ye S, Huang Y, Müllendorff K, et al. Apolipoprotein (apo) E4 enhances amyloidbeta peptide production in cultured neuronal cells: apoE structure as a potential therapeutic target[J]. Proc Natl Acad Sci USA. 2005, 102(51): 18700-18705.
    [24] Liberman JN, Stewart WF, Wesnes K, et al. Apolipoprotein E epsilon 4 and short-term recovery from predominantly mild brain injury[J]. Neurology. 2002, 58(7): 1038-1044.
    [25] McCarron MO, Weir CJ, Muir KW, et al. Effect of apolipoprotein E genotype on in-hospital mortality following intracerebral haemorrhage[J]. Acta Neurol Scand. 2003, 107(2): 106-109.
    [26] Liaquat I, Dunn LT, Nicoll JA, et al. Effect of apolipoprotein E genotype on hematoma volume after trauma[J]. J Neurosurg. 2002, 96(1): 90-96.
    [27] Teasdale GM, Murray GD, Nicoll JA, et al. The association between APOE ε4, age and outcome after head injury: a prospective cohort study[J]. Brain. 2005, 128(11): 2556-2561.
    [28] Ariza M, Pueyo R, Matarin Mdel M, et al. Influence of APOE polymorphism on cognitive and behavioural outcome in moderate and severe traumatic brain injury[J]. J Neurol Neurosurg Psychiatry. 2006, 77(10): 1191-1193.
    [29] Isoniemi H, Tenovuo O, Portin R, et al. Outcome of traumatic brain injury after three decades-relationship to ApoE genotype[J]. J Neurotrauma. 2006, 23(11): 1600-1608.
    [30] Friedman G, Froom P, Sazbon L, et al. Apolipoprotein E-epsilon4 genotype predicts a poor outcome in survivors of traumatic brain injury[J]. Neurology. 1999, 52(2): 244-248.
    [31] 江涌,孙晓川,夏玉先,等. 载脂蛋白 E 基因多态性与颅脑损伤的相关性[J]. 中华创伤杂志. 2005, 21(7):520-523.
    [32] Jiang Y, Sun X, Xia Y, et al. Effect of APOE polymorphisms on early responses to traumatic brain injury[J]. Neuroscience letters. 2006, 408(2): 155-158.
    [33] 江涌, 孙晓川, 夏玉先, 等. 载脂蛋白 E 基因型及启动子区多态性与颅脑损伤病情发展的相关性研究[J]. 中国神经精神疾病杂志. 2006,32(5):431-435.
    [34] Jiang Y, Sun X, Gui L, et al. Correlation between APOE -491AA promoter in ε4carriers and clinical deterioration in early stage of traumatic brain injury[J]. J Neurotrauma. 2007, 24(12): 1802-1810.
    [35] Cubitt A, Heim R, Adama SR, et al. Understanding, improving and using green fluorescent proteins[J]. Trends Biochem Sci. 1995, 20(11): 448-455.
    [36] Tsien RY. The green fluorescent protein[J]. Anu Rev Biochem. 1998, 67: 509-544.
    [37] Yang TT, Sinai P, Green G, et al. Improved fluorescence and dual color detection with enhanced blue and green variants of the green fluorescent protein[J]. J Biol Chem. 1998, 273(14): 8212-8216.
    [1] Faijerson J, Tinsley RB, Aprico K, et al. Reactive astrogliosis induces astrocytic differentiation of adult neural stem/progenitor cells in vitro[J]. J Neurosci Res. 2006, 84(7): 1415-1424.
    [2] Sun L, Lee J, Fine HA. Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury[J]. J Clin Invest. 2004, 113(9): 1364-1374.
    [3] Chan WM, Ho YY. Inhibition of cell proliferation by apolipoprotein E isoform expression[J]. Arch Biochem Biophys. 2006, 451(2): 97-102.
    [4] 陈彦祥,乔卫红,刘栋良,等. 阳离子脂质体的转染及转染效率影响因素[J]. 生物工程学报. 2007,23(5):776-780.
    [5] Reynold BA, Weiss S. Generation of neurons and astrocytes from isolated cell of the adult mammalian central nervous system[J]. Scienece. 1992, 225: 1707-1710.
    [6] 周彬,邓艳春,刘南,等. 神经干细胞研究进展[J]. 第四军医大学学报. 2007,28(2):190-191.
    [7] 彭旷,杨永宗. 载脂蛋白 E 及其基因敲除鼠的研究进展[J]. 心血管病学进展. 2006,27(增刊):74-78.
    [8] 杨秀丽,张文高. ApoE 敲除鼠神经功能障碍的研究进展[J]. 中国老年学杂志. 2006,26(7):999-1001.
    [9] 曹中伟,马虹,曾倩等,大鼠胚胎脑组织神经干细胞的培养和鉴定[J],解剖科学进展,2006,12(1):29-31.
    [10] 季丽莉,佟雷,王振宇. 神经干细胞的生物学特性和体外培养鉴定[J]. 解剖科学进展. 2007,13(2):180-182.
    [11] Wachs FP, Couillard-Despres S, Engelhardt M, et al. High efficacy of clonal growth and expansion of adult neural stem cells[J]. Lab Invest. 2003, 83(7): 949-962.
    [12] Mckay R. Stem cells in the central nervous system[J]. Science. 1997, 276(5309): 66-71.
    [13] Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein[J]. Cell. 1990, 60(4): 585-595.
    [14] Itoh T, Satou T, Hashimoto S, et al. Isolation of neural stem cells from damaged rat cerebral cortex after traumatic brain injury[J]. Neuroreport. 2005, 16(15): 1687-1691.
    [15] Goh EL,Ma D,Ming GL,et al.Adult neural stem cells and repair of the adult central nervous system[J]. J Hematother stem cell Res. 2003, 12(6): 671-679.
    [16] 吴海霞,张维铭,李晓眠. 基因转染技术的发展与现状[J]. 国际生物医学工程杂志. 2007,30(6):376-379.
    [17] 陈红,钱坤,张苏明. 不同转染方法及 GFP 表达载体对小鼠胚胎干细胞转染效率的比较[J]. 华中科技大学学报(医学版). 2006,35(4):536-537
    [1] 周彬,邓艳春,刘南,等. 神经干细胞研究进展[J]. 第四军医大学学报. 2007,28(2):190-191.
    [2] Taupin P. Therapeutic potential of adult neural stem cells[J]. Recent Patents CNS Drug Discov. 2006, 1(3): 299-303.
    [3] Faijerson J, Tinsley RB, Aprico K, et al. Reactive astrogliosis induces astrocytic differentiation of adult neural stem/progenitor cells in vitro[J]. J Neurosci Res. 2006, 84(7): 1415-1424.
    [4] Sun L, Lee J, Fine HA. Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury[J]. J Clin Invest. 2004, 113(9): 1364-1374.
    [5] Duffau H. Brain plasticity: from pathophysiological mechanisms to therapeutic applications[J]. J Clin Neurosci. 2006, 13(9): 885-897.
    [6] 江涌,孙晓川. 载脂蛋白 E 多态性与颅脑损伤[J]. 中华创伤杂志. 2005, 21(2):154-157.
    [7] Conti L, Reitano E, Cattaneo E. Neural stem cell systems: diversities and properties after transplantation in animal models of diseases[J]. Brain Pathol. 2006, 16(2): 143-154.
    [8] Morales DM, Marklund N, Lebold D, et al. Experimental models of traumatic brain injury: do we really need to build a better mousetrap? [J] Neuroscience. 2005, 136(4): 971-989.
    [9] Weber JT. Experimental models of repetitive brain injuries[J]. Prog Brain Res. 2007, 161: 253-61.
    [10] 黄卫东,费舟,章翔,等. 体外培养大鼠脑皮层神经元机械性损伤模型的建立[J]. 第四军医大学学报. 2004,25(4):307-309.
    [11] 王克万,包新民,舒诗云,等. 一种体外培养大鼠皮层神经元创伤后继发性损伤模型的建立[J]. 第一军医大学学报,2001,21(6):453-454.
    [12] Qian X, Davis AA, Goderie SK, et a1.FGF2 concentration regulates the generation of neurons and glia from multipotent cortica1 stemcells[J].Neuron, 1997, 18(1):81-93.
    [13] Tropepe V,Craig CG,Morshead CM,et a1.Distinct neural stem cells proliferate is response to EGF and FGF in the developing mousetelencephalon[J]. Dev Biol, 1999, 208(1): 166-188.
    [14] Hal Meltzer, James D.Hatton, Hoi Sang U. Cell type-specific development of rodent central nervous system progenitor cells in culture[J]. J Neurosurg, 1998, 88(1): 93-98.
    [15] Santa OJ,Covarrubias L.Basic fibroblast growth factor promotes epidermal growth factor responsiveness and survival of mesencephalic neural procursor cells[J]. J Neurobiol, 1999, 40(1): 14-17.
    [16] Xiaochuan Sun and Yong Jiang. Traumatic brain injury: Prognostic factors and genetic influence. In: John H Zhang, ed. Advancements in Neurological Research. Kerala[M], India: Research Signpost, 2008: 121-139.
    [17] 周良辅,胡锦. 加强和重视颅脑创伤的救治工作[J]. 中华神经外科疾病研究杂志. 2005,4(3):193-196.
    [18] 李杨,江基尧. 神经细胞体外机械损伤模型的研究现状[J]. 国外医学神经病学神经外科学分册. 2000,27(1):1-4.
    [19] Büki A, Povlishock JT. All roads lead to disconnection?--Traumatic axonal injury revisited[J]. Acta Neurochir (Wien). 2006, 148(2): 181-194.
    [20] 江基尧. 弥漫性轴突损伤的概念和病理机制[J]. 中华神经外科杂志. 2006,22(11):645-646.
    [21] Mukhin AG, Ivanova SA, Knoblach SM, et al. New in vitro model of traumatic neuronal injury: evaluation of secondary injury and glutamate receptor-mediated neurotoxicity[J]. J Neurotrauma. 1997, 14(9): 651-663.
    [22] 毛清,江基尧. 颅脑外伤后继发性脑损害发病机制的研究进展[J]. 中华神经医学杂志. 2005,14(2):200-202.
    [23] Kerr JF. A histochemical study of hypertrophy and ischaemic injury of rat liver with special reference to changes in lysosomes[J]. J Pathol Bacteriol 1965, 90: 419-435.
    [24] Kerr JF. Shrinkage necrosis: a distinct mode of cellular death[J]. J Pathol 1971, 105: 13-20.
    [25] Kerr JF, Searle J. The digestion of cellular fragments within phagolysosomes in carcinoma cells[J]. J Pathol 1972, 108: 55-58.
    [26] Schutta HS, Kassell NF, Langfitt TW. Brain swelling produced by injury and aggravated by arterial hypertension. A light and electron microscopic study[J]. Brain 1968, 91: 281-294.
    [27] Rink A, Fung KM, Trojanowski JQ, et al: Evidence of apoptotic cell death after experimental traumatic brain injury in the rat[J]. Am J Pathol 1995, 147: 1575-1583.
    [28] Zhang X, Chen Y, Jenkins LW, et al. Bench- to- bedside review: Apoptosis/programmed cell death triggered by traumatic brain injury[J]. Crit Care. 2005, 9(1): 66-75.
    [29] Raghupathi R. Cell death mechanisms following traumatic brain injury[J]. Brain Pathol. 2004, 14(2): 215-22
    [30] Quinn CM, K?gedal K, Terman A,et al. Induction of fibroblast apolipoprotein E expression during apoptosis, starvation-induced growth arrest and mitosis[J], Biochem J. 2004, 378(Pt 3): 753-761.
    [31] Tedla N, Glaros EN, Brunk UT, et al. Heterogeneous expression of apolipoprotein-E by human macrophages, Immunology[J]. 2004, 113(3): 338-347.
    [32] Elliott DA, Kim WS, Jans DA, et al. Apoptosis induces neuronal apolipoprotein-E synthesis and localization in apoptotic bodies[J]. Neurosci Lett. 2007, 416(2): 206-210.
    [33] Michikawa M, Yanagisawa K. Apolipoprotein E4 induces neuronal cell death under conditions of suppressed de novo cholesterol synthesis[J]. J Neurosci Res. 1998, 54(1): 58-67.
    [34] Hashimoto Y, Jiang H, Niikura T, et al. Neuronal Apoptosis by Apolipoprotein E4 through Low-Density Lipoprotein Receptor-Related Protein and Heterotrimeric GTPases[J]. J Neurosci. 2000, 20(22): 8401-9.
    [35] Hayashi H, Campenot RB, Vance DE, et al. Apolipoprotein E-containing lipoproteins protect neurons from apoptosis via a signaling pathway involving low-density lipoprotein receptor-related protein-1[J]. J Neurosci. 2007, 27(8): 1933-1941.
    [36] Ji ZS, Miranda RD, Newhouse YM, et al. Apolipoprotein E4 potentiates amyloid beta peptide-induced lysosomal leakage and apoptosis in neuronal cells[J]. J Biol Chem. 2002, 277(24): 21821-21828
    [37] Johnson VE, Murray L, Raghupathi R, et al. No evidence for the presence of apolipoprotein epsilon4, interleukin-lalpha allele 2 and interleukin-1beta allele 2 cause an increase in programmed cell death following traumatic brain injury in humans. Clin Neuropathol[J]. 2006, 25(6): 255-264.
    [38] 杨新宇,杨树源,张建宁,等. 急性脑创伤后迟发性神经元死亡的实验观察[J].中华创伤杂志. 2001,17(9):519-521.
    [39] 崔巍,唐炳华,王硕仁,等. 细胞凋亡检测方法探讨[J],细胞生物学杂志. 2007,29:777-782.
    [40] Lomnitski L, Oron L, Sklan D, et al. Distinct alterations in phospholipid metabolism in brains of apolipoprotein E-deficient mice[J]. J Neurosci Res. 1999; 58(4): 586-592.
    [41] Horsburgh K, McCulloch J, Nilsen M, et al. Intraventricular infusion of apolipoprotein E ameliorates acute neuronal damage after global cerebral ischemia in mice[J]. J Cereb Blood Flow Metab. 2000; 20(3): 458-462.
    [42] 江涌,孙晓川,夏玉先,等. 载脂蛋白 E 基因多态性与颅脑损伤的相关性[J]. 中华创伤杂志. 2005, 21(7):520-523.
    [43] Jiang Y, Sun X, Xia Y, et al. Effect of APOE polymorphisms on early responses to traumatic brain injury[J]. Neuroscience letters. 2006, 408(2): 155-158.
    [44] 江涌, 孙晓川, 夏玉先, 等. 载脂蛋白 E 基因型及启动子区多态性与颅脑损伤病情发展的相关性研究[J]. 中国神经精神疾病杂志. 2006,32(5):431-435.
    [45] Jiang Y, Sun X, Gui L, et al. Correlation between APOE -491AA promoter in ε4 carriers and clinical deterioration in early stage of traumatic brain injury[J]. JNeurotrauma 2007, 24(12): 1802-1810.
    [46] Friedman G, Froom P, Sazbon L, et al. Apolipoprotein E-epsilon4 genotype predicts a poor outcome in survivors of traumatic brain injury[J]. Neurology. 1999, 52(2): 244-248.
    [47] Liaquat I, Dunn LT, Nicoll JA, et al. Effect of apolipoprotein E genotype on hematoma volume after trauma[J]. J Neurosurg. 2002, 96(1): 90-96.
    [48] McCarron MO, Weir CJ, Muir KW, et al. Effect of apolipoprotein E genotype on in-hospital mortality following intracerebral haemorrhage[J]. Acta Neurol Scand. 2003, 107(2): 106-109.
    [1] Xiaochuan Sun and Yong Jiang. Traumatic brain injury: Prognostic factors and genetic influence. In: John H Zhang, ed. Advancements in Neurological Research[M]. Kerala, India: Research Signpost, 2008: 121-139.
    [2] 毛清,江基尧. 颅脑外伤后继发性脑损害发病机制的研究进展[J]. 中华神经医学杂志. 2005,14(2):200-202.
    [3] 付小兵,程飚. 创伤修复和组织再生几个重要领域研究的进展与展望[J]. 中华创伤杂志. 2005,21(1):40-44.
    [4] Weidong Zhou, Di Xu, Xiaoxia Peng, et al. Meta-Analysis of APOE4 allele and outcome after traumatic brain injury[J]. J Neurotrauma. 2008, 25(4): 279-290.
    [5] 江涌,孙晓川,夏玉先,等. 载脂蛋白 E 基因多态性与颅脑损伤的相关性[J]. 中华创伤杂志. 2005, 21(7):520-523.
    [6] Jiang Y, Sun X, Xia Y, et al. Effect of APOE polymorphisms on early responses to traumatic brain injury[J]. Neuroscience letters. 2006, 408(2): 155-158.
    [7] 江涌, 孙晓川, 夏玉先, 等. 载脂蛋白 E 基因型及启动子区多态性与颅脑损伤病情发展的相关性研究[J]. 中国神经精神疾病杂志. 2006,32(5):431-435.
    [8] Jiang Y, Sun X, Gui L, et al. Correlation between APOE -491AA promoter in ε4 carriers and clinical deterioration in early stage of traumatic brain injury[J]. J Neurotrauma. 2007, 24(12): 1802-1810.
    [9] Burg ED, Remillard CV, Yuan JX. K+ channels in apoptosis[J]. J Membr Biol. 2006, 209(1): 3-20.
    [10] Zhang X, Chen Y, Jenkins LW, et al. Bench-to-bedside review: Apoptosis/programmed cell death triggered by traumatic brain injury[J]. Crit Care. 2005, 9(1): 66-75.
    [11] Sastry PS, Rao KS. Apoptosis and the nervous system[J]. J Neurochem. 2000, 74(1): 1-20.
    [12] 刘娜,孙志扬. 急性颅脑损伤和神经元凋亡[J]. 同济大学学报(医学版). 2004,25(4): 359-362.
    [13] Gwag BJ, Canzoniero LM, Sensi SL, et al. Calcium ionophores can induce either apoptosis or necrosis in cultured cortical neurons[J]. Neuroscience. 1999, 90(4): 1339-1348.
    [14] Koh JY, Suh SW, Gwag BJ, et al.The role of zinc in selective neuronal death after transient global cerebral ischemia[J]. Science. 1996, 272(5264): 1013-1016.
    [15] Hartnett KA, Stout AK, Rajdev S, et al. NMDA receptor-mediated neurotoxicity: a paradoxical requirement for extracellular Mg2+ in Na+/Ca2+-free solutions in rat cortical neurons in vitro[J]. J Neurochem. 1997, 68(5): 1836-1845.
    [16] Ferris CD, Jaffrey SR, Sawa A, et al. Haem oxygenase-1 prevents cell death by regulating cellular iron[J]. Nat Cell Biol. 1999, 1(3): 152-157.
    [17] Weber JT. Calcium homeostasis following traumatic neuronal injury[J]. Curr Neurovasc Res. 2004, 1(2): 151-171.
    [18] Yu SP. Regulation and critical role of potassium homeostasis in apoptosis[J]. Prog Neurobiol. 2003, 70(4): 363-386.
    [19] Fernández-Segura E, Ca?izares FJ, Cubero MA, et al. Changes in elemental content during apoptotic cell death studied by electron probe X-ray microanalysis[J]. Exp Cell Res. 1999, 253(2): 454-462.
    [20] Benson RS, Heer S, Dive C, et al. Characterization of cell volume loss in CEM-C7A cells during dexamethasone-induced apoptosis[J]. Am J Physiol. 1996, 270(4 Pt 1): C1190-203.
    [21] Brevnova EE, Platoshyn O, Zhang S, et al. Overexpression of human KCNA5 increases IK V and enhances apoptosis[J]. Am J Physiol Cell Physiol. 2004, 287(3): C715-22.
    [22] Giese KP, Storm JF, Reuter D, et al. Reduced K+ channel inactivation, spike broadening, and after-hyperpolarization in Kvbeta1.1-deficient mice with impaired learning[J]. Learn Mem. 1998, 5(4-5): 257-273.
    [23] Storm JF. Potassium currents in hippocampal pyramidal cells[J]. Prog Brain Res. 1990, 83: 161-187.
    [24] Remillard CV, Yuan JX. Activation of K+ channels: an essential pathway inprogrammed cell death[J]. Am J Physiol Lung Cell Mol Physiol. 2004, 286(1): L49-67.
    [25] Young W. Role of calcium in central nervous system injuries[J]. J Neurotrauma. 1992, 9 Suppl 1: S9-25.
    [26] Yu SP, Yeh CH, Sensi SL, et al. Mediation of neuronal apoptosis by enhancement of outward potassium current[J]. Science. 1997, 278(5335): 114-117.
    [27] Hoe HS, Harris DC, Rebeck GW. Multiple pathways of apolipoprotein E signaling in primary neurons[J]. J Neurochem. 2005, 93(1): 145-155.
    [28] Hoe HS, Pocivavsek A, Chakraborty G, et al. Apolipoprotein E receptor 2 interactions with the N-methyl-D-aspartate receptor[J]. J Biol Chem. 2006, 281(6): 3425-3431.
    [29] Qin Y, Qi JS, Qiao JT. Apolipoprotein E4 Suppresses Delayed-Rectifier Potassium Channels in Membrane Patches Excised From Hippocampal Neurons[J]. Synapse. 2006, 59(2): 82-91.
    [30] Hribar M, Bloc A, Medilanski J, et al. Voltage-gated K+ current: a marker for apoptosis in differentiating neuronal progenitor cells? [J] Eur J Neurosci. 2004, 20(3): 635-648.
    1. Murray CJ, Lopez AD. Global Health Statistics. Geneva: World Health Organization; 1996.
    2. Langlois JA, Rutland-Brown W, Thomas KE. Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. Atlanta, GA: US Department of Health and Human Services, CDC; 2006.
    3. Bruns J Jr, Hauser WA. The epidemiology of traumatic brain injury: a review. Epilepsia. 2003; 44 Suppl 10: 2-10.
    4. Fleminger S, Ponsford J. Long term outcome after traumatic brain injury. BMJ. 2005; 331(7530):1419-1420.
    5. Teasdale GM, Nicoll JA, Murray G, et al. Association of apolipoprotein E polymorphism with outcome after head injury. Lancet. 1997; 350(9084): 1069-1071.
    6. Graham DI, Gennarelli TA. Trauma. in: Graham DI, Lantos PL, eds. Greenfild's neuropathology 6th Edition. London: Arnold, 1997: 197-262.
    7. McIntosh TK, Smith DH, Meaney DF, et al. Neuropathological sequelae of traumatic brain injury: relationship to neurochemical and biomechanical mechanisms. Lab Invest. 1996; 74(2): 315-342.
    8. Graham DI, McIntosh TK, Maxwell WL, et al. Recent advances in neurotrauma. J Neuropathol Exp Neurol. 2000; 59(8): 641-651.
    9. Gennarelli TA, Thibault LE, Adams JH, et al. Diffuse axonal injury and traumatic coma in the primate. Ann Neurol, 1982; 12(6): 564–574.
    10. Perel P, Edwards P, Wentz R, et al. Systematic review of prognostic models in traumatic brain injury. BMC Med Inform Decis Mak. 2006; 6: 38.
    11. Lee KL, Pryor DB, Harrell FE Jr, et al. Predicting outcome in coronary disease. Statistical models versus expert clinicians. Am J Med. 1986; 80(4):553-560.
    12. Choi SC, Ward JD, Becker DP. Chart for outcome prediction in severe head injury. J Neurosurg. 1983; 59(2): 294-297.
    13. Choi SC, Narayan RK, Anderson RL, et al. Enhanced specificity of prognosis in severe head injury. J Neurosurg. 1988; 69(3): 381-385.
    14. Lokkeberg AR, Grimes RM. Assessing the influence of non-treatment variables in a study of outcome from severe head injuries. J Neurosurg. 1984; 61(2): 254-262.
    15. Choi SC, Muizelaar JP, Barnes TY, et al. Prediction tree for severely head-injured patients. J Neurosurg. 1991; 75(2): 251-255.
    16. Narayan RK, Greenberg RP, Miller JD, et al. Improved confidence of outcome prediction in severe head injury. A comparative analysis of the clinical examination, multimodality evoked potentials, CT scanning, and intracranial pressure.J Neurosurg. 1981; 54(6): 751-762.
    17. Changaris DG, McGraw CP, Richardson JD, et al. Correlation of cerebral perfusion pressure and Glasgow Coma Scale to outcome. J Trauma. 1987; 27(9): 1007-1013.
    18. Rovlias A, Kotsou S. Classification and regression tree for prediction of outcome after severe head injury using simple clinical and laboratory variables. J Neurotrauma. 2004; 21(7):886-893.
    19. Raghupathi R. Cell death mechanisms following traumatic brain injury. Brain Pathol. 2004; 14(2): 215-222.
    20. Raghupathi R, Graham DI, McIntosh TK. Apoptosis after traumatic brain injury. J Neurotrauma. 2000; 17(10): 927-938.
    21. Arundine M, Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci. 2004; 61(6): 657-668.
    22. Aarts MM, Tymianski M. Molecular mechanisms underlying specificity of excitotoxic signaling in neurons. Curr Mol Med. 2004; 4(2): 137-147.
    23. Bullock R, Zauner A, Woodward JJ, et al. Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg. 1998; 89(4): 507-518.
    24. Chan PH, Epstein CJ, Li Y, et al. Transgenic mice and knockout mutants in the study of oxidative stress in brain injury. J Neurotrauma. 1995; 12(5):815-824.
    25. Cherian L, Hlatky R, Robertson CS. Nitric oxide in traumatic brain injury. Brain Pathol. 2004;14(2):195-201.
    26 Ghirnikar RS, Lee YL, Eng LF. Inflammation in traumatic brain injury: role of cytokines and chemokines. Neurochem Res. 1998; 23(3): 329-340.
    27. Potts MB, Koh SE, Whetstone WD, Traumatic injury to the immature brain: inflammation,oxidative injury, and iron-mediated damage as potential therapeutic targets. NeuroRx. 2006; 3(2): 143-153.
    28. Faden AI. Neuroprotection and traumatic brain injury: theoretical option or realistic proposition. Curr Opin Neurol. 2002; 15(6): 707-712.
    29. Jiang Y, Sun X, Xia Y. et al. Effect of APOE polymorphisms on early responses to traumatic brain injury. Neurosci Lett. 2006; 408(2): 155-158.
    30. Faden AI. Neuroprotection and traumatic brain injury: theoretical option or realistic proposition. Curr Opin Neurol. 2002; 15(6): 707-712.
    31. Schauwecker PE, Steward O. Genetic determinants of susceptibility to excitotoxic cell death: implications for gene targeting approaches. Proc Natl Acad Sci U S A. 1997; 94(8): 4103-4108.
    32. McKhann GM 2nd, Wenzel HJ, Robbins CA, et al. Mouse strain differences in kainic acid sensitivity, seizure behavior, mortality, and hippocampal pathology. Neuroscience. 2003; 122(2): 551-561.
    33. Cantallops I, Routtenberg A. Kainic acid induction of mossy fiber sprouting: dependence on mouse strain. Hippocampus. 2000; 10(3): 269-273.
    34. Schauwecker PE. Genetic basis of kainate-induced excitotoxicity in mice: phenotypic modulation of seizure-induced cell death. Epilepsy Res. 2003; 55(3): 201-210.
    35. Emahazion T, Jobs M, Howell WM, et al. Identification of 167 polymorphisms in 88 genes from candidate neurodegeneration pathways. Gene. 1999; 238(2): 315-324.
    36. Nicoll JA, Roberts GW, Graham DI. Apolipoprotein E epsilon 4 allele is associated with deposition of amyloid beta-protein following head injury. Nat Med. 1995; 1(2):135-137.
    37. Schork NJ, Fallin D, Lanchbury JS. Single nucleotide polymorphisms and the future of genetic epidemiology. Clin Genet. 2000; 58(4): 250-264.
    38. Tourian A, Sidbury JB. Phenylketonuria and hyperphenylalaninemia. In: Stanbury JB, Wyngaarden JB, Frederickson DS, Goldstein JL, Brown MS, eds. The Metabolic Basis of Inherited Disease. New York: McGraw-Hill; 1983: 270–286.
    39. Nathan BP, Bellosta S, Sanan DA, et al. Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science. 1994; 264(5160): 850-852.
    40. White F, Nicoll JA, Horsburgh K. Alterations in ApoE and ApoJ in relation to degeneration andregeneration in a mouse model of entorhinal cortex lesion.Exp Neurol. 2001;169(2):307-318.
    41. Diaz-Arrastia R, Baxter VK. Genetic factors in outcome after traumatic brain injury: what the human genome project can teach us about brain trauma. J Head Trauma Rehabil. 2006; 21(4):361-374.
    42. Lander ES, Schork NJ. Genetic dissection of complex traits. Science. 1994; 265(5181):2037-2048.
    43. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996; 273(5281):1516-1517.
    44. Barber RC, Chang LY, Purdue GF, et al. Detecting genetic predisposition for complicated clinical outcomes after burn injury. Burns. 2006; 32(7): 821-827.
    45. Emahazion T, Jobs M, Howell WM, et al. Identification of 167 polymorphisms in 88 genes from candidate neurodegeneration pathways. Gene. 1999; 238(2): 315-324.
    46. Shore VG, Shore B. Heterogeneity of human plasma very low density lipoproteins. Separation of species differing in protein components. Biochemistry. 1973; 12(3): 502-507.
    47. Mahley RW, Innerarity TL, Rall SC Jr, et al. Plasma lipoproteins: apolipoprotein structure and function. J Lipid Res. 1984; 25(12): 1277-1294.
    48. Davignon J, Cohn JS, Mabile L, et al. Apolipoprotein E and atherosclerosis: insight from animal and human studies. Clin Chim Acta. 1999;286(1-2):115-143.
    49. Strittmatter WJ, Saunders AM, Schmechel D, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A. 1993; 90(5): 1977-1981.
    50. Martins RN, Clarnette R, Fisher C, et al. ApoE genotypes in Australia: roles in early and late onset Alzheimer's disease and Down's syndrome. Neuroreport. 1995; 6(11):1513-1516.
    51. Olaisen B, Teisberg P, Gedde-Dahl T Jr. The locus for apolipoprotein E (apoE) is linked to the complement component C3 (C3) locus on chromosome 19 in man. Hum Genet. 1982; 62(3): 233-236.
    52. Das HK, McPherson J, Bruns GA, et al. Isolation, characterization, and mapping to chromosome
    19 of the human apolipoprotein E gene. J Biol Chem. 1985; 260(10):6240-6247.
    53. Paik YK, Chang DJ, Reardon CA, et al. Nucleotide sequence and structure of the humanapolipoprotein E gene. Proc Natl Acad Sci U S A. 1985; 82(10): 3445-3449.
    54. Utermann G, Langenbeck U, Beisiegel U, et al. Genetics of the apolipoprotein E system in man.Am J Hum Genet. 1980; 32(3): 339-347.
    55. Utermann G, Steinmetz A, Weber W. Genetic control of human apolipoprotein E polymorphism: comparison of one- and two-dimensional techniques of isoprotein analysis. Hum Genet. 1982; 60(4): 344-351.
    56. Zannis VI, Breslow JL. Human very low density lipoprotein apolipoprotein E isoprotein polymorphism is explained by genetic variation and posttranslational modification. Biochemistry. 1981; 20(4): 1033-1041.
    57. Rall SC Jr, Weisgraber KH, Innerarity TL, et al. Structural basis for receptor binding heterogeneity of apolipoprotein E from type III hyperlipoproteinemic subjects. Proc Natl Acad Sci U S A. 1982; 79(15): 4696-700.
    58. Rall SC Jr, Weisgraber KH, Mahley RW. Human apolipoprotein E. The complete amino acid sequence. J Biol Chem. 1982; 257(8): 4171-4178.
    59. Weisgraber KH, Innerarity TL, Mahley RW. Abnormal lipoprotein receptor-binding activity of the human E apoprotein due to cysteine-arginine interchange at a single site. J Biol Chem. 1982; 257(5): 2518-2521.
    60. Merched A, Blain H, Visvikis S, et al. Cerebrospinal fluid apolipoprotein E level is increased in late-onset Alzheimer's disease. J Neurol Sci. 1997; 145(1): 33-39.
    61. Moestrup SK, Gliemann J, Pallesen G. Distribution of the alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein in human tissues. Cell Tissue Res. 1992; 269(3):375-382.
    62. Rebeck GW, Reiter JS, Strickland DK, et al. Apolipoprotein E in sporadic Alzheimer's disease: allelic variation and receptor interactions. Neuron. 1993; 11(4): 575-580.
    63. Bu G, Maksymovitch EA, Geuze H, et al. Subcellular localization and endocytic function of low density lipoprotein receptor-related protein in human glioblastoma cells. J Biol Chem. 1994; 269(47): 29874-29882.
    64. Mayeux R, Ottman R, Maestre G, et al. Synergistic effects of traumatic head injury and apolipoprotein- epsilon 4 in patients with Alzheimer’s disease. Neurology. 1995; 45(3): 555–557.
    65. Sorbi S, Nacmias B, Piacentini S, et al. ApoE as a prognostic factor for post-traumatic coma. Nat Med. 1995; 1(9): 852.
    66. Friedman G, Froom P, Sazbon L, et al. Apolipoprotein E-epsilon4 genotype predicts a poor outcome in survivors of traumatic brain injury. Neurology. 1999; 52(2): 244-248.
    67. Lichtman SW, Seliger G, Tycko B, et al. Apolipoprotein E and functional recovery from brain injury following postacute rehabilitation. Neurology. 2000; 55(10): 1536-1539.
    68. Crawford FC, Vanderploeg RD, Freeman MJ, et al. APOE genotype influences acquisition and recall following traumatic brain injury. Neurology. 2002; 58(7): 1115-1158.
    69. Chiang MF, Chang JG, Hu CJ. Association between apolipoprotein E genotype and outcome of traumatic brain injury. Acta Neurochir (Wien). 2003; 145(8): 649-654.
    70. Nathoo N, Chetty R, van Dellen JR, et al. Genetic vulnerability following traumatic brain injury: the role of apolipoprotein E. Mol Pathol. 2003; 56(3): 132-136.
    71. Teasdale GM, Murray GD, Nicoll JA. The association between APOE epsilon4, age and outcome after head injury: a prospective cohort study. Brain. 2005; 128(Pt 11): 2556-2561.
    72. Allsop D, Haga S, Bruton C, et al. Neurofibrillary tangles in some cases of dementia pugilistica share antigens with amyloid beta-protein of Alzheimer’s disease. Am J Pathol. 1990; 136(2): 255-260.
    73. Graves AB, White E, Koepsell TD, et al. The association between head trauma and Alzheimer's disease. Am J Epidemiol. 1990; 131(3): 491-501.
    74. Roberts GW, Gentleman SM, Lynch A, et al. Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 1994; 57(4): 419-425.
    75. Mauch DH, Nagler K, Schumacher S, et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science. 2001; 294(5545): 1354-1357.
    76. Graham DI, Horsburgh K, Nicoll JA, et al. Apolipoprotein E and the response of the brain to injury. Acta Neurochir Suppl. 1999; 73: 89-92.
    77. Horsburgh K, McCarron MO, White F, et al. The role of apolipoprotein E in Alzheimer's disease, acute brain injury and cerebrovascular disease: evidence of common mechanisms and utility of animal models. Neurobiol Aging. 2000; 21(2): 245-255.
    78. Horsburgh K, Graham DI, Stewart J, Influence of apolipoprotein E genotype on neuronal damage and apoE immunoreactivity in human hippocampus following global ischemia. J Neuropathol Exp Neurol. 1999; 58(3):227-234.
    79. Horsburgh K, Kelly S, McCulloch J, et al. Increased neuronal damage in apolipoprotein E-deficient mice following global ischaemia. Neuroreport. 1999;10(4):837-841.
    80. Buttini M, Orth M, Bellosta S, et al. Expression of human apolipoprotein E3 or E4 in the brains of Apoe-/- mice: isoform-specific effects on neurodegeneration. J Neurosci. 1999; 19(12):4867-4880.
    81. Millar K, Nicoll JA, Thornhill S, et al. Long term neuropsychological outcome after head injury: relation to APOE genotype. J Neurol Neurosurg Psychiatry. 2003; 74(8): 1047-1052.
    82. Lynch JR, Pineda JA, Morgan D, et al. Apolipoprotein E affects the central nervous system response to injury and the development of cerebral edema. Ann Neurol. 2002; 51(1): 113-117.
    83. Liaquat I, Dunn LT, Nicoll JA, et al. Effect of apolipoprotein E genotype on hematoma volume after trauma. J Neurosurg. 2002; 96(1): 90-96.
    84. Smith C, Graham DI, Murray LS, et al. Association of APOE e4 and cerebrovascular pathology in traumatic brain injury. J Neurol Neurosurg Psychiatry. 2006; 77(3): 363-366.
    85. McCarron MO, Weir CJ, Muir KW, et al. Effect of apolipoprotein E genotype on in-hospital mortality following intracerebral haemorrhage. Acta Neurol Scand. 2003; 107(2): 106-109.
    86. Lendon CL, Harris JM, Pritchard AL, et al. Genetic variation of the APOE promoter and outcome after head injury. Neurology. 2003; 61(5): 683-685.