热力蒸汽压缩器性能计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热力蒸汽压缩器是一种以蒸汽为工质的气体喷射器。近年来带有热力蒸汽压缩器的多效蒸发海水淡化(TVC-MED, Multi-effect Distillation with Thermal Vapor Compression)系统的应用愈加广泛,喷嘴带有调节锥的可调式热力蒸汽压缩器也较多地应用于该系统中。TVC作为系统中的重要设备,其热力性能的计算方法研究将有较大意义。过去的研究工作多数集中讨论喷射器在制冷循环当中的性能,多数以制冷剂为工质,且关于可调式热力蒸汽压缩器的研究较少。本文以将水蒸气作为工质的气体喷射器为研究对象,分析热力蒸汽压缩器在MED系统工况下的热力性能特点。
     本文基于气体动力学函数方法,建立了包括圆柱形混合室的固定结构喷射器、锥形混合室的固定结构喷射器、喷嘴带有调节锥的可调式喷射器的设计性能、变工况性能一维计算模型。将本文的计算结果与一些实验数据、数值模拟数据、喷射器生产厂商提供的数据对比,对比结果较好地验证了本文所采用计算模型的可靠性、准确性。对比中采用的实验数据、数值模拟数据、喷射器生产厂商的数据都参照了TVC-MED系统工况,因此上述对比结果可以表明本文的计算模型在TVC-MED系统工况下的适用性。
     在证明模型的适用性的基础上,本文计算了在TVC-MED系统设计工况下的TVC喷射系数ω等参数,分析了TVC性能在此种工况下的特点,对比了圆柱形混合室的喷射器与锥形混合室的喷射器在喷射系数与压缩比关系ω-Pd以及出口压缩蒸汽过热度等方面的不同点。同时,本文计算了给定结构的喷射器在变工况下的特性曲线,计算模型中考虑了圆柱形混合室喷射器可能出现的三种极限状态、锥形混合室喷射器可能出现的两种极限状态以及喷射器亚极限状态的性能,这使模型能够计算较大范围的TVC-MED系统工况下的TVC性能参数。
     特别地,在建立可调式喷射器的计算模型当中,本文假设喷嘴调节锥的加入并没有给喷嘴的效率带来影响,忽略了调节锥的加入所增加的摩擦损失。在计算过程中,经验系数为常数,忽略了喷嘴调节锥位置、膨胀比的变化对经验系数的影响。将该模型的计算结果与国外某喷射器厂商的数据做对比,结果表明两者平均偏差为4.5394%,相对偏差的浮动范围为-7.34%—21.35%。在此基础上本文计算了可调式喷射器的变结构、变工况性能曲线,分析了影响经验系数的因素以及可调式喷射器在TVC-MED系统中的变工况调节特性。
Thermal vapour compressor (TVC) belongs to gas-ejectors using steam as the working fluid. It has been widely used recently to improve the energy utilization ratio and increase the gained output ratio (GOR) of Multi-effect Distillation (MED) System. And because a fixed structure TVC has only one optimum operating point, a kind of adjustable TVCs have been applied to fit for variable operating conditions. As an important element of MED, the performance of TVC should be well considered, but more researchers before have paid their attention to the ejector using in refrigeration system with the refrigerant as working fluid.
     In this paper, mathematical models, based on gas-dynamic theory, a kind of semi-empirical calculation method of ejector, including calculation of the design point and variable operating condition of ejector with ether cylindrical mixing tube or converging mixing tube have been presented. The results of the models have been compared with the data from the experimental results, the computational results and the data from the producing company of TVC to validate the models. And the results show reasonably good agreement with the latter ones. Furthermore, three kinds of the critical modes of operating condition of the ejector with cylindrical mixing tube and both two kinds of the critical modes of the ejector with converging mixing tube were considered in these models, therefore the models could predict the ejector performance in a wide operating condition range of TVC-MED.
     As an important proportion, the 1-D mathematical model of the adjustable ejector has been developed. The effects of the needle moving in the nozzle have been considered to be changes of consumption of the motive steam and the loss effect of the needle has been neglected. The empirical coefficient P is considered to be constant. The calculation results show much close to the data from the ejector producing company. As a result, the model is verified by the comparison of the average deviation of 4.5394%, and the deviation ranging from-7.34% to 21.35%. Furthermore the performance curves are calculated to analyze the performance of the adjustable ejector in the MED system and an analyses of the factors which effect the value ofμare also presented.
引文
[I]Sun D W. Variable geometry ejectors and their applications in ejector refrigeration systems [J]. Energy,1996,21:919-929.
    [2]Huang B J, Chang J M, Wang C P et al. A 1-D analysis of ejector performance [J]. International Journal Refrigeration,1999,22:354-364.
    [3]Eames I W, Aphornratana S, Haider H. A theoretical and experimental study of a small-scale steam jet refrigerator [J]. International Journal Refrigeration,1995, 18:378-386.
    [4]Huang B J, Chang J M. Empirical correlation for ejector design [J]. International Journal of Refrigeration,1999,22:379-388.
    [5]Zhu Y H, Cai W J, Wen C Y, Li Y Z. Shock circle model for ejector performance evaluation [J]. Energy Conversion and Management,2007,48:2533-2541.
    [6]Chou S K, Yang P R, Yap C. Maximum mass flow ratio due to secondary flow choking in an ejector refrigeration system [J]. International Journal of Refrigeration,2001, 24:486-499.
    [7]Huang B J, Jiang C B, Fu F L. Ejector performance characteristics and design analysis of jet refrigeration system [J]. ASME Journal of Engineering for Gas Turbines and Power, 1985,107:792-802.
    [8]Huang B J, Chang J M, and Petrenko V A. A solar ejector cooling system using refrigerant R141b [J]. Solar Energy,1998,64(4-6):223-226.
    [9]Eames I W, Aphornratana S, Sun D W. The jet pump cycle-a low cost refrigerator option powered by waste heat. Heat Recovery System CHP [J],1995,15(8):711-721.
    [10]Eames I W, Wu S. A theoretical study of an innovative ejector powered absorption-recompression cycle refrigerator [J]. International Journal Refrigeration, 2000,23:475-484.
    [11]Keenan J H, Neumann E P. A simple air ejector [J]. ASME Trans. Journal of Applied Mechanics,1942,64:75-81.
    [12]Keenan J H, Neumann E P, Lustwerk F. An investigation of ejector design by analysis and experiment [J]. ASME Trans. Journal of Applied Mechanics,1950,72:299-309.
    [13]El-Dessouky H, Ettouney H, Alatiqi I et al. Evaluation of steam jet ejector [J]. Chemical Engineering and Processing,2002,41:551-561.
    [14]He S, Li Y, Wang R Z. Progress of mathematical modeling on ejectors [J]. Renewable and Sustainable Energy Reviews,2009,13:1760-1780
    [15]Addy A L. The analysis of supersonic ejector systems (one-dimensional approaches) [D]. Paris:Von Karmen Institute for Fluid Dynamics,1975.
    [16]Yapici R, Ersoy H K. Performance characteristics of the ejector refrigeration system based on the constant area ejector flow model [J]. Energy Conversion and Management, 2005,46:3117-3135.
    [17]Eames I W. A new prescription for the design of supersonic jet-pumps:the constant rate of momentum change method [J]. Applied Thermal Engineering,2002,22:121-131.
    [18]Chunnanond K, Aphornratana S. A study of steam ejector refrigeration cycle, effect of ejector geometries on ejector performance,2000[C]. In:The Second Regional Conference on Energy Technology towards a Clean Environment,2000.
    [19]Sozen A, Arcaklioglu E. Exergy analysis of an ejector-absorption heat transformer using artificial neural network approach [J]. Applied Thermal Engineering,2007, 27:481-491.
    [20]Dai Y P, Wang J F, Gao L. Exergy analysis, parametric analysis and optimization for a novel combined power and ejector refrigeration cycle [J]. Applied Thermal Engineering,2009,29:1983-1990.
    [21]Yapici R. Experimental investigation of performance of vapor ejector refrigeration system using refrigerant R123 [J]. Energy Conversion and Management,2008,49:953-961.
    [22]Yapici R, Yetisen C C. Experimental study on ejector refrigeration system powered by low grade heat [J]. Energy Conversion and Management,2007 48:1560-1568.
    [23]'Selvaraju A, Mani A. Experimental investigation on R134a vapour ejector refrigeration system [J]. International Journal of Refrigeration,2006,29:1160-1166.
    [24]Pollerberg C, H.Ali A H, Dotsch C. Experimental study on the performance of a solar driven steam jet ejector chiller [J]. Energy Conversion and Management,2008 49:3318-3325.
    [25]Chaiwongsa P, Wongwises S. Experimental study on R-134a refrigeration system using a two-phase ejector as an expansion device [J]. Applied Thermal Engineering,2008, 28:467-477.
    [26]Elbel S, Hrnjak P. Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation [J]. International Journal of Refrigeration,2008,31:411-422.
    [27]Chen Y M, Sun C Y. Experimental study of the performance characteristics of a steam-ejector refrigeration system [J]. Experimental Thermal and Fluid Science,1997, 15:384-394.
    [28]Yapici R, Ersoy H K, Aktoprakoglu A, Halkaci H S, Yigit O. Experimental determination of the optimum performance of ejector refrigeration system depending on ejector area ratio [J]. International Journal of Refrigeration,2008,31:1183-1189.
    [29]Bartosiewicz Y, Aidoun Z, Desevaux P et al. Numerical and experimental investigations on supersonic ejectors [J]. International Journal of Heat and Fluid Flow,2005, 26:56-70.
    [30]Zhu Y H, Cai W J, Wen C Y, Li Y Z. Numerical investigation of geometry parameters for design of high performance ejectors [J]. Applied Thermal Engineering,2009, 29:898-905.
    [31]Park I S, Park S M, Ha J S. Design and application of thermal vapor compressor for multi-effect desalination plant [J]. Desalination,2005,182:199-208.
    [32]Park I S. Robust numerical analysis based design of the thermal vapor compressor shape parameters for multi-effect desalination plants [J]. Desalination,2009,242:245-255.
    [33]Riffat S B, Jiang L, Gan G, Recent development in ejector technology-a review [J]. International Journal of Ambient Energy,2005,26:13-26.
    [34]索科洛夫,津格尔等.黄秋云等译.喷射器[M].北京:科学出版社,1977.
    [35]郭金基.高温喷射器的近似计算及应用.流体工程[J],1989,1:37-42.
    [36]郭金基.亚音速气体喷射器的理论计算.流体工程[J],1989,7:18-22.
    [37]郭金基.亚音速气体喷射的性能分析及其计算方法.中山大学学报(自然科学版)[J],1981,1:20-31.
    [38]He S, Li Y, Wang R Z. Progress of mathematical modeling on ejectors [J]. Renewable and Sustainable Energy Reviews,2009,13:1760-1780.
    [39]He S, Li Y, Wang R Z. A new approach to performance analysis of ejector refrigeration system using grey system theory.2009,29:1592-1597.
    [40]季建刚,黎立新,王如竹.蒸汽喷射压缩器的变工况特性分析[J].化学工程,2007,35(2):68-71.
    [41]季建刚,倪海,黎立新等.蒸汽喷射压缩器的变工况特性模拟与分析[J].化工学报,2008,59(3):557-561.
    [42]沈胜强,李素芬,夏远景等.喷射式热泵的设计计算与性能分析[J].大连理工大学学报,1998,38(5):558-561.
    [43]刘志强,沈胜强,李素芬.蒸汽喷射式热泵性能实验研究[J].大连理工大学学报,2001,41(3):310-313.
    [44]张博,沈胜强,李海军.二维流动模型的喷射器性能分析研究[J].热科学与技术,2003,2:388-392.
    [45]张博,沈胜强,李海军.二维流动模型用于喷射器关键结构设计分析[J].大连理工大学学报,2004,44(3):388-392
    [46]李海军,沈胜强,张博等.蒸汽喷射器流动参数与性能的数值分析[J].热科学与技术,2005,1:52-57.
    [47]Zhang B, Shen S Q. A theoretical study on a novel bi-ejector refrigeration cycle [J]. Applied Thermal Engineering,2006,26:622-626.
    [48]Zhang B, Shen S Q. Development of solar ejector refrigeration system. Proceedings of the 1st International Conference on Sustainable Energy Technology,2002[C]. Portugal: FEUP,2002.
    [49]张博,沈胜强.太阳能喷射式制冷系统性能分析[J].太阳能学报,2001,22(4):451-455.
    [50]沈胜强,张琨,刘佳等.喷嘴可调式喷射器性能的实验研究[J].化工学报,2009,60(6):1398-1401.
    [51]沈胜强,张琨.可调式气体喷射器调节性能计算分析[J].石油化工高等学校学报,2007,20(1):74-77.
    [52]张琨,沈胜强,杨勇等.喷嘴可调式喷射器内部流场与性能参数的数值分析[C].中国教育学会工程热物理专业委员会第十五届全国学术会议论文集.天津:[出版者不详],2008.
    [53]杨洛鹏,沈胜强,Genthner K.低温多效蒸发海水淡化系统热力分析[J].化学工程.2006,34(11):20-24.
    [54]Kmali R K, Abbassi A, Sadough Vanini S A et al. Thermodynamic design and parametric study of MED-TVC [J]. Desalination.2008,222:596-604.
    [55]Bin Amer A 0. Development and optimization of ME-TVC desalination system [J]. Desalination.2009,249:1315-1331.