Th17/Treg免疫偏移在系统性红斑狼疮发病机制中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     研究系统性红斑狼疮(SLE)患者外周血中T辅助细胞17(Th17细胞)、调节性T细胞(Treg)亚群的比例,外周血CD4+ T细胞中CD25和FoxP3的表达,Th17、Treg细胞特异性转录因子RORγt、FoxP3基因表达水平,检测血清中相关细胞因子白细胞介素-17(IL-17)、干扰素-γ(IFN-γ)、白细胞介素-4(IL-4)、血清和尿中转化生长因子-β1(TGF-β1)水平的变化,揭示Th17、Treg细胞及相关细胞因子在狼疮性肾炎发病中的免疫机制作用。
     方法
     选取60例系统性红斑狼疮患者和28例相匹配的健康体检者作为对照,采用流式细胞仪检测所有受试者外周血单个核细胞(PBMC)中的Th17细胞和CD4+CD25+、CD4+CD25high、CD4+CD25+FoxP3+T细胞的百分率,检测FoxP3在CD4+CD25high、CD4+CD25-中的表达。逆转录聚合酶链反应(RT-PCR)检测PBMC中RORγtmRNA、FoxP3 mRNA的表达水平,酶联免疫吸附测定法(ELISA法)检测血清中IL-17、IL-2、IL-4、血清和尿中TGF-β1水平,并对其与SLEDAI、SDI.24小时尿蛋白量相关性进行研究。
     结果
     1.狼疮性肾炎组患者外周血中Th17细胞百分率与狼疮无肾炎组、健康对照组相比显著升高(P<0.05,P<0.01);CD4+T细胞中的CD4+CD25+、CD4+CD25high和CD4+CD25+FoxP3+T细胞百分率显著降低(P<0.05, P<0.01); FoxP3在CD4+CD25highT细胞中的表达率及平均免疫荧光强度(MFI)较狼疮无肾炎组及健康对照组患者显著降低(P<0.05,P<0.01);FoxP3在CD4+CD25-T细胞中的表达率较健康对照组显著增高(P<0.01)。
     2.狼疮性肾炎组患者外周血中RORγt mRNA表达水平与健康对照组、狼疮无肾炎组相比显著升高(P<0.05);狼疮性肾炎组FoxP3 mRNA表达水平与健康对照组相比显著降低(P<0.05)。
     3.狼疮性肾炎组患者血清IL-17、IFN-γ、IL-4水平均显著高于狼疮无肾炎组和健康对照组(P<0.001),血清TGF-β1水平显著低于健康对照组水平(P<0.001),而尿TGF-β1水平显著高于狼疮无肾炎组和健康对照组(P<0.001),尿TGF-β1表达水平与24小时尿蛋白量成正相关(P<0.01)。
     结论
     狼疮性肾炎患者外周血中Th17细胞比例显著升高,Treg细胞比例显著降低,转录因子RORγt mRNA表达水平升高而FoxP3 mRNA表达水平降低,外周血中转录因子失衡导致Th17/Treg免疫偏移,体内的免疫抑制效应减弱而免疫炎性效应增强,继而细胞因子网络失衡,免疫耐受缺失,促炎细胞因子升高促进狼疮性肾炎的发生、发展。
Objective
     To investigate the variations of T-helper 17 (Th17) and regulatory T (Treg) cells, assess the expression of FoxP3 and CD25 on CD4+ regulatory T (Treg) cells and the expression of RORyt gene and FoxP3 gene, measure the level of Th cells related cytokines and their clinical significance in patients with systemic lupus erythematosus (SLE), evaluate the role of Th17 and Treg cells in the pathogenesis of patients with lupus nephritis (LN).
     Methods
     A total of 60 systemic lupus erythematosus patients and 28 healthy controls were enrolled. The frequency of Th17 cells and Treg cells in peripheral blood mononuclear cells (PBMC) was evaluated by flow cytometry (FACS). The expression of CD25 and FoxP3 by CD4+ T cells was analyzed by flow cytometric analysis. RT-PCR was used to measure the expression of RORyt gene and FoxP3 gene. The concentrations of serum IL-17, IL-4, IFN-y, TGF-β1 and urinary TGF-β1 were measured by enzyme-linked immunosorbent assay (ELISA).
     Results
     1. A significant increase in the frequency of Th17 cells and a significant decrease in the frequency of CD4+CD25+、CD4+CD25high and CD4+CD25+FoxP3+ T cells in peripheral blood of LN patients compared with SLE group and healthy controls (P< 0.05, P<0.01; respectively). LN patients had a lower percentage and expression of FoxP3 in CD4+CD25high T cells than SLE patients without nephritis (P< 0.05).
     2. The expression of RORyt mRNA levels in LN patients exhibited a significant increase compared with patients without nephritis and healthy controls (P< 0.05). The expression of FoxP3 mRNA levels in LN patients exhibited a significant decrease compared with healthy controls (P<0.05).
     3. The concentration of serum IL-17, IL-4, IFN-y was found increased in LN patients compared with that from healthy controls (P< 0.001), while serum TGF-β1 was found decreased in SLE patients compared with that from healthy controls (P< 0.001). Urinary TGF-β1 levels were significantly higher in SLE patients with nephritis in comparison to those without nephritis and healthy controls (P<0.001), urinary TGF-β1 levels correlated positively with 24h urine protein (P<0.01).
     Conclusions
     The significantly elevated Th17 cells were accompanied by FoxP3+Treg cells decrease in lupus nephritis, suggesting that Th17/Treg functional imbalance may be involved in the pathogenesis of renal damage in SLE patients.
引文
[1]. Mok CC, Ying KY, Ng WL, et al. Long-term outcome of diffuse proliferative lupus glomerulonephritis treated with cyclophosphamide. Am J Med,2006. 119(4):p.355 e25-33.
    [2]. Castellino F, Germain RN. Cooperation between CD4+ and CD8+ T cells: when, where, and how. Annu Rev Immunol,2006.24:p.519-40.
    [3]. Harrington LE, Mangan PR, Weaver CT. Expanding the effector CD4 T-cell repertoire:the Th17 lineage. Curr Opin Immunol,2006.18(3):p. 349-56.
    [4]. Hsu HC, Yang P, Wang J, et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol,2008.9(2):p. 166-75.
    [5]. Kang HK, Liu M, Datta SK. Low-dose peptide tolerance therapy of lupus generates plasmacytoid dendritic cells that cause expansion of autoantigen-specific regulatory T cells and contraction of inflammatory Th17 cells. J Immunol,2007.178(12):p.7849-58.
    [6]. Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol,1995.155(3):p.1151-64.
    [7]. Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med,2005. 201 (2):p.233-40.
    [8]. Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol,2008.9(6):p.641-9.
    [9]. Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol,2005.6(11):p.1123-32.
    [10]. Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol,2005. 6(11):p.1133-41.
    [11]. Wang D, John SA, Clements JL, et al. Ets-1 deficiency leads to altered B cell differentiation, hyperresponsiveness to TLR9 and autoimmune disease. Int Immunol,2005.17(9):p.1179-91.
    [12]. Yu JJ, Gaffen SL. Interleukin-17:a novel inflammatory cytokine that bridges innate and adaptive immunity. Front Biosci,2008.13:p.170-7.
    [13]. Sullivan KE, Piliero LM, Dharia T, et al.3'polymorphisms of ETS1 are associated with different clinical phenotypes in SLE. Hum Mutat,2000. 16(1):p.49-53.
    [14]. Wu HY, Staines NA. A deficiency of CD4+CD25+ T cells permits the development of spontaneous lupus-like disease in mice, and can be reversed by induction of mucosal tolerance to histone peptide autoantigen. Lupus,2004.13(3):p.192-200.
    [15]. Koonpaew S, Shen S, Flowers L, et al. LAT-mediated signaling in CD4+CD25+ regulatory T cell development. J Exp Med,2006.203(1):p. 119-29.
    [16]. Barath S, Aleksza M, Tarr T, et al. Measurement of natural (CD4+CD25high) and inducible (CD4+IL-10+) regulatory T cells in patients with systemic lupus erythematosus. Lupus,2007.16(7):p.489-96.
    [17]. Crispin JC, Martinez A, Alcocer-Varela J. Quantification of regulatory T cells in patients with systemic lupus erythematosus. J Autoimmun, 2003.21 (3):p.273-6.
    [18]. Mellor-Pita S, Citores MJ, Castejon R, et al. Decrease of regulatory T cells in patients with systemic lupus erythematosus. Ann Rheum Dis, 2006.65(4):p.553-4.
    [19]. Lee HY, Hong YK, Yun HJ, et al. Altered frequency and migration capacity of CD4+CD25+regulatory T cells in systemic lupus erythematosus. Rheumatology (Oxford),2008.47 (6):p.789-94.
    [20]. Yan B, Ye S, Chen G, et al. Dysfunctional CD4+, CD25+ regulatory T cells in untreated active systemic lupus erythematosus secondary to interferon-alpha-producing antigen-presenting cells. Arthritis Rheum, 2008.58(3):p.801-12.
    [21]. Alvarado-Sanchez B, Hernandez-Castro B, Portales-Perez D, et al. Regulatory T cells in patients with systemic lupus erythematosus. J Autoimmun,2006.27(2):p.110-8.
    [22]. Zhang B, Zhang X, Tang FL, et al. Clinical significance of increased CD4+CD25-Foxp3+ T cells in patients with new-onset systemic lupus erythematosus. Ann Rheum Dis,2008.67(7):p.1037-40.
    [23]. Zhang B, Zhang X, Tang F, et al. Reduction of forkhead box P3 levels in CD4+CD25high T cells in patients with new-onset systemic lupus erythematosus. Clin Exp Immunol,2008.153(2):p.182-7.
    [24]. Vargas-Rojas MI, Crispin JC, Richaud-Patin Y, et al. Quantitative and qualitative normal regulatory T cells are not capable of inducing suppression in SLE patients due to T-cell resistance. Lupus,2008. 17(4):p.289-94.
    [25]. Becker-Merok A, EilertsenGO, Nossent JC. Levels of transforming growth factor-beta are low in systemic lupus erythematosus patients with active disease. J Rheumatol,2008.37(10):p.2039-45.
    [26]. Nagler-Anderson C, Bhan AK, Podolsky DK, et al. Control freaks:immune regulatory cells. Nat Immunol,2004.5(2):p.119-22.
    [27]. Fehervari Z, Sakaguchi S. Development and function of CD25+CD4+ regulatory T cells. Curr Opin Immunol,2004.16(2):p.203-8.
    [28]. Walker MR, Kasprowicz DJ, Gersuk VH, et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25-T cells. J Clin Invest,2003.112(9):p.1437-43.
    [29]. Kretschmer K, Apostolou I, Hawiger D, et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol,2005. 6(12):p.1219-27.
    [30]. Scotta C, Soligo M, Camperio C, et al. FOXP3 induced by CD28/B7 interaction regulates CD25 and anergic phenotype in human CD4+CD25-T lymphocytes. J Immunol,2008.181(2):p.1025-33.
    [31]. Wang J, Ioan-Facsinay A, van der Voort El, et al. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol, 2007.37(1):p.129-38.
    [32]. Huan J, Culbertson N, Spencer L, et al. Decreased FOXP3 levels in multiple sclerosis patients. J Neurosci Res,2005.81(1):p.45-52.
    [33]. Balandina A, Lecart S, Dartevelle P, et al. Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood,2005.105(2):p.735-41.
    [34]. Zhou L, Lopes JE, Chong MM, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature,2008.453(7192):p.236-40.
    [35]. Yuan R, Maeda Y, Li W, et al. Erythropoietin:a potent inducer of peripheral immuno/inflammatory modulation in autoimmune EAE. PLoS One, 2008.3(4):p. e1924.
    [36]. Cheng X, Yu X, Ding YJ, et al. The Thl7/Treg imbalance in patients with acute coronary syndrome. Clin Immunol,2008.127(1):p.89-97.
    [37]. Wang W, Shao S, Jiao Z, et al. The Thl7/Treg imbalance and cytokine environment in peripheral blood of patients with rheumatoid arthritis. Rheumatol Int,2011.
    [38].马蕾,李晓红,张玉杰等.过敏性紫癜患者外周血Th17/Treg细胞平衡性检测.中华皮肤科杂志,2010.43(9):p.617-619.
    [1]. Hsu HC, Yang P, Wang J, et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol,2008.9(2):p.166-75.
    [2]. Wong CK, Ho CY, Li EK, et al. Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus,2000.9(8):p.589-93.
    [3]. Kurasawa K, Hirose K, Sano H, et al. Increased interleukin-17 production in patients with systemic sclerosis. Arthritis Rheum,2000.43(11):p. 2455-63.
    [4]. Yu JJ, Gaffen SL. Interleukin-17:a novel inflammatory cytokine that bridges innate and adaptive immunity. Front Biosci,2008.13:p.170-7.
    [5]. Thompson C, Powrie F. Regulatory T cells. Curr Opin Pharmacol,2004. 4(4):p.408-14.
    [6]. Mamura M, Lee W, Sullivan TJ, et al. CD28 disruption exacerbates inflammation in Tgf-betal-/-mice:in vivo suppression by CD4+CD25+ regulatory T cells independent of autocrine TGF-betal.Blood,2004. 103(12):p.4594-601.
    [7]. Ohtsuka K, Gray JD, Stimmler MM, et al. Decreased production of TGF-beta by lymphocytes from patients with systemic lupus erythematosus. J Immunol,1998.160(5):p.2539-45.
    [8]. Zheng SG, Wang JH, Koss MN, et al. CD4+ and CD8+ regulatory T cells generated ex vivo with IL-2 and TGF-beta suppress a stimulatory graft-versus-host disease with a lupus-like syndrome. J Immunol,2004. 172(3):p.1531-9.
    [9]. Yamamoto T, Noble NA, Cohen AH, et al. Expression of transforming growth factor-beta isoforms in human glomerular diseases. Kidney Int,1996. 49(2):p.461-9.
    [10]. Sharma R, Khanna A, Sharma M, et al. Transforming growth factor-betal increases albumin permeability of isolated rat glomeruli via hydroxyl radicals. Kidney Int,2000.58(1):p.131-6.
    [11].杜圆圆,吕吟秋,黄朝兴等.血和尿转化生长因子-β1在预测IgA肾病进展中的临床应用价值.浙江医学,2008.30(11):p.1173-1175.
    [12]. Funauchi M, Ikoma S, Enomoto H, et al. Decreased Th1-like and increased Th2-like cells in systemic lupus erythematosus. Scand J Rheumatol,1998. 27(3):p.219-24.
    [13]. Horwitz DA, Gray JD, Behrendsen SC, et al. Decreased production of interleukin-12 and other Th1-type cytokines in patients with recent-onset systemic lupus erythematosus. Arthritis Rheum,1998.41(5): p.838-44.
    [14]. Takahashi S, Fossati L, Iwamoto M, et al. Imbalance towards Th1 predominance is associated with acceleration of lupus-like autoimmune syndrome in MRL mice. J Clin Invest,1996.97(7):p.1597-604.
    [15]. Viallard JF, Pellegrin JL, Ranchin V, et al. Th1 (IL-2, interferon-gamma (IFN-gamma)) and Th2 (IL-10, IL-4) cytokine production by peripheral blood mononuclear cells (PBMC) from patients with systemic lupus erythematosus (SLE). Clin Exp Immunol,1999.115(1):p.189-95.
    [16]. Nakajima A, Hirose S, Yagita H, et al. Roles of IL-4 and IL-12 in the development of lupus in NZB/W F1 mice. J Immunol,1997.158(3):p. 1466-72.
    [17]. Akahoshi M, Nakashima H, Tanaka Y, et al. Th1/Th2 balance of peripheral T helper cells in systemic lupus erythematosus. Arthritis Rheum,1999. 42(8):p.1644-8.
    [18]. Segal R, Dayan M, Globerson A, et al. Effect of aging on cytokine production in normal and experimental systemic lupus erythematosus afflicted mice. Mech Ageing Dev,1997.96(1-3):p.47-58.
    [19]. Segal R, Bermas BL, Dayan M, et al. Kinetics of cytokine production in experimental systemic lupus erythematosus:involvement of T helper cell 1/T helper cell 2-type cytokines in disease. J Immunol,1997.158(6): p.3009-16.
    [20]. Mok CC, Lau CS. Pathogenesis of systemic lupus erythematosus. J Clin Pathol,2003.56(7):p.481-90.
    [21]. Uhm WS, Na K, Song GW, et al. Cytokine balance in kidney tissue from lupus nephritis patients. Rheumatology (Oxford),2003.42(8):p.935-8.
    [22]. Balomenos D, Rumold R, Theofilopoulos AN. Interferon-gamma is required for lupus-like disease and lymphoaccumulation in MRL-lpr mice. J Clin Invest,1998.101(2):p.364-71.
    [23]. Huang X, Zhu J, Yang Y. Protection against autoimmunity in nonlymphopenic hosts by CD4+ CD25+ regulatory T cells is antigen-specific and requires IL-10 and TGF-beta. J Immunol,2005. 175(7):p.4283-91.
    [1]. Castellino F, Germain RN. Cooperation between CD4+ and CD8+ T cells:when, where, and how. Annu Rev Immunol,2006.24:p.519-40.
    [2]. Harrington LE, Mangan PR, Weaver CT. Expanding the effector CD4 T-cell repertoire: the Th17 lineage. Curr Opin Immunol,2006.18(3):p.349-56.
    [3]. Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol,2005.6(11):p.1123-32.
    [4]. Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol,2005.6(11):p.1133-41.
    [5]. Bettelli E, Kuchroo VK. IL-12-and IL-23-induced T helper cell subsets:birds of the same feather flock together. J Exp Med,2005.201(2):p.169-71.
    [6]. McKenzie BS, Kastelein RA, Cua DJ. Understanding the IL-23-IL-17 immune pathway. Trends Immunol,2006.27(1):p.17-23.
    [7]. Ivanov, II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell,2006.126(6):p.1121-33.
    [8]. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature,2006. 441(7090):p.235-8.
    [9]. Zhou L, Lopes JE, Chong MM, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature,2008.453(7192): p.236-40.
    [10]. Morishima N, Mizoguchi I, Takeda K, et al. TGF-beta is necessary for induction of IL-23R and Th17 differentiation by IL-6 and IL-23. Biochem Biophys Res Commun, 2009.386(1):p.105-10.
    [11]. Weaver CT, Harrington LE, Mangan PR, et al.Th17:an effector CD4 T cell lineage with regulatory T cell ties. Immunity,2006.24(6):p.677-88.
    [12]. Nurieva R, Yang XO, Martinez G, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature,2007.448(7152):p.480-3.
    [13]. Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature,2007.448(7152):p.484-7.
    [14]. Zhou L, Ivanov, II, Spolski R, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol, 2007.8(9):p.967-74.
    [15]. McGeachy MJ, Chen Y, Tato CM, et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol,2009.10(3):p.314-24.
    [16]. Hoeve MA, Savage ND, de Boer T, et al. Divergent effects of IL-12 and IL-23 on the production of IL-17 by human T cells. Eur J Immunol,2006.36(3):p.661-70.
    [17]. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, et al. Interleukins lbeta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol,2007.8(9):p. 942-9.
    [18]. Wilson NJ, Boniface K, Chan JR, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol,2007.8(9):p. 950-7.
    [19]. Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol,2008.9(6):p.641-9.
    [20]. Volpe E, Servant N, Zollinger R, et al. A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol,2008.9(6):p.650-7.
    [21]. Yang L, Anderson DE, Baecher-Allan C, et al. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature,2008.454(7202):p.350-2.
    [22]. Yang XO, Pappu BP, Nurieva R, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity,2008. 28(1):p.29-39.
    [23]. Yang XO, Panopoulos AD, Nurieva R, et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem,2007.282(13):p. 9358-63.
    [24]. Korn T, Oukka M, Kuchroo V, et al. Th17 cells:effector T cells with inflammatory properties. Semin Immunol,2007.19(6):p.362-71.
    [25]. Weaver CT, Murphy KM. The central role of the Th17 lineage in regulating the inflammatory/autoimmune axis. Semin Immunol,2007.19(6):p.351-2.
    [26]. Huang W, Na L, Fidel PL, et al. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis,2004.190(3):p. 624-31.
    [27]. Chung DR, Kasper DL, Panzo RJ, et al. CD4+ T cells mediate abscess formation in intra-abdominal sepsis by an IL-17-dependent mechanism. J Immunol,2003.170(4): p.1958-63.
    [28]. Fujino S, Andoh A, Bamba S, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut,2003.52(1):p.65-70.
    [29]. Summers SA, Steinmetz OM, Li M, et al. Thl and Th17 cells induce proliferative glomerulonephritis.J Am Soc Nephrol,2009.20(12):p.2518-24.
    [30]. Kilis-Pstrusinska K, Zwolinska D, Medynska A, et al. [Interleukin-17 concentration in serum and urine of children with idiopathic nephrotic syndrome]. Przegl Lek,2006.63 Suppl 3:p.198-200.
    [31]. Tzartos JS, Friese MA, Craner MJ, et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol,2008.172(1):p.146-55.
    [32]. Kim HR, Kim HS, Park MK, et al. The clinical role of IL-23p19 in patients with rheumatoid arthritis. Scand J Rheumatol,2007.36(4):p.259-64.
    [33]. Honorati MC, Neri S, Cattini L, et al. Interleukin-17, a regulator of angiogenic factor release by synovial fibroblasts. Osteoarthritis Cartilage,2006.14(4): p.345-52.
    [34]. Parsonage G, Filer A, Bik M, et al. Prolonged, granulocyte-macrophage colony-stimulating factor-dependent, neutrophil survival following rheumatoid synovial fibroblast activation by IL-17 and TNFalpha. Arthritis Res Ther,2008. 10(2):p. R47.
    [35]. Ferretti S, Bonneau O, Dubois GR, et al. IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger. J Immunol,2003.170(4):p.2106-12.
    [36]. Bullens DM, Truyen E, Coteur L, et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir Res,2006. 7:p.135.
    [37]. Benchetrit F, Ciree A, Vives V, et al. Interleukin-17 inhibits tumor cell growth by means of a T-cell-dependent mechanism. Blood,2002.99(6):p.2114-21.
    [38]. Murugaiyan G, Saha B. Protumor vs antitumor functions of IL-17. J Immunol,2009. 183(7):p.4169-75.
    [39]. Yoshida S, Haque A, Mizobuchi T, et al. Anti-type Ⅴ collagen lymphocytes that express IL-17 and IL-23 induce rejection pathology in fresh and well-healed lung transplants. Am J Transplant,2006.6(4):p.724-35.
    [40]. Hsu HC, Yang P, Wang J, et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol,2008.9(2):p.166-75.
    [41]. Wang D, John SA, Clements JL, et al. Ets-1 deficiency leads to altered B cell differentiation, hyperresponsiveness to TLR9 and autoimmune disease. Int Immunol,2005.17(9):p.1179-91.
    [42]. Moisan J, Grenningloh R, Bettelli E, et al. Ets-1 is a negative regulator of Th17 differentiation. J Exp Med,2007.204(12):p.2825-35.
    [43]. Kang HK, Liu M, Datta SK. Low-dose peptide tolerance therapy of lupus generates plasmacytoid dendritic cells that cause expansion of autoantigen-specific regulatory T cells and contraction of inflammatory Th17 cells. J Immunol,2007. 178(12):p.7849-58.
    [44]. Qian Y, Qin J, Cui G, et al. Actl, a negative regulator in CD40- and BAFF-mediated B cell survival. Immunity,2004.21(4):p.575-87.
    [45]. Dai J, Liu B, Cua DJ, et al. Essential roles of IL-12 and dendritic cells but not IL-23 and macrophages in lupus-like diseases initiated by cell surface HSP gp96. Eur J Immunol,2007.37(3):p.706-15.
    [46]. Wong CK, Ho CY, Li EK, et al. Elevation of pro inflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus,2000.9(8):p.589-93.
    [47]. Liu CC, Ahearn JM. The search for lupus biomarkers. Best Pract Res Clin Rheumatol, 2009.23 (4):p.507-23.
    [48]. Sullivan KE, Piliero LM, Dharia T, et al.3' polymorphisms of ETS1 are associated with different clinical phenotypes in SLE. Hum Mutat,2000.16(1):p.49-53.
    [49]. Yu JJ, Gaffen SL. Interleukin-17:a novel inflammatory cytokine that bridges innate and adaptive immunity. Front Biosci,2008.13:p.170-7.
    [50]. Kurasawa K, Hirose K, Sano H, et al. Increased interleukin-17 production in patients with systemic sclerosis. Arthritis Rheum,2000.43(11):p.2455-63.
    [51]. Szabo SJ, Kim ST, Costa GL, et al. A novel transcription factor, T-bet, directs Thl lineage commitment. Cell,2000.100(6):p.655-69.
    [52]. Bettelli E, Sullivan B, Szabo SJ, et al. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J Exp Med,2004. 200(1):p.79-87.
    [53]. Ehirchiou D, Xiong Y, Xu G, et al. CDllb facilitates the development of peripheral tolerance by suppressing Th17 differentiation. J Exp Med,2007.204(7):p. 1519-24.
    [54]. Nagler-Anderson C, Bhan AK, Podolsky DK, et al. Control freaks:immune regulatory cells. Nat Immunol,2004.5(2):p.119-22.
    [55]. Xue C, Lan-Lan W, Bei C, et al. Abnormal Fas/FasL and caspase-3-mediated apoptotic signaling pathways of T lymphocyte subset in patients with systemic lupus erythematosus. Cell Immunol,2006.239(2):p.121-8.
    [56]. Wang H, Xu J, Ji X, et al. The abnormal apoptosis of T cell subsets and possible involvement of IL-10 in systemic lupus erythematosus. Cell Immunol,2005.235(2): p.117-21.
    [57]. Thornton AM, Shevach EM. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol,2000.164(1):p. 183-90.
    [58]. Takahashi T, Kuniyasu Y, Toda M, et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells:induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol,1998.10(12): p.1969-80.
    [59]. Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol,2004. 22:p.531-62.
    [60]. Seddiki N, Santner-Nanan B, Martinson J, et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med,2006.203(7):p.1693-700.
    [61]. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science,2003.299(5609):p.1057-61.
    [62]. Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med,2000.192(2):p.295-302.
    [63]. Paust S, Lu L, McCarty N, et al. Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc Natl Acad Sci U S A,2004.101(28): p.10398-403.
    [64]. Shimizu J, Yamazaki S, Takahashi T, et al. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol,2002. 3(2):p.135-42.
    [65]. Maloy KJ, Salaun L, Cahill R, et al. CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J Exp Med,2003.197(1):p. 111-9.
    [66]. Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med,2001.194(5):p.629-44.
    [67]. von Boehmer H. Mechanisms of suppression by suppressor T cells. Nat Immunol,2005. 6(4):p.338-44.
    [68]. Fehervari Z, Sakaguchi S. Development and function of CD25+CD4+regulatory T cells. Curr Opin Immunol,2004.16(2):p.203-8.
    [69]. Walker MR, Kasprowicz DJ, Gersuk VH, et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25-T cells. J Clin Invest, 2003.112(9):p.1437-43.
    [70]. Cuda CM, Wan S, Sobel ES, et al. Murine lupus susceptibility locus Slela controls regulatory T cell number and function through multiple mechanisms. J Immunol, 2007.179(11):p.7439-47.
    [71]. Wu HY, Staines NA. A deficiency of CD4+CD25+T cells permits the development of spontaneous lupus-like disease in mice, and can be reversed by induction of mucosal tolerance to histone peptide autoantigen. Lupus,2004.13(3):p. 192-200.
    [72]. Vargas-Rojas MI, Crispin JC, Richaud-Patin Y, et al. Quantitative and qualitative normal regulatory T cells are not capable of inducing suppression in SLE patients due to T-cell resistance. Lupus,2008.17(4):p.289-94.
    [73]. Suen JL, Li HT, Jong YJ, et al. Altered homeostasis of CD4(+) FoxP3 (+) regulatory T-cell subpopulations in systemic lupus crythematosus. Immunology,2009.127(2): p.196-205.
    [74].李向培,翟志敏,钱龙.系统性红斑狼疮患者CD4+ CD25+ T调节性细胞的变化.中华风湿病学杂志,2006.10(3):p.141-144.
    [75]. Marie JC, Letterio JJ, Gavin M, et al. TGF-betal maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med,2005.201(7): p.1061-7.
    [76].孙娜,刘必成.尿TGF β1检测在肾脏疾病诊断中的临床意义.国外医学泌尿分册,2002.22(1):p.3-6.
    [77]. Murakami K, Takemura T, Hino S, et al. Urinary transforming growth factor-beta in patients with glomerular diseases. Pediatr Nephrol,1997.11(3):p.334-6.
    [78]. Yamamoto T, Noble NA, Cohen AH, et al. Expression of transforming growth factor-beta isoforms in human glomerular diseases. Kidney Int,1996.49(2):p. 461-9.
    [79].王文新,张青霞,刘宏伟.TGF-β1在IgA肾病患者肾组织中的表达.基础医学与临床,2002.22:p.43-44.
    [80].吴莉,邹敏书,顾岚.不同病理类型患儿尿液转化生长因子-β水平的观察.肾脏病与透析肾移植杂志,2003.12:p.360-361.
    [81]. Shin GT, Kim SJ, Ma KA, et al. ACE inhibitors attenuate expression of renal transforming growth factor-betal in humans. Am J Kidney Dis,2000.36(5):p. 894-902.
    [82].杜圆圆,吕吟秋,黄朝兴等.血和尿转化生长因子-β1在预测IgA肾病进展中的临床应用价值.浙江医学,2008.30(11):p.1173-1175.
    [83]. Sharma R, Khanna A, Sharma M, et al. Transforming growth factor-betal increases albumin permeability of isolated rat glomeruli via hydroxyl radicals. Kidney Int,2000.58(1):p.131-6.
    [84]. Deknuydt F, Bioley G, Valmori D, et al. IL-1beta and IL-2 convert human Treg into T(H)17 cells. Clin Immunol,2009.131(2):p.298-307.
    [85]. Gavin MA, Rasmussen JP, Fontenot JD, et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature,2007.445(7129):p.771-5.