Galectin-9和Tim-3在胃癌中的表达及作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半乳糖凝集素(Galectin)是一类专一结合糖蛋白聚糖β-半乳糖残基的凝集素家族,存在于多种生物体内,广泛的分布于细胞核、细胞质和细胞外基质中。Galectin具有多种生物学功能,如细胞粘附、细胞生长调节、细胞凋亡、炎症反应、免疫调节等。Galectin-9是Galectin家族中的一员,具有Galectin家族典型的保守区结构,广泛分布在细胞内外,在调节免疫和炎症反应、细胞凋亡、肿瘤新生血管形成和肿瘤转移等方面发挥重要作用。近年来,Galectin-9与肿瘤的关系受到越来越多的关注,在黑色素瘤、宫颈癌、肝癌等均有相关报道。有研究认为,Galectin-9可能成为新的肿瘤治疗靶点。
     T细胞免疫球蛋白粘蛋白(Tim)基因家族,主要表达在免疫细胞表面,调节Thl和Th2细胞介导的免疫应答。Tim-3蛋白为T细胞免疫球蛋白粘蛋白家族的一个重要成员,主要表达于活化的Thl细胞表面,与其配体Galectin-9结合后发挥免疫调节作用。
     目前,有关Galectin-9和Tim-3在胃癌组织中的表达情况及作用鲜有报道,本研究旨在观察胃组织和胃癌细胞系中Galectin-9和Tim-3的表达及分布,并研究其与胃癌临床参数的关系,以及其在胃癌发生发展过程中的角色,探讨其可能的作用途径。
     我们首先通过免疫组织化学方法观察了在胃组织和胃癌细胞系中Galectin-9和Tim-3的表达情况。发现胃组织和胃癌细胞系中Galecitn-9主要表达在细胞膜和细胞质中,而Tim-3在细胞质和细胞核中均有表达。我们成对收集了自2008年9月至2013年7月间于吉林大学第一医院胃结直肠外科行胃癌根治术病人癌组织、癌旁组织(距肿瘤<2cm)及正常组织(距肿瘤>5cm)标本52例,全部病例术后病理均证实为胃癌。分别采用荧光定量PCR方法和Western blot方法检测Galectin-9mRNA水平及蛋白的表达,同正常组织及癌旁组织相比较,癌组织中的Galectin-9mRNA水平明显降低(P<0.001,P<0.001),差异有统计学意义。为了验证Galectin-9mRNA水平改变是否引起蛋白表达量变化,我们通过Western blot方法检测了样本中Galectin-9蛋白表达。结果显示,癌组织中Galectin-9蛋白表达(0.999±0.435)明显低于正常组织(1.796±0.684),差异有统计学意义(P<0.05)。癌组织中Galectin-9mRNA水平与临床参数分析结果表明,T3和T4期癌组织中的Galectin-9mRNA水平明显低于T1期(P<0.05,P<0.05);而在T2期与T1期无明显差别,提示Galectin-9可能与肿瘤浸润深度相关。N0—N3各分期癌组织中Galectin-9mRNA水平均无明显差别。而同未发生远处转移组(M0)相比较,远处转移组(M1) Galectin-9mRNA相对表达量明显降低(P<0.05)。我们又分析了Galectin-9mRNA水平与肿瘤临床分期间关系。同Ⅰ期比较,II、III、IV期癌组织中Galectin-9mRNA水平均降低,且II期和IV期病例癌组织中Galectin-9mRNA水平降低明显,差异有统计学意义(P<0.05)。癌组织中Galectin-9mRNA表达量高的患者术后生存时间高于Galectin-9mRNA表达量低组,提示Galectin-9表达与患者术后生存时间相关。综合以上结果可以看出,Galectin-9在胃癌组织中的表达明显下降,并与肿瘤的恶性程度有一定的相关性,而与性别、年龄等因素无明显关系(P>0.05)。同时Tim-3mRNA和蛋白检测显示,同正常组织及癌旁组织相比较,癌组织中的Tim-3mRNA水平和蛋白表达虽有所降低,但差异无统计学意义。
     另外我们又分别通过荧光定量PCR方法和Western blot方法观察了胃癌细胞系SGC-7901和MGC-803中Galectin-9和Tim-3mRNA和蛋白的表达情况。与胃粘膜正常细胞GES-1相比较,SGC-7901和MGC-803中Galectin-9mRNA水平明显降低,差异有统计学意义(P<0.05,P<0.01)。Western blot结果表明,同正常胃粘膜细胞GES-1相比较,SGC-7901和MGC-803中Galectin-9蛋白表达明显降低,差异有统计学意义(P<0.05,P<0.01)。而SGC-7901和MGC-803细胞中Tim-3mRNA水平和蛋白的表达与GES-1细胞相比较无明显差别。这与Galectin-9和Tim-3在胃组织中的表达趋势是一致的。
     为进一步探讨Galectin-9在胃癌发生和发展中的作用和作用机制,以及Galectin-9和Tim-3在胃癌组织中的相互关系,我们构建了pcDNA3.1(-)-Galectin-9质粒,瞬时转染MGC-803细胞,建立了瞬时转染表达体系。观察到Galectin-9过表达能明显抑制MGC-803细胞的增殖,DAPI染色显示Galectin-9过表达能促进MGC-803细胞凋亡。Western blot检测凋亡信号通路相关蛋白结果显示,转染Galectin-9后能下调Bcl-2蛋白表达,而Bax蛋白、Caspase-3蛋白的表达上调,提示Galectin-9过表达可能通过线粒体凋亡途径,引起细胞凋亡。检测转染Galectin-9的MGC-803细胞中Tim-3蛋白表达结果显示,Galectin-9过表达不引起Tim-3表达变化,同时免疫共沉淀复合物中只检测到Galectin-9蛋白,而无Tim-3蛋白沉淀,提示二者在MGC-803细胞中无直接作用,Galectin-9对胃癌细胞的作用可能不是通过Galectin-9/Tim-3途径发挥的。
     综上所述,Galectin-9和Tim-3在胃正常粘膜组织及胃癌组织中均有表达;在胃癌组织和胃癌细胞系中Galectin-9mRNA和蛋白表达水平明显低于正常组织;Galectin-9在胃癌细胞系中过表达,能抑制肿瘤细胞生长、促进肿瘤细胞凋亡;Galectin-9能通过下调Bcl-2蛋白表达,上调Bax蛋白、Caspase-3蛋白的表达发挥促进细胞凋亡作用;在MGC-803细胞中Galectin-9和Tim-3不存在直接相互作用,提示Galectin-9在胃癌细胞中可能不是通过Galectin-9/Tim-3途径发挥作用的。Galectin-9在胃癌发生发展中的作用机制还需在以后的研究中进一步探讨。
The Galectins are a family of β-galactoside-binding animal lectins. Galectins are widelydistributed in many animals and localized in the nucleus, cytoplasm and extra cellular matrix.They have many functions, such as cell adhesion, proliferation, cell apoptosis, modulation ofinflammation and immune regulation. Galectin-9, as a member of Galectin family, which hasa typical conservative structure of the Galectin family is widely distributed in the inside andoutside of cells. Galectin-9has been found to regulate different biological functions, such asimmune regulation, inflammation, cell apoptosis, angiognesis and matastasis of tumors.Recently the relationship of Galectin-9on tumors, such as melanomas, cervical squamous cellcarcinomas and hepatocellular carcinomas, has attracted more attention, and Galectin-9maybe a new therapeutic field of study related to the treatment of tumors.
     The T-cell immunoglobulin domain and mucin domain (Tim) family, mainly expressed inthe surface of immune cells, regulates the immune response which is mediated by Th1andTh2cells. Tim-3, a Th1-specific type1membrane protein, emerges on the cell surface of fullyactivated Th1cells. Binding to its ligand, Galectin-9, to regulate the immune system.
     At present, few articles about the expression of Galectin-9and Tim-3in gastric cancerhave been reported. The aim of this study has been to observe the expression and distributionof Galectin-9and Tim-3in gastric tissues and gastric cancer cell lines, and to explore its rolein the genesis and development of gastric cancer and its possible mechanism.
     In gastric tissues and gastric cancer cell lines, the Galectin-9has been localized in bothcytomembrane and cytoplasm, and Tim-3has been localized in both the nucleus andcytoplasm by the immunohistochemical method. To investigate the involvement of theGalectin-9mRNA and protein expression in the pathogenesis of primary gastric cancer,52clinical gastric cancer tissues and matched adjacent (<2cm away from the tumor) and/ornormal (>5cm away from the tumor) tissues were collected in pairs from September2008upuntil July2013in the Department of Gastrointestinal Surgery of The First Hospital of JilinUniversity. All cases were confirmed to have gastric cancer by postoperative pathology.Galectin-9mRNA and protein expression levels were measured by qPCR and Western blot.Compared to matched normal or adjacent tissues, the mRNA expression of Galectin-9wassignificantly decreased in gastric cancer tissues (P<0.001, P<0.001). To determine whether the reduction of Galectin-9mRNA expression resulted in decreasing of Galectin-9proteinlevels, gastric cancer and corresponding normal or adjacent tissues were analyzed by Westernblotting. Similar to our expected results, significant reduction of Galectin-9protein in gastriccancer (0.999±0.435) compared to those matched normal tissues (1.796±0.684) were detected(P<0.05). To extend above observations and to know the relationship between Galectin-9mRNA levels and clinicopathological parameters, we analyzed qPCR results according to theclinical characteristics of gastric cancer. Compared to the mRNA expression of Galectin-9inT1stage, Galectin-9mRNA levels in T3and T4stage were significantly decreased (P<0.05,P<0.05). However, there were no differences in the T2and T1stages, which suggest thatGalectin-9may be related to the degree of tumor invasion. N0-N3stage cancer Galectin-9mRNA levels were not significantly different. With no distant metastasis group (M0)compared with distant metastasis group (M1), Galectin-9mRNA expression decreasedobviously (P<0.05). Compared to stageⅠ, Galectin-9mRNA expression levels weredecreased in stage II、III、IV gastric tumors, and there was a significant difference in stages IIand IV (P<0.05). The survival time after surgery with high Galectin-9mRNA expression waslonger than that with low Galectin-9mRNA expression, which suggests Galectin-9expressionis associated with survival time. In summary, Galectin-9mRNA expression levels have acertain correlation with the degree of malignancy found in the tumor. However, there was nosignificant difference between age and gender (P>0.05). Compared to matched normal tissues,Tim-3mRNA and protein expression were decreased in the tumors. Statistical analysisconfirmed that there was no significant difference between the tumor and matched normaltissues.
     The expressions of Galectin-9and Tim-3in gastric cancer cell lines (SGC-7901andMGC-803) and the normal gastric mucosa cell line (GES-1) were measured by qPCR andWestern blot. Compared to GES-1, the mRNA expression of Galectin-9was significantlydecreased in SGC-7901and MGC-803(P<0.05, P<0.01), and significant reduction ofGalectin-9protein in SGC-7901and MGC-803to GES-1were detected (P<0.05, P<0.01) byWestern blot. Expression of Tim-3mRNA and protein in the SGC-7901and MGC-803cellsare not significantly lower than in GES-1cells. The expression trend of Tim-3and Galectin-9in gastric cell lines is consistent with that in gastric tissues.
     For the further study of Galectin-9in the carcinogenesis, development of gastric cancerand the mechanism, and to further clarify whether there is a correlation regulatory relationship between Galectin-9and Tim-3in cells, we constructed the pcDNA3.1(-)-Galectin-9plasmid,transiently transfected into MGC-803cells and established a transient transfection expressionsystem. We observed that over expression of Galectin-9can inhibit the proliferation ofMGC-803cells, and DAPI staining showed that over expression of Galectin-9can induce theapoptosis of MGC-803cells. The result of Western blot to detect the apoptosis signalingpathway related protein showed that transfection of Galectin-9can down regulate theexpression of Bcl-2protein, but Bax protein and Caspase-3protein expression increase, whichsuggests that over expression of Galectin-9may induce cell apoptosis through themitochondrial pathway. To determine whether the Tim-3expression was regulated byGalectin-9, MGC-803cells were transiently transfected with Galectin-9DNA, the resultshowed that the expression of Tim-3protein had not been changed. The immunoprecipitationcomplexes only detected Galectin-9protein, and no Tim-3protein precipitation, whichsuggests that the two had no direct effect on MGC-803cells, the effects of Galectin-9ongastric cancer cells may not be played by Galectin-9/Tim-3pathway.
     In summary, the normal stomach mucosa and gastric cancer tissues can show Galectin-9and Tim-3protein expression. In gastric cancer tissues and gastric cancer cell lines, theexpression of Galectin-9mRNA and protein were significantly lower than that of normaltissues. The over expression of Galectin-9in gastric cancer cell lines can inhibit tumor cellgrowth, promote the apoptosis of tumor cells, Galectin-9can down regulate Bcl-2andupregulate the expression of Bax and Caspase-3protein, and then promote apoptosis.Galectin-9may not interact with Tim-3directly in MGC-803cells, but the mechanism ofGalectin-9and Tim-3in the occurrence and development of gastric carcinoma should besubject to further studies.
引文
[1] TORPY J M, LYNM C, GLASS R M. JAMA patient page. Stomach cancer [J].JAMA: the journal of the American Medical Association,2010,303(17):1771.
    [2] TERRY M B, GAUDET M M, GAMMON M D. The epidemiology of gastric cancer[J]. Seminars in radiation oncology,2002,12(2):111-27.
    [3] HOHENBERGER P, GRETSCHEL S. Gastric cancer [J]. Lancet,2003,362(9380):305-15.
    [4] PARDOLL D. Does the immune system see tumors as foreign or self?[J]. Annualreview of immunology,2003,21:807-39.
    [5] VESELY M D, KERSHAW M H, SCHREIBER R D, SMYTH M J. Natural innateand adaptive immunity to cancer [J]. Annual review of immunology,2011,29:235-71.
    [6] MELLMAN I, COUKOS G, DRANOFF G. Cancer immunotherapy comes of age [J].Nature,2011,480(7378):480-9.
    [7] ROSENBERG S A. Raising the bar: the curative potential of human cancerimmunotherapy [J]. Science translational medicine,2012,4(127):127ps8.
    [8] JOHANSSON M, DENARDO D G, COUSSENS L M. Polarized immune responsesdifferentially regulate cancer development [J]. Immunological reviews,2008,222:145-54.
    [9] WU Y, HU X, SONG L, ZHU J, YU R. The Inhibitory Effect of a Novel PolypeptideFraction from Arca subcrenata on Cancer-Related Inflammation in Human CervicalCancer HeLa Cells [J]. TheScientificWorldJournal,2014,2014:768938.
    [10] WADA J, KANWAR Y S. Identification and characterization of galectin-9, a novelbeta-galactoside-binding mammalian lectin [J]. The Journal of biological chemistry,1997,272(9):6078-86.
    [11] TURECI O, SCHMITT H, FADLE N, PFREUNDSCHUH M, SAHIN U. Moleculardefinition of a novel human galectin which is immunogenic in patients with Hodgkin'sdisease [J]. The Journal of biological chemistry,1997,272(10):6416-22.
    [12] COOPER D N. Galectinomics: finding themes in complexity [J]. Biochimica etbiophysica acta,2002,1572(2-3):209-31.
    [13] DANGUY A, CAMBY I, KISS R. Galectins and cancer [J]. Biochimica et biophysicaacta,2002,1572(2-3):285-93.
    [14] SATO M, NISHI N, SHOJI H, et al. Functional analysis of the carbohydraterecognition domains and a linker peptide of galectin-9as to eosinophilchemoattractant activity [J]. Glycobiology,2002,12(3):191-7.
    [15] KASHIO Y, NAKAMURA K, ABEDIN M J, et al. Galectin-9induces apoptosisthrough the calcium-calpain-caspase-1pathway [J]. J Immunol,2003,170(7):3631-6.
    [16] CHABOT S, KASHIO Y, SEKI M, et al. Regulation of galectin-9expression andrelease in Jurkat T cell line cells [J]. Glycobiology,2002,12(2):111-8.
    [17] HEUSSCHEN R, FREITAG N, TIRADO-GONZALEZ I, et al. Profiling Lgals9splicevariant expression at the fetal-maternal interface: implications in normal andpathological human pregnancy [J]. Biology of reproduction,2013,88(1):22.
    [18] SPITZENBERGER F, GRAESSLER J, SCHROEDER H E. Molecular and functionalcharacterization of galectin9mRNA isoforms in porcine and human cells and tissues[J]. Biochimie,2001,83(9):851-62.
    [19] MATSUSHITA N, NISHI N, SEKI M, et al. Requirement of divalentgalactoside-binding activity of ecalectin/galectin-9for eosinophil chemoattraction [J].The Journal of biological chemistry,2000,275(12):8355-60.
    [20] NAGAE M, NISHI N, MURATA T, et al. Crystal structure of the galectin-9N-terminal carbohydrate recognition domain from Mus musculus reveals the basicmechanism of carbohydrate recognition [J]. The Journal of biological chemistry,2006,281(47):35884-93.
    [21] NAGAE M, NISHI N, MURATA T, et al. Structural analysis of the recognitionmechanism of poly-N-acetyllactosamine by the human galectin-9N-terminalcarbohydrate recognition domain [J]. Glycobiology,2009,19(2):112-7.
    [22] RABINOVICH G A, RUBINSTEIN N, TOSCANO M A. Role of galectins ininflammatory and immunomodulatory processes [J]. Biochimica et biophysica acta,2002,1572(2-3):274-84.
    [23] MATSUMOTO R, MATSUMOTO H, SEKI M, et al. Human ecalectin, a variant ofhuman galectin-9, is a novel eosinophil chemoattractant produced by T lymphocytes[J]. The Journal of biological chemistry,1998,273(27):16976-84.
    [24] MATSUMOTO R, HIRASHIMA M, KITA H, et al. Biological activities of ecalectin: anovel eosinophil-activating factor [J]. J Immunol,2002,168(4):1961-7.
    [25] ZHU C, ANDERSON A C, SCHUBART A, et al. The Tim-3ligand galectin-9negatively regulates T helper type1immunity [J]. Nature immunology,2005,6(12):1245-52.
    [26] WADA J, OTA K, KUMAR A, et al. Developmental regulation, expression, andapoptotic potential of galectin-9, a beta-galactoside binding lectin [J]. The Journal ofclinical investigation,1997,99(10):2452-61.
    [27] KAGESHITA T, KASHIO Y, YAMAUCHI A, et al. Possible role of galectin-9in cellaggregation and apoptosis of human melanoma cell lines and its clinical significance[J]. International journal of cancer Journal international du cancer,2002,99(6):809-16.
    [28] LIU F T, RABINOVICH G A. Galectins as modulators of tumour progression [J].Nature reviews Cancer,2005,5(1):29-41.
    [29] PAZ A, HAKLAI R, ELAD-SFADIA G, et al. Galectin-1binds oncogenic H-Ras tomediate Ras membrane anchorage and cell transformation [J]. Oncogene,2001,20(51):7486-93.
    [30] VAN DEN BRULE F, CALIFICE S, GARNIER F, et al. Galectin-1accumulation inthe ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells andaffects both cancer cell proliferation and adhesion to laminin-1and fibronectin [J].Laboratory investigation; a journal of technical methods and pathology,2003,83(3):377-86.
    [31] ESPELT M V, CROCI D O, BACIGALUPO M L, et al. Novel roles of galectin-1inhepatocellular carcinoma cell adhesion, polarization, and in vivo tumor growth [J].Hepatology,2011,53(6):2097-106.
    [32] ITO K, RALPH S J. Inhibiting galectin-1reduces murine lung metastasis withincreased CD4+and CD8+T cells and reduced cancer cell adherence [J]. Clinical&experimental metastasis,2012,29(6):561-72.
    [33] THIJSSEN V L, POSTEL R, BRANDWIJK R J, et al. Galectin-1is essential in tumorangiogenesis and is a target for antiangiogenesis therapy [J]. Proceedings of theNational Academy of Sciences of the United States of America,2006,103(43):15975-80.
    [34] THIJSSEN V L, BARKAN B, SHOJI H, et al. Tumor cells secrete galectin-1toenhance endothelial cell activity [J]. Cancer research,2010,70(15):6216-24.
    [35] RUBINSTEIN N, ALVAREZ M, ZWIRNER N W, et al. Targeted inhibition ofgalectin-1gene expression in tumor cells results in heightened T cell-mediatedrejection; A potential mechanism of tumor-immune privilege [J]. Cancer cell,2004,5(3):241-51.
    [36] YANG R Y, LIU F T. Galectins in cell growth and apoptosis [J]. Cellular andmolecular life sciences: CMLS,2003,60(2):267-76.
    [37] LIU F T, YANG R Y, SAEGUSA J, et al. Galectins in regulation of apoptosis [J].Advances in experimental medicine and biology,2011,705(431-42.
    [38] SAITA N, GOTO E, YAMAMOTO T, et al. Association of galectin-9with eosinophilapoptosis [J]. International archives of allergy and immunology,2002,128(1):42-50.
    [39] KOBAYASHI T, KURODA J, ASHIHARA E, et al. Galectin-9exhibits anti-myelomaactivity through JNK and p38MAP kinase pathways [J]. Leukemia,2010,24(4):843-50.
    [40] LU L H, NAKAGAWA R, KASHIO Y, et al. Characterization of galectin-9-induceddeath of Jurkat T cells [J]. Journal of biochemistry,2007,141(2):157-72.
    [41] NAGAHARA K, ARIKAWA T, OOMIZU S, et al. Galectin-9increases Tim-3+dendritic cells and CD8+T cells and enhances antitumor immunity viagalectin-9-Tim-3interactions [J]. J Immunol,2008,181(11):7660-9.
    [42] SU E W, BI S, KANE L P. Galectin-9regulates T helper cell function independently ofTim-3[J]. Glycobiology,2011,21(10):1258-65.
    [43] CALIFICE S, CASTRONOVO V, BRACKE M, et al. Dual activities of galectin-3inhuman prostate cancer: tumor suppression of nuclear galectin-3vs tumor promotion ofcytoplasmic galectin-3[J]. Oncogene,2004,23(45):7527-36.
    [44] KIM K S, KANG K W, SEU Y B, et al. Interferon-γ induces cellular senescencethrough p53-dependent DNA damage signaling in human endothelial cells [J].Mechanisms of ageing and development,2009,130(3):179-88.
    [45] IMAIZUMI T, KUMAGAI M, SASAKI N, et al. Interferon-gamma stimulates theexpression of galectin-9in cultured human endothelial cells [J]. Journal of leukocytebiology,2002,72(3):486-91.
    [46] IRIE A, YAMAUCHI A, KONTANI K, et al. Galectin-9as a prognostic factor withantimetastatic potential in breast cancer [J]. Clinical cancer research: an officialjournal of the American Association for Cancer Research,2005,11(8):2962-8.
    [47] KASAMATSU A, UZAWA K, NAKASHIMA D, et al. Galectin-9as a regulator ofcellular adhesion in human oral squamous cell carcinoma cell lines [J]. Internationaljournal of molecular medicine,2005,16(2):269-73.
    [48] ZHANG F, ZHENG M, QU Y, et al. Different roles of galectin-9isoforms inmodulating E-selectin expression and adhesion function in LoVo colon carcinomacells [J]. Molecular biology reports,2009,36(5):823-30.
    [49] ASAKURA H, KASHIO Y, NAKAMURA K, et al. Selective eosinophil adhesion tofibroblast via IFN-gamma-induced galectin-9[J]. J Immunol,2002,169(10):5912-8.
    [50] NOBUMOTO A, NAGAHARA K, OOMIZU S, et al. Galectin-9suppresses tumormetastasis by blocking adhesion to endothelium and extracellular matrices [J].Glycobiology,2008,18(9):735-44.
    [51] FRIEDRICHS J, MANNINEN A, MULLER D J, et al. Galectin-3regulates integrin 2β1-mediated adhesion to collagen-I and-IV [J]. The Journal of biologicalchemistry,2008,283(47):32264-72.
    [52] SANCHEZ-RUDERISCH H, DETJEN K M, WELZEL M, et al. Galectin-1sensitizescarcinoma cells to anoikis via the fibronectin receptor5β1-integrin [J]. Cell deathand differentiation,2011,18(5):806-16.
    [53] LIANG M, UENO M, OOMIZU S, et al. Galectin-9expression links to malignantpotential of cervical squamous cell carcinoma [J]. Journal of cancer research andclinical oncology,2008,134(8):899-907.
    [54] ZHANG Z Y, DONG J H, CHEN Y W, et al. Galectin-9acts as a prognostic factorwith anTimetastatic potential in hepatocellular carcinoma [J]. Asian Pacific journal ofcancer prevention: APJCP,2012,13(6):2503-9.
    [55] RABINOVICH G A, TOSCANO M A. Turning 'sweet' on immunity: galectin-glycaninteractions in immune tolerance and inflammation [J]. Nature reviews Immunology,2009,9(5):338-52.
    [56] HIRASHIMA M, KASHIO Y, NISHI N, et al. Galectin-9in physiological andpathological conditions [J]. Glycoconjugate journal,2004,19(7-9):593-600.
    [57] RABINOVICH G A, CROCI D O. Regulatory circuits mediated by lectin-glycaninteractions in autoimmunity and cancer [J]. Immunity,2012,36(3):322-35.
    [58] HIRASHIMA M. Ecalectin/galectin-9, a novel eosinophil chemoattractant: its functionand production [J]. International archives of allergy and immunology,2000,122Suppl1:6-9.
    [59] GATAULT S, LEGRAND F, DELBEKE M, et al. Involvement of eosinophils in theanti-tumor response [J]. Cancer immunology, immunotherapy: CII,2012,61(9):1527-34.
    [60] WEDEMEYER J, VOSSKUHL K. Role of gastrointestinal eosinophils in inflamma-tory bowel disease and intestinal tumours [J]. Best practice&research Clinicalgastroenterology,2008,22(3):537-49.
    [61] SAMOSZUK M. Eosinophils and human cancer [J]. Histology and histopathology,1997,12(3):807-12.
    [62] MUNITZ A, LEVI-SCHAFFER F. Eosinophils:'new' roles for 'old' cells [J]. Allergy,2004,59(3):268-75.
    [63] SEKI M, OOMIZU S, SAKATA K M, et al. Galectin-9suppresses the generation ofTh17, promotes the induction of regulatory T cells, and regulates experimentalautoimmune arthritis [J]. Clin Immunol,2008,127(1):78-88.
    [64] WANG F, HE W, YUAN J, et al. Activation of Tim-3-Galectin-9pathway improvessurvival of fully allogeneic skin grafts [J]. Transplant immunology,2008,19(1):12-9.
    [65] WANG F, HE W, ZHOU H, et al. The Tim-3ligand galectin-9negatively regulatesCD8+alloreactive T cell and prolongs survival of skin graft [J]. Cellular immunology,2007,250(1-2):68-74.
    [66] BI S, HONG P W, LEE B, et al. Galectin-9binding to cell surface protein disulfideisomerase regulates the redox environment to enhance T-cell migration and HIV entry[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(26):10650-5.
    [67] KERYER-BIBENS C, PIOCHE-DURIEU C, VILLEMANT C, et al. Exosomesreleased by EBV-infected nasopharyngeal carcinoma cells convey the viral latentmembrane protein1and the immunomodulatory protein galectin9[J]. BMC cancer,2006,6:283.
    [68] NOBUMOTO A, OOMIZU S, ARIKAWA T, et al. Galectin-9expands uniquemacrophages exhibiting plasmacytoid dendritic cell-like phenotypes that activate NKcells in tumor-bearing mice [J]. Clin Immunol,2009,130(3):322-30.
    [69] THIJSSEN V L, HULSMANS S, GRIFFIOEN A W. The galectin profile of theendothelium: altered expression and localization in activated and tumor endothelialcells [J]. The American journal of pathology,2008,172(2):545-53.
    [70] DELGADO V M, NUGNES L G, COLOMBO L L, et al. Modulation of endothelialcell migration and angiogenesis: a novel function for the "tandem-repeat" lectingalectin-8[J]. FASEB journal: official publication of the Federation of AmericanSocieties for Experimental Biology,2011,25(1):242-54.
    [71] MARKOWSKA A I, LIU F T, PANJWANI N. Galectin-3is an important mediator ofVEGF-and bFGF-mediated angiogenic response [J]. The Journal of experimentalmedicine,2010,207(9):1981-93.
    [72] NANGIA-MAKKER P, HONJO Y, SARVIS R, et al. Galectin-3induces endothelialcell morphogenesis and angiogenesis [J]. The American journal of pathology,2000,156(3):899-909.
    [73] NANGIA-MAKKER P, WANG Y, RAZ T, et al. Cleavage of galectin-3by matrixmetalloproteases induces angiogenesis in breast cancer [J]. International journal ofcancer Journal international du cancer,2010,127(11):2530-41.
    [74] ALAM S, LI H, MARGARITI A, et al. Galectin-9protein expression in endothelialcells is positively regulated by histone deacetylase3[J]. The Journal of biologicalchemistry,2011,286(51):44211-7.
    [75] FAINARU O, ALMOG N, YUNG C W, et al. Tumor growth and angiogenesis aredependent on the presence of immature dendritic cells [J]. FASEB journal: officialpublication of the Federation of American Societies for Experimental Biology,2010,24(5):1411-8.
    [76] HEUSSCHEN R, GRIFFIOEN A W, THIJSSEN V L. Galectin-9in tumor biology: ajack of multiple trades [J]. Biochimica et biophysica acta,2013,1836(1):177-85.
    [77] BRANDWIJK R J, DINGS R P, VAN DER LINDEN E, et al. Anti-angiogenesis andanti-tumor activity of recombinant anginex [J]. Biochemical and biophysical researchcommunications,2006,349(3):1073-8.
    [78] ITO K, SCOTT S A, CUTLER S, et al. Thiodigalactoside inhibits murine cancers byconcurrently blocking effects of galectin-1on immune dysregulation, angiogenesisand protection against oxidative stress [J]. Angiogenesis,2011,14(3):293-307.
    [79] GLINSKII O V, SUD S, MOSSINE V V, et al. Inhibition of prostate cancer bonemetastasis by synthetic TF antigen mimic/galectin-3inhibitor lactulose-L-leucine [J].Neoplasia (New York, NY),2012,14(1):65-73.
    [80] NANGIA-MAKKER P, HOGAN V, HONJO Y, et al. Inhibition of human cancer cellgrowth and metastasis in nude mice by oral intake of modified citrus pectin [J].Journal of the National Cancer Institute,2002,94(24):1854-62.
    [81] WIERSMA V R, DE BRUYN M, HELFRICH W, et al. Therapeutic potential ofGalectin-9in human disease [J]. Medicinal research reviews,2013,33Suppl1:E102-26.
    [82] SEKI M, SAKATA K M, OOMIZU S, et al. Beneficial effect of galectin9onrheumatoid arthritis by induction of apoptosis of synovial fibroblasts [J]. Arthritis andrheumatism,2007,56(12):3968-76.
    [83] KATOH S, ISHII N, NOBUMOTO A, et al. Galectin-9inhibits CD44-hyaluronaninteraction and suppresses a murine model of allergic asthma [J]. American journal ofrespiratory and critical care medicine,2007,176(1):27-35.
    [84] KURODA J, YAMAMOTO M, NAGOSHI H, et al. Targeting activating transcriptionfactor3by Galectin-9induces apoptosis and overcomes various types of treatmentresistance in chronic myelogenous leukemia [J]. Molecular cancer research: MCR,2010,8(7):994-1001.
    [85] KADOWAKI T, ARIKAWA T, SHINONAGA R, et al. Galectin-9signaling prolongssurvival in murine lung-cancer by inducing macrophages to differentiate intoplasmacytoid dendritic cell-like macrophages [J]. Clin Immunol,2012,142(3):296-307.
    [86] COLLINS P M, OBERG C T, LEFFLER H, et al. Taloside inhibitors of galectin-1andgalectin-3[J]. Chemical biology&drug design,2012,79(3):339-46.
    [87] STANNARD K A, COLLINS P M, ITO K, et al. Galectin inhibitory disaccharidespromote tumour immunity in a breast cancer model [J]. Cancer letters,2010,299(2):95-110.
    [88] INGRASSIA L, CAMBY I, LEFRANC F, et al. Anti-galectin compounds as potentialanti-cancer drugs [J]. Current medicinal chemistry,2006,13(29):3513-27.
    [89] SALOMONSSON E, THIJSSEN V L, GRIFFIOEN A W, et al. The anti-angiogenicpeptide anginex greatly enhances galectin-1binding affinity for glycoproteins [J]. TheJournal of biological chemistry,2011,286(16):13801-4.
    [90] KLUZA E, JACOBS I, HECTORS S J, et al. Dual-targeting of alphavbeta3andgalectin-1improves the specificity of paramagnetic/fluorescent liposomes to tumorendothelium in vivo [J]. Journal of controlled release: official journal of theControlled Release Society,2012,158(2):207-14.
    [91] KLUZA E, VAN DER SCHAFT D W, HAUTVAST P A, et al. Synergistic targeting ofalphavbeta3integrin and galectin-1with heteromultivalent paramagnetic liposomesfor combined MR imaging and treatment of angiogenesis [J]. Nano letters,2010,10(1):52-8.
    [92] KLIBI J, NIKI T, RIEDEL A, et al. Blood diffusion and Th1-suppressive effects ofgalectin-9-containing exosomes released by Epstein-Barr virus-infectednasopharyngeal carcinoma cells [J]. Blood,2009,113(9):1957-66.
    [93] RABINOVICH G A, CUMASHI A, BIANCO G A, et al. Synthetic lactulose amines:novel class of anticancer agents that induce tumor-cell apoptosis and inhibitgalectin-mediated homotypic cell aggregation and endothelial cell morphogenesis [J].Glycobiology,2006,16(3):210-20.
    [94] WOYNAROWSKA B, SKRINCOSKY D M, HAAG A, et al. Inhibition oflectin-mediated ovarian tumor cell adhesion by sugar analogs [J]. The Journal ofbiological chemistry,1994,269(36):22797-803.
    [95] BAGHDADI M, JINUSHI M. The impact of the TIM gene family on tumor immunityand immunosuppression [J]. Cellular&molecular immunology,2014,11(1):41-8.
    [96] HUANG X, BAI X, CAO Y, et al. Lymphoma endothelium preferentially expressesTim-3and facilitates the progression of lymphoma by mediating immune evasion [J].The Journal of experimental medicine,2010,207(3):505-20.
    [97] KIKUSHIGE Y, SHIMA T, TAKAYANAGI S, et al. TIM-3is a promising target toselectively kill acute myeloid leukemia stem cells [J]. Cell stem cell,2010,7(6):708-17.
    [98] KUCHROO V K, MEYERS J H, UMETSU D T, et al. TIM family of genes inimmunity and tolerance [J]. Advances in immunology,2006,91:227-49.
    [99] FREEMAN G J, CASASNOVAS J M, UMETSU D T, et al. TIM genes: a family ofcell surface phosphatidylserine receptors that regulate innate and adaptive immunity[J]. Immunological reviews,2010,235(1):172-89.
    [100] MONNEY L, SABATOS C A, GAGLIA J L, et al. Th1-specific cell surface proteinTim-3regulates macrophage activation and severity of an autoimmune disease [J].Nature,2002,415(6871):536-41.
    [101] SANTIAGO C, BALLESTEROS A, TAMI C, et al. Structures of T Cellimmunoglobulin mucin receptors1and2reveal mechanisms for regulation of immuneresponses by the TIM receptor family [J]. Immunity,2007,26(3):299-310.
    [102] CAO E, ZANG X, RAMAGOPAL U A, et al. T cell immunoglobulin mucin-3crystalstructure reveals a galectin-9-independent ligand-binding surface [J]. Immunity,2007,26(3):311-21.
    [103] RODRIGUEZ-MANZANET R, SANJUAN M A, WU H Y, et al. T and B cellhyperactivity and autoimmunity associated with niche-specific defects in apoptoticbody clearance in TIM-4-deficient mice [J]. Proceedings of the National Academy ofSciences of the United States of America,2010,107(19):8706-11.
    [104] MIYANISHI M, TADA K, KOIKE M, et al. Identification of Tim4as aphosphatidylserine receptor [J]. Nature,2007,450(7168):435-9.
    [105] KOBAYASHI N, KARISOLA P, PENA-CRUZ V, et al. TIM-1and TIM-4glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells [J].Immunity,2007,27(6):927-40.
    [106] NAKAYAMA M, AKIBA H, TAKEDA K, et al. Tim-3mediates phagocytosis ofapoptotic cells and cross-presentation [J]. Blood,2009,113(16):3821-30.
    [107] DEKRUYFF R H, BU X, BALLESTEROS A, et al. T cell/transmembrane, Ig, andmucin-3allelic variants differentially recognize phosphatidylserine and mediatephagocytosis of apoptotic cells [J]. J Immunol,2010,184(4):1918-30.
    [108] SANCHEZ-FUEYO A, TIAN J, PICARELLA D, et al. Tim-3inhibits T helper type1-mediated auto-and alloimmune responses and promotes immunological tolerance[J]. Nature immunology,2003,4(11):1093-101.
    [109] ANDERSON A C, ANDERSON D E, BREGOLI L, et al. Promotion of tissueinflammation by the immune receptor Tim-3expressed on innate immune cells [J].Science,2007,318(5853):1141-3.
    [110] KOGUCHI K, ANDERSON D E, YANG L, et al. Dysregulated T cell expression ofTIM3in multiple sclerosis [J]. The Journal of experimental medicine,2006,203(6):1413-8.
    [111] YANG L, ANDERSON D E, KUCHROO J, et al. Lack of TIM-3immunoregulation inmultiple sclerosis [J]. J Immunol,2008,180(7):4409-14.
    [112] SABATOS C A, CHAKRAVARTI S, CHA E, et al. Interaction of Tim-3and Tim-3ligand regulates T helper type1responses and induction of peripheral tolerance [J].Nature immunology,2003,4(11):1102-10.
    [113] OIKAWA T, KAMIMURA Y, AKIBA H, et al. Preferential involvement of Tim-3inthe regulation of hepatic CD8+T cells in murine acute graft-versus-host disease [J]. JImmunol,2006,177(7):4281-7.
    [114] JU Y, HOU N, ZHANG X N, et al. Blockade of Tim-3pathway amelioratesinterferon-gamma production from hepatic CD8+T cells in a mouse model of hepatitisB virus infection [J]. Cellular&molecular immunology,2009,6(1):35-43.
    [115] MCMAHAN R H, GOLDEN-MASON L, NISHIMURA M I, et al. Tim-3expressionon PD-1+HCV-specific human CTLs is associated with viral persistence, and itsblockade restores hepatocyte-directed in vitro cytotoxicity [J]. The Journal of clinicalinvestigation,2010,120(12):4546-57.
    [116] JIN H T, ANDERSON A C, TAN W G, et al. Cooperation of Tim-3and PD-1in CD8T-cell exhaustion during chronic viral infection [J]. Proceedings of the NationalAcademy of Sciences of the United States of America,2010,107(33):14733-8.
    [117] GOLDEN-MASON L, PALMER B E, KASSAM N, et al. Negative immune regulatorTim-3is overexpressed on T cells in hepatitis C virus infection and its blockaderescues dysfunctional CD4+and CD8+T cells [J]. Journal of virology,2009,83(18):9122-30.
    [118] JONES R B, NDHLOVU L C, BARBOUR J D, et al. Tim-3expression defines anovel population of dysfunctional T cells with highly elevated frequencies inprogressive HIV-1infection [J]. The Journal of experimental medicine,2008,205(12):2763-79.
    [119] FOURCADE J, SUN Z, BENALLAOUA M, et al. Upregulation of Tim-3and PD-1expression is associated with tumor antigen-specific CD8+T cell dysfunction inmelanoma patients [J]. The Journal of experimental medicine,2010,207(10):2175-86.
    [120] SAKUISHI K, APETOH L, SULLIVAN J M, et al. Targeting Tim-3and PD-1pathways to reverse T cell exhaustion and restore anti-tumor immunity [J]. TheJournal of experimental medicine,2010,207(10):2187-94.
    [121] ZHOU Q, MUNGER M E, VEENSTRA R G, et al. Coexpression of Tim-3and PD-1identifies a CD8+T-cell exhaustion phenotype in mice with disseminated acutemyelogenous leukemia [J]. Blood,2011,117(17):4501-10.
    [122] NGIOW S F, VON SCHEIDT B, AKIBA H, et al. Anti-TIM3antibody promotes Tcell IFN-gamma-mediated antitumor immunity and suppresses established tumors [J].Cancer research,2011,71(10):3540-51.
    [123] JAYARAMAN P, SADA-OVALLE I, BELADI S, et al. Tim3binding to galectin-9stimulates antimicrobial immunity [J]. The Journal of experimental medicine,2010,207(11):2343-54.
    [124] SAKUISHI K, JAYARAMAN P, BEHAR S M, et al. Emerging Tim-3functions inanTimicrobial and tumor immunity [J]. Trends in immunology,2011,32(8):345-9.
    [125] MOSKOPHIDIS D, LECHNER F, PIRCHER H, et al. Virus persistence in acutelyinfected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells[J]. Nature,1993,362(6422):758-61.
    [126] ZAJAC A J, BLATTMAN J N, MURALI-KRISHNA K, et al. Viral immune evasiondue to persistence of activated T cells without effector function [J]. The Journal ofexperimental medicine,1998,188(12):2205-13.
    [127] BARBER D L, WHERRY E J, MASOPUST D, et al. Restoring function in exhaustedCD8T cells during chronic viral infection [J]. Nature,2006,439(7077):682-7.
    [128] BLACKBURN S D, SHIN H, FREEMAN G J, et al. Selective expansion of a subsetof exhausted CD8T cells by alphaPD-L1blockade [J]. Proceedings of the NationalAcademy of Sciences of the United States of America,2008,105(39):15016-21.
    [129] KLENERMAN P, HILL A. T cells and viral persistence: lessons from diverseinfections [J]. Nature immunology,2005,6(9):873-9.
    [130] DAY C L, KAUFMANN D E, KIEPIELA P, et al. PD-1expression on HIV-specific Tcells is associated with T-cell exhaustion and disease progression [J]. Nature,2006,443(7109):350-4.
    [131] PETROVAS C, CASAZZA J P, BRENCHLEY J M, et al. PD-1is a regulator ofvirus-specific CD8+T cell survival in HIV infection [J]. The Journal of experimentalmedicine,2006,203(10):2281-92.
    [132] TRAUTMANN L, JANBAZIAN L, CHOMONT N, et al. Upregulation of PD-1expression on HIV-specific CD8+T cells leads to reversible immune dysfunction [J].Nature medicine,2006,12(10):1198-202.
    [133] BOETTLER T, PANTHER E, BENGSCH B, et al. Expression of the interleukin-7receptor alpha chain (CD127) on virus-specific CD8+T cells identifies functionallyand phenotypically defined memory T cells during acute resolving hepatitis B virusinfection [J]. Journal of virology,2006,80(7):3532-40.
    [134] BONI C, FISICARO P, VALDATTA C, et al. Characterization of hepatitis B virus(HBV)-specific T-cell dysfunction in chronic HBV infection [J]. Journal of virology,2007,81(8):4215-25.
    [135] URBANI S, AMADEI B, TOLA D, et al. PD-1expression in acute hepatitis C virus(HCV) infection is associated with HCV-specific CD8exhaustion [J]. Journal ofvirology,2006,80(22):11398-403.
    [136] RADZIEWICZ H, IBEGBU C C, FERNANDEZ M L, et al. Liver-infiltratinglymphocytes in chronic human hepatitis C virus infection display an exhaustedphenotype with high levels of PD-1and low levels of CD127expression [J]. Journalof virology,2007,81(6):2545-53.
    [137] BLANK C, KUBALL J, VOELKL S, et al. Blockade of PD-L1(B7-H1) augmentshuman tumor-specific T cell responses in vitro [J]. International journal of cancerJournal international du cancer,2006,119(2):317-27.
    [138] GEHRING A J, HO Z Z, TAN A T, et al. Profile of tumor antigen-specific CD8T cellsin patients with hepatitis B virus-related hepatocellular carcinoma [J].Gastroenterology,2009,137(2):682-90.
    [139] AHMADZADEH M, JOHNSON L A, HEEMSKERK B, et al. Tumor antigen-specificCD8T cells infiltrating the tumor express high levels of PD-1and are functionallyimpaired [J]. Blood,2009,114(8):1537-44.
    [140] YAMAMOTO R, NISHIKORI M, KITAWAKI T, et al. PD-1-PD-1ligand interactioncontributes to immunosuppressive microenvironment of Hodgkin lymphoma [J].Blood,2008,111(6):3220-4.
    [141] MUMPRECHT S, SCHURCH C, SCHWALLER J, et al. Programmed death1signaling on chronic myeloid leukemia-specific T cells results in T-cell exhaustion anddisease progression [J]. Blood,2009,114(8):1528-36.
    [142] DONG H, STROME S E, SALOMAO D R, et al. Tumor-associated B7-H1promotesT-cell apoptosis: a potential mechanism of immune evasion [J]. Nature medicine,2002,8(8):793-800.
    [143] CURIEL T J, WEI S, DONG H, et al. Blockade of B7-H1improves myeloid dendriticcell-mediated antitumor immunity [J]. Nature medicine,2003,9(5):562-7.
    [144] THOMPSON R H, KUNTZ S M, LEIBOVICH B C, et al. Tumor B7-H1is associatedwith poor prognosis in renal cell carcinoma patients with long-term follow-up [J].Cancer research,2006,66(7):3381-5.
    [145] ZHANG L, GAJEWSKI T F, KLINE J. PD-1/PD-L1interactions inhibit antitumorimmune responses in a murine acute myeloid leukemia model [J]. Blood,2009,114(8):1545-52.
    [146] FOURCADE J, KUDELA P, SUN Z, et al. PD-1is a regulator of NY-ESO-1-specificCD8+T cell expansion in melanoma patients [J]. J Immunol,2009,182(9):5240-9.
    [147] WHERRY E J, BLATTMAN J N, MURALI-KRISHNA K, et al. Viral persistencealters CD8T-cell immunodominance and tissue distribution and results in distinctstages of functional impairment [J]. Journal of virology,2003,77(8):4911-27.
    [148] WU F H, YUAN Y, LI D, et al. Endothelial cell-expressed Tim-3facilitates metastasisof melanoma cells by activating the NF-κB pathway [J]. Oncology reports,2010,24(3):693-9.
    [149] SEHRAWAT S, REDDY P B, RAJASAGI N, et al. Galectin-9/TIM-3interactionregulates virus-specific primary and memory CD8T cell response [J]. PLoS pathogens,2010,6(5): e1000882.
    [150] TAKAMURA S, TSUJI-KAWAHARA S, YAGITA H, et al. Premature terminalexhaustion of Friend virus-specific effector CD8+T cells by rapid induction ofmultiple inhibitory receptors [J]. J Immunol,2010,184(9):4696-707.
    [151] GABRILOVICH D I, NAGARAJ S. Myeloid-derived suppressor cells as regulators ofthe immune system [J]. Nature reviews Immunology,2009,9(3):162-74.
    [152] DARDALHON V, ANDERSON A C, KARMAN J, et al. Tim-3/galectin-9pathway:regulation of Th1immunity through promotion of CD11b+Ly-6G+myeloid cells [J]. JImmunol,2010,185(3):1383-92.
    [153] FLYNN J L, CHAN J. Immunology of tuberculosis [J]. Annual review of immunology,2001,19:93-129.
    [154] BLACKBURN S D, SHIN H, HAINING W N, et al. Coregulation of CD8+T cellexhaustion by multiple inhibitory receptors during chronic viral infection [J]. Natureimmunology,2009,10(1):29-37.
    [155] MENGSHOL J A, GOLDEN-MASON L, ARIKAWA T, et al. A crucial role forKupffer cell-derived galectin-9in regulation of T cell immunity in hepatitis Cinfection [J]. PloS one,2010,5(3): e9504.
    [156] LEITNER J, RIEGER A, PICKL W F, et al. TIM-3does not act as a receptor forgalectin-9[J]. PLoS pathogens,2013,9(3): e1003253.
    [157] BARTOLAZZI A, GASBARRI A, PAPOTTI M, et al. Application of animmunodiagnostic method for improving preoperative diagnosis of nodular thyroidlesions [J]. Lancet,2001,357(9269):1644-50.
    [158] OKUDAIRA T, HIRASHIMA M, ISHIKAWA C, et al. A modified version ofgalectin-9suppresses cell growth and induces apoptosis of human T-cell leukemiavirus type I-infected T-cell lines [J]. International journal of cancer Journalinternational du cancer,2007,120(10):2251-61.