IL-18/IL-18BP在ITP发病机制中的调控及其免疫干预作用探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
免疫性血小板减少性紫癜(immune thrombocytopenia, ITP),亦称特发性血小板减少性紫癜(idiopathic thrombocytopenic purpura, ITP),是一种自身免疫性出血性疾病,该病的特点是患者体内抗血小板抗体增多,血小板破坏过多而出血。其发病机制目前尚未完全明了,但确认与免疫应答异常有关。近年来,国内外学者在ITP方面进行了大量的基础和临床研究,虽取得阶段性成果,但其发病机制、早期诊断和治疗措施仍处于探索之中。深入研究ITP发病免疫异常机制,探讨阻断ITP发病途径无疑对于ITP的诊治具有重要意义。
     大量实验研究表明,ITP的发病与细胞免疫功能异常关系密切。尽管B细胞过度增殖、活化和成熟产生多种针对血小板的自身抗体(包括抗血小板膜糖蛋白(glycoprotein,GP)Ⅱb/Ⅲa、GP Ib抗体)是ITP发病的直接原因,但T细胞亚群功能和比例失调导致B细胞激活可能才是ITP主要的发病机制,部分情况下,细胞毒性T细胞可直接导致ITP患者的血小板溶解。许多研究表明在ITP中,T辅助细胞(Th)1和Th2处于失衡状态,Th1/Th2比例明显上调。
     Th可以分化为Th1、Th2和Th17亚群。目前研究资料表明,Th1/Th2细胞的平衡,是体内体液免疫及细胞免疫间重要的调节枢纽,在自身免疫病的发生发展过程中起重要作用。Th1细胞主要分泌IL-2,IFN-γ,TNF-α等细胞因子,介导迟发型超敏反应(DTH)和巨噬细胞活化等细胞免疫反应;Th2细胞主要分泌IL-4,IL-5,IL-10和IL-13等细胞因子,促进B细胞增殖并分化成浆细胞,分泌特异性抗体,提高黏膜免疫力,介导体液免疫和Ⅰ型超敏反应。近年来,研究发现CD8+T至少也可分为两群,一群与Th1细胞相似,分泌IL-2,IFN-γ,TNF-α等细胞因子,称为Tc1;另一群与Th2细胞相似分泌IL-4,IL-5,IL-10等细胞因子,称为Tc2。人们将Th1和Tc1,Th2和Tc2分别统称为Th1类、Th2类细胞。Th细胞之间的失衡与许多疾病的发生、发展密切相关,多数活动性器官自身免疫病倾向于Th1细胞反应,而Th2细胞反应往往与自身免疫病保护有关。本研究证实ITP患者存在Th1极化现象,与Panitsas FP等人研究相符。
     作为T细胞炎症介质的强有力的诱导者,IL-18通过刺激Th1反应、诱导严重免疫紊乱,从而参与一些免疫疾病的发生发展。IL-18是1996年正式命名的细胞因子,主要由单核巨噬细胞产生,是一种强有力的免疫调节因子,其结构与IL-1相似,功能与IL-12相似,但发挥作用却不依赖于两者。人在正常状态下,产生于细胞内的IL-18是以没有生物活性的前体形式存在,由193个氨基酸组成,无N糖基化位点和疏水信号肽序列,N-端有一36个氨基酸的前导序列。经IL-1β转化酶(IL-1βconverting enzyme, ICE)切除其前导序列后,IL-18才以单体的形式表现出生物学活性。与IL-18受体(interleukin 18 receptor, IL-18R)结合,通过IL-1受体相关激酶(interleukin-1 receptor-associated kinase, IRAK)途径活化肿瘤坏死因子受体相关因子6(TNF receptor-associated factor 6, TRAF-6)诱导NF-κB结合DNA信息,促进INF-γ等Th1细胞相关因子的释放而导致Th1/Th2失衡的发生。IL-18还可增强Th1细胞的FasL表达,增强FasL介导细胞毒效应,促使T、B细胞的凋亡发生,而凋亡细胞数量与自身免疫疾病活动性相关,因而IL-18在免疫系统和疾病的自我调节过程中发挥重要作用。IL-18结合蛋白(interleukin 18 binding protein, IL-18BP)为Novick等新近发现的一种糖蛋白,属于免疫超家族成员,能抑制IL-18诱导Th1细胞产生INF-γ,降低INF-γ对NF-κB的激活作用,是IL-18的天然拮抗剂,与IL-18协调作用参与细胞免疫反应。大量研究证实IL-18和IL-18BP在自身免疫性疾病的发生、发展中发挥重要的作用:在系统性红斑狼疮(systemic lupus erythematosus, SLE)、风湿性关节炎(rheumatoid arthritis,RA)等自身免疫性疾病的患者和动物模型中已经检测出上述因子mRNA和蛋白质的表达失衡,而通过内外源性IL-18BP抑制IL-18的作用已成为抗自身免疫性疾病的重要着眼点。但是,IL-18体系在ITP的疾病进程中的作用还没有得到清楚的了解。
     近年来,T细胞免疫球蛋白粘蛋白分子-3(T cell immunoglobulin-and mucin domain-containing molecules, Tim-3)在自身免疫性疾病中的作用日益受到人们的重视。Tim-3又称HAVcr-2(hepatitis A vires cell receptor 2),只选择性表达在分化的Th1细胞而不是Th2细胞上,通过与Tim-3配体(Tim-3 ligant, Tim-3L)即半乳糖凝集素-9(Galectin-9, Gal-9)结合,给T细胞提供一种负性共刺激信号,下调Th1及Th17细胞的反应,在自身和异体免疫性疾病以及免疫耐受中起着重要作用。既然ITP是一种Th1极化模式的自身免疫性疾病,而Tim-3特异性的表达于Th1细胞中,那么Tim-3是否在ITP发病中发挥作用呢?
     本研究以IL-18,IL-18BP,Tim-3等细胞因子的mRNA和蛋白质表达为指标,从细胞和分子水平探讨IL-18体系及Tim-3在ITP的发生和发展的作用。
     第一部分IL-18/IL-18BP在ITP发病及地塞米松治疗中的意义研究
     目的:
     探讨ITP患者体内IL-18,IL-18BP,IFN-γ,IL-4;转录因子T-bet,GATA-3的表达及地塞米松的作用,分析IL-18/IL-18BP在ITP患者中Th1类细胞优势应答中的作用。
     方法:
     (1)抽取37例ITP急性期患者,21例ITP缓解期患者和24例正常人的外周血15mL,其中17例初诊患者标本分别在大剂量地塞米松治疗前和治疗后两周采样。
     (2)从外周血中分离单个核细胞,提取mRNA。
     (3)应用ELISA检测ITP急性期,缓解期患者和正常对照外周血IL-18,IL-18BP.IFN-γ和IL-4的含量。
     (4)应用RT-PCR检测ITP急性期,缓解期患者和正常对照IL-18,IL-18BP,IFN-γ,IL-4和T-bet,GATA-3的表达。
     结果:
     (1)经ELISA检测,37例ITP急性期患者血浆中IL-18及IFN-γ的含量明显高于对照组和缓解期患者;IL-4的含量明显低于对照组;而IL-18BP的含量没有明显变化,IL-18/IL-18BP升高。
     (2)经RT-PCR检测,ITP急性期患者外周血单个核细胞的IL-18,IFN-γ和T-bet的表达明显升高;IL-4和GATA-3的表达明显降低,IL-18BP的含量没有明显变化。
     (3)大剂量地塞米松治疗后,IL-18,IFN-γ和T-bet含量明显降低,IL-18BP含量明显升高。
     结论:
     (1)证实了IL-18,IL-18BP参与了ITP发病;
     (2)大剂量地塞米松能够促进IL-18BP的生成,拮抗IL-18的作用而缓解ITP的发病;
     (3)应用外源性IL-18BP干预IL-18的作用可能成为ITP治疗的一个新靶点。
     第二部分IL-18BP对ITP患者外周血单个核细胞免疫干预机制探讨
     目的:
     研究外源性IL-18BP对ITP外周血单个核细胞(PBMCs)中IFN-γ,IL-4,IL-10等细胞因子的表达及细胞凋亡的影响,初步探讨IL-18BP在ITP免疫治疗中的作用和意义。
     方法:
     (1)收集我院2007年12月—2008年12月10例初诊ITP急性期患者及10例正常对照;
     (2)从外周血中分离单个核细胞,取不同浓度的IL-18BP与PBMCs细胞共同培养48h;
     (3)采用ELISA和RT-PCR的方法检测IFN-γ,IL-4,IL-10,IL-2及TNF-α蛋白和mRNA的表达;
     (4)CCK-8法检测IL-18BP作用后淋巴细胞的增殖情况;
     (5)AnnexinV-FITC/PI流式细胞技术检测IL-18BP作用后淋巴细胞凋亡的情况。
     结果:
     (1)IL-18BP明显抑制ITP患者和正常对照组PBMCs中IFN-γ蛋白和mRNA的表达(P<0.01),与对照组相比,ITP组抑制更为明显(P<0.01);同时IL-18BP能促进ITP患者和正常对照组PBMCs中IL-10的表达;
     (2)IL-18BP对ITP患者和正常对照组的淋巴细胞增殖没有影响(P>0.05);
     (3)AnnexinV-FITC-FCM分析见,ITP急性期PBMCs加入IL-18BP后凋亡细胞增加,而正常对照组无差异(P>0.05)。
     结论:
     IL-18/IL-18BP在ITP的免疫紊乱和发生发展中起着一定的作用,外源性IL-18BP能够抑制ITP患者体外PBMCs中IFN-γ的表达,促进IL-10的生成;还可通过调节淋巴细胞凋亡对ITP免疫失调起调节作用。也提示我们通过增加IL-18BP含量拮抗IL-18产生和活性可能是ITP治疗的一个策略和方向。
     第三部分IL-18/IL-18BP及Tim-3在ITP患者脾脏的表达
     目的:
     探讨ITP患者脾脏IL-18,IL-18BP,IFN-γ,IL-4,Tim-3及转录因子T-bet,GATA-3的表达,分析IL-18,IL-18BP,Tim-3在ITP患者中Th1类细胞优势应答中的作用。
     方法:
     (1)收集我院2007年12月—2008年12月ITP患者行外科手术治疗脾切除标本12例;同时另选2001年1月—2008年12月因创伤性脾破裂而手术切除的正常脾标本10例作对照研究;
     (2)采用免疫组化检测ITP及对照组脾脏IL-18,IL-18BP,Tim-3的表达;
     (3)采用免疫荧光检测ITP及对照组脾脏IL-18,IL-18BP,Tim-3的表达;
     (4)从脾中分离单个核细胞,置于含PHA 10μg/mL,10%FCS的RPMI1640完全培养基中;在37℃,5%CO2培养箱中培养48小时后收集细胞悬液及PBMCs备用;
     (5)采用ELISA的方法检测IFN-γ,IL-4,IL-18及IL-18BP蛋白的表达;
     (6)采用RT-PCR的方法检测IFN-γ,IL-4,IL-18及IL-18BP及转录因子T-bet,GATA-3的表达。
     结果:
     (1)免疫组化及免疫荧光结果显示:IL-18及IL-18BP在ITP患者脾脏中的表达明显高于正常对照组;而Tim-3在ITP患者脾脏中的表达和阳性率均低于正常对照组:
     (2)脾PBMCs培养48小时后,ITP患者IL-18和IFN-γ的含量较正常对照明显升高;IL-18BP含量两组间无统计学意义(P=0.646);IL-4低于检测限;
     (3)RT-PCR检测脾PBMCs中细胞因子mRNA结果显示ITP患者IL-18的表达是正常对照的3倍,IL-18BP的含量较正常对照明显升高。Th1细胞因子IFN-γ及转录T-bet表达升高,而Th2细胞因子IL-4和转录因子GATA-3的含量较正常对照明显下降,比较具有统计学意义(P<0.05)。脾PBMCs在PHA的刺激下培养48h后ITP患者IL-18和IFN-γ的表达较正常对照明显升高。
     结论:
     (1)ITP患者脾脏中存在Th1/Th2细胞因子极化;
     (2)ITP患者脾脏中Tim-3-Gal-9通路失衡,可能参与ITP的发病;
     (3)ITP患者脾脏CD4+T细胞分化紊乱,分泌Thl细胞因子(IL-18,IFN-γ)能力异常升高。
Immune thrombocytopenia (ITP) is an acquired chronic autoimmune-mediated bleeding disorder in which platelets are opsonized by platelet autoantibodies that target several platelet glycoproteins including GPIIb/IIIa and GPIb/IX and prematurely destroyed in the reticuloendothelial system of the spleen, liver or bone marrow. Apart from phagocytosis, destruction mechanisms include complement activation and T cell abnormalities.
     It has become evident that T helper 1-(Th1) and Th2 cells might have pathogenetic importance in ITP.T-box expressed in T cells (T-bet) and GATA-binding protein 3 (GATA-3) are two major T transcription factors that regulate the expression of Thl or Th2 cytokine genes respectively and play a crucial role in T-cell differentiation. We, hereby, evaluated the relevance of Th1 type (i.e., IFN-γand T-bet) versus Th2 type (i.e., IL-4 and GATA-3) in the pathogenesis of ITP focusing on the critical role of IL-18.This latter cytokine was originally termed as IFN-y inducing factor that belongs to the IL-1 cytokine superfamily. IL-18 is an inflammatory cytokine, not only predominantly produced by Kupffer cells in the liver, but also expressed in pancreas, kidney, skeletal muscle, lung, osteoblasts, and keratinocytes. Up-regulation of IL-18 has previously been detected in multiple sclerosis (MS), lupus nephritis (LN), atopic dermatitis.Our data strongly support the notion that up-regulation of IL-18 may be an important determinant in the evolution of ITP. The biologic effects of IL-18 by promoting a cytokine imbalance toward a Th1-type immune response may induce ITP.
     IL-18BP is a constitutively secreted protein able to bind IL-18 with high-affinity, providing a potential mechanism whereby IL-18 activity is regulated. IL-18BP is induced by IFN-y, thus establishing a negative feedback loop that can be observed in vitro and in vivo. Human IL-18BPa and IL-18BPc isoforms are capable of binding to and neutralizing IL-18. The affinity of IL-18BPc isoform is 10 fold less than IL-18BPa isoform. IL-18BPa which was measured in this study is the main IL-18BP in humans. Data showed IL-18BP inhibits IL-18-induced IFN-y and IL-8 production and NF-κB activation in vitro and LPS-induced IFN-y production in vivo. We hypothesized both the onset and aggravation of ITP are promoted by an imbalance of immune response towards a Thl cytokine predominance due to IL-18 and related cytokine up-regulation.
     Up-to-date, the balance between IL-18 and IL-18BP in patients with ITP is still unknown. In the present study, we have explored the hypothesis that the imbalance of IL-18 and IL-18BP may be of importance in ITP. Plasma levels as well as mRNA expression in peripheral blood mononuclear cells (PBMCs) of IL-18, IL-18BP and other cytokines were measured in patients with active ITP, patients in remission and in healthy volunteers to investigate whether IL-18BP could act as a possible therapeutic approach against ITP.
     I Effects of IL-18/IL-18BP on the onset of ITP and mechanism of action of dexamethasone
     Objective:
     To evaluate the balance of interleukin (IL)-18 and its endogenous antagonist IL-18 binding protein (IL-18BP) and the effects of high dose dexamethasone (HD-DXM) in patients with immune thrombocytopenia (ITP), plasma IL-18,IL-18BP, IFN-γand IL-4 levels, as well as platelets counts were measured in patients with active ITP (n=37), ITP in remission (n=21),ITP receiving HD-DXM(n=17) and in healthy subjects (n=24) were measured.
     Methods:
     (1)37 ITP patients were enrolled in this study. Blood sampling was performed before and after treatment at the end of the second week with high dose dexamethasone (HD-DXM);
     (2)Plasma IL-18, IL-18BP, IFN-y and IL-4 levels, as well as platelets counts were measured in patients with active ITP (n=23), ITP in remission (n=21), and in healthy subjects (n=24) by enzyme linked immunosorbent assay (ELISA);
     (3) IL-18, IL-18BP levels as well as IFN-y, IL-4 plasma levels and platelets counts were determined in 17 ITP patients before and after HD-DXM treatment and in 24 healthy subjects;
     (4) Using real-time quantitative polymerase chain reaction (RT-PCR), the mRNA expression of IL-18, IL-18BP,IFN-y,IL-4,T-box (T-bet) and GATA-binding protein 3(GATA-3) were studied in all subjects.
     Results:
     (1) IL-18 and IFN-γprotein and mRNA levels were significantly increased in patients with active ITP than in control subjects, but the IL-18BP were not significantly elevated in ITP patients, which resulted in an elevated ratio of IL-18/IL-18BP in patients with active disease.
     (2) HD-DXM administration increased IL-18BP levels significantly (P<0.01) and reduced IL-18 expression (P<0.05), which resulting in a downregulation of IL-18/IL-18BP ratio (P<0.05), IFN-γand T-bet were decreased (P<0.05) whereas IL-4 and GATA were increased (P<0.05) after HD-DXM treatment.
     Conclusions:
     (1)Persistent overproduction of IL-18 in ITP is associated with disease progression and IL-18BP might inhibit this activity.
     (2)The HD-DXM-mediated Thl/Th2 cytokine profile alterations observed in this study could be the results of a downregulation of IL-18 and other Thl cytokines by induction of IL-18BP while permitting the production of Th2 cytokines.
     (3)These findings suggest blockage of IL-18 bioactivities by IL-18BP is likely a promising therapeutic concept.
     ⅡRecovery of Thl/Th2 balance in immune thrombocytopenia pateints through the actions of the cytokine IL-18BP
     Objective:
     To investigate the effects of IL-18BPa/Fc on the production of cytokines in the peripheral blood mononuclear cells (PBMCs) from patients with immune thrombocytopenia (ITP),10 ITP patients and 10 health controls were enrolled in this study.
     Methods:
     (1) 10 ITP patients and 10 health controls were enrolled in this study.
     (2) IFN-γ, IL-2, TNF-α, IL-4, IL-5 and IL-10 levels in the supernatants were determined after 48h of PBMCs culture with or without addition of IL-18BPa/Fc by ELISA.
     (3) Using real-time quantitative polymerase chain reaction (RT-PCR), the mRNA expression of IFN-γ, IL-4 and IL-18R were studied in all subjects.
     (4) Meanwhile, proliferation of PBMCs was examined by CCK-8 assay.
     (5) Flow cytometry (FCM) was applied to detect the apoptosis of cells by staining with annexinV-FITC/PI.
     Results:
     (1) IL-18BPa/Fc (200 ng/mL) had a significant effect on secretion of IL-10 from healthy and ITP patients PBMCs, while diminishing IFN-γrelease from cultures of PBMCs. Notably, IL-18BPa/Fc further reinforced dexamethasone (5 nM)-mediated reduction of PHA-induced IFN-γproduction by an additional 49.9%.
     (2) Compared with healthy controls, the annexin V% was significantly decreased in ITP patients (ITP:7.1±3.2%, controls:10.9±2.1%, P=0.02). IL-18BPa/Fc significantly increased the annexin V% in ITP patients(p=0.04) but not in controls(p=0.96). The annexin V% in ITP patients in groupⅠ(IL-18BPa/Fc Ong/mL), groupⅡ(IL-18BPa/Fc lOng/mL) were 7.1±3.2% and 9.1±5.1% respectively, The annexin V% in controls in groupⅠand groupⅡwere 10.9±2.1% and 10.8±2.6% respectively.
     (3) As expected, significant difference was not found between the treated and the untreated group for the growth stimulating activity, indicating the addition of exogenous IL-18BPa/Fc exerted the marginal roles on cell proliferation. The results showed IL-18BPa/Fc indeed had no direct effect of stimulating cells proliferation.
     (4) After 48h culture with IL-18BPa/Fc, the expression of IL-18R protein and mRNA in PBMCs of ITP patients and controls was unaffected. Responsiveness of human IL-18R to IL-18BPa/Fc was obvious and reproducible. These observations revealed modulation of IL-18R expression was possibly irrelevant to IFN-y downregulation induced by IL-18BPa/Fc.
     Conclusions:
     The present data demonstrate that IL-18BPa/Fc may play a therapeutic role in ITP by downregulation of IFN-y and other Thl cytokines while permitting the production of Th2 cytokines (IL-10) via neutralizing the biologic activity of mature IL-18.
     ⅢAbnormal-expression of IL-18, IL-18BP and Tim-3 in the spleen of ITP
     Objective:
     To evaluate the balance of IL-18,IL-18BP and T cell immunoglobulin and mucin domain-3(Tim-3) in spleen of ITP, IL-18, IL-18BP and Tim-3 were measured.
     Methods:
     (1) 12 ITP patients spleens and 10 controls spleens were enrolled in this study.
     (2) IFN-y, IL-4, IL-18 and IL-18BP levels in the supernatants were determined after 48h of PBMCs culture.
     (3) Using real-time quantitative polymerase chain reaction (RT-PCR), the mRNA expression of IL-18, IL-18BP, IFN-γ, IL-4, T-box (T-bet) and GATA-binding protein 3(GATA-3) were studied in all subjects.
     (4) Using immunohistochemistry (IHC) and immunofluorescence, the expression of IL-18, IL-18BP and Tim-3 were studied in all subjects.
     Results:
     (1) The expression of IL-18, IL-18BP were much high in ITP patients than in normals using immunohistochemistry (IHC) and immunofluorescence; while the expressions of Tim-3 were declined in ITP than in normals.
     (2) IL-18 and IFN-y levels were significantly increased in patients with ITP than in control subjects after 48h of spleens lymphocytes culture, but the IL-18BP were not significantly elevated in ITP patients. The level of IL-4 was below the detectable limit of the assay used.
     (3)Using the REST software, the data are presented as the fold change in gene expression normalized to an endogenous reference gene and relative to healthy controls. The relative amount of mRNA gene expression of IL-18 and IFN-y were increased in active patients spleens compared to healthy controls (P<0.01). IL-18 was up-regulated in active ITP patients compared to controls (P<0.01).T-bet mRNA expression was significantly higher in active ITP patients compared to that of the control group.The decrease of IL-4 and GATA-3 was also observed.
     Conclusions:
     (1) We observed Thl polarization of the immune response in ITP spleens.
     (2) The abnormal pathway of Tim-3-galecti-9 may contribute to the ITP pathogenesis.
引文
1. Ogawara H,Handa H,Morita K, Hayakawa M, Kojima J, Amagai H, Tsumita Y, Kaneko Y, Tsukamoto N, Nojima Y, Murakami H.High Thl/Th2 ratio in patients with chronic idiopathic thrombocytopenic purpura.Eur J Haematol,2003,71:283-288.
    2. Wang T, Zhao H, Ren H. Typel and type2 T-cell profiles in chronic idiopathic thrombocytopenic purpura.Haematologica,2005,90:914-923.
    3. Olsson B,Andersson PO, Jernas M, Jacobsson S, Carlsson B, Carlsson LM, Wadenvik H. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura.NatMed.2003,9:1123-1124.
    4. Cines DB, Blanchette VS. Immune thrombocytopenic purpura. N Engl J Med.2002, 346:995-1008.
    5. British Committee for Standards in Haematology General Haematology Task Force. Guidelines for the investigation and management of idiopathic thrombocytopenic purpura in adults, children and in pregnancy. Br J Haematol.2003,120:574-596.
    6. Tucci M, Quatraro C, Lombardi L, Pellegrino C, Dammacco F, Silvestris F. Glomerular accumulation of plasmacytoid dendritic cells in active lupus nephritis:Role of interleukin-18.Arthritis Rheum.2007,58:251-262.
    7. Figueredo CM, Rescala B, Teles RP, Teles FP, Fischer RG, Haffajee AD, Socransky SS, Gustafsson A. Increased interleukin-18 in gingival crevicular fluid from periodontitis patients. Oral Microbiol Immunol.2008,23:173-176.
    8. Liang D, Ma W, Yao C, Liu H, Chen X. Imbalance of interleukin 18 and interleukin 18 binding protein in patients with lupus nephritis. Cell Mol Immunol.2006,3:303-306.
    9. Novick D, Elbirt D, Dinarello CA, Rubinstein M, Sthoeger ZM. Interleukin-18 binding protein in the sera of patients with Wegener's granulomatosis. J Clin Immunol.2009, 29:38-45.
    10. Peng J, Liu C, Liu D, Ren C, Li W, Wang Z, Xing N, Xu C, Chen X, Ji C, Zhang M, Hou M.. Effects of B7-blocking agent and/or CsA on induction of platelet-specific T-cell anergy in chronic autoimmune thrombocytopenic purpura. Blood.2003,101:2721-2726.
    11. Cheng Y, Wong RS, Soo YO, Chui CH, Lau FY, Chan NP, Wong WS, Cheng G. Initial treatment of immune thrombocytopenic purpura with highdose dexamethasone. N Engl J Med.2003,349:831-836.
    12. Mazzucconi MG, Fazi P, Bernasconi S, De Rossi G, Leone G, Gugliotta L, Vianelli N, Avvisati G, Rodeghiero F, Amendola A, Baronci C, Carbone C, Quattrin S, Fioritoni G, D'Alfonso G, Mandelli F; Gruppo Italiano Malattie EMatologiche dell'Adulto (GIMEMA) Thrombocytopenia Working Party. Therapy with high-dose dexamethasone (HDDXM) in previously untreated patients affected by idiopathic thrombocytopenic purpura. A GIMEMA experience. Blood.2007,109:1401-1407.
    13. Guo C, Chu X, Shi Y, He W, Li L, Wang L, Wang Y, Peng J, Hou M. Correction of Thl-dominant Cytokine Profiles by High-dose Dexamethasone in Patients with Chronic Idiopathic Thrombocytopenic Purpura. J Clin Immunol.2007,27:557-562.
    14.第五届全国血栓与止血会议:几种出血性疾病诊断(及疗效)标准的修订.中华血液学杂志.1995,16:131.
    15. Michael W, Graham W, Dempfle HL. Relative expression software tool (REST(?)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research.2002;30:1-10.
    16. Poncin S, Lengele B, Colin IM, Gerard AC. Differential interactions between Th1/Th2, Th1/Th3, and Th2/Th3 cytokines in the regulation of TPO and DUOX expression, and of thyroglobulin secretion in thyrocytes in vitro. Endocrinology.2008,10:714-721.
    17. Taylor JM, Ziman ME, Canfield DR, Vajdy M, Solnick JV. Effects of a Th1-versus a Th2-biased immune response in protection against Helicobacter pylori challenge in mice.Microbial Pathogenesis.2008,44:20-27.
    18. Mosmann TR, Sad S. The expanding universe of T cell subsets:Th1、Th2 and more.Immunol Today.1996,17:138-146.
    19. Shan NN, Zhu XJ, Peng J, Qin P, Zhuang XW, Wang HC, Hou M. Interleukin 18 and interleukin 18 binding protein in patients with idiopathic thrombocytopenic purpura.British Journal of Haematology.2009,144:755-761.
    20. Shan NN, Zhu XJ, Wang Q, Wang CY, Qin P, Peng J, Hou M. High dose Dexamethasone regulates interleukin-18 and interleukin-18 binding protein in idiopathic thrombocytopenic purpura. Haematologica.2009,94:1603-1607.
    21. Bettelli E, Korn T, Kuchroo VK. Thl7:the third member of the effector T cell trilogy. Curt Opin lmmunol.2007,19:1-6.
    22. Strauss L, Bergmann C, Whiteside TL. Human circulating CD4+ CD25high Foxp3+ regulatory T cells kill autologous CD8+ but not CD4+ responder cells by Fas-mediated apoptosis. J Immunol.2009,182:1469-1480.
    23. Bayer AL, Yu A, Malek TR. Function of the IL-2R for thymic and peripheral CD4+CD25+ Foxp3+ T regulatory cells. J Immunol.2007,178:4062-4071.
    24. Sakaguchi S. Regulatory T cells:key controllers of immunologic self-tolerance. Cell.2000, 101:455-458.
    25. Haggqvist B, Hultman P.Effects of deviating the Th-2 response in murine mercury-induced autoimmunity towards a Th1-response.Clin Exp Immunol,2003,134:202-209.
    26. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor T-bet, directs Th1 lineage commitment.Cell.2000,100:655-669.
    27. Zhang DH, Cohn L, Ray P, Bottomly K, Ray A. Transcrip tion factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th-2specific expression of the interleukin-5 gene. Biol Chem.1997,272:21597-21603.
    28. Semple JW, Freedman J. Increased antiplatelet T helper lymphocyte reactivity in patients with autoimmune thrombocytopenia. Blood.1991,78:2619-2625.
    29. Semple JW, Milev Y, Cosgrave D, Mody M, Hornstein A, Blanchette V, Freedman J. Differences in serum cytokine levels in acute and chronic autoimmune thrombocytopenic purpura:relationship to platelet phenotype and antiplatelet T-cell reactivity.Blood.1996, 87:4245-4254.
    30. Panitsas FP, Theodoropoulou M, Kouraklis A, Karakantza M, Theodorou GL, Zoumbos NC, Maniatis A, Mouzaki A. Adult chronic idiopathic thrombocytopenic purpura.(ITP) is the manifestation of a type-1 polarized immune response. Blood.2004,103:2645-2647.
    31. McMillan R, Wang L, Tomer A, Nichol J, Pistillo J. Suppression of in vitro megakaryocyte production by antiplatelet autoantibodies from adult patientswith chronic ITP. Blood.2004, 103:1364-1369.
    32. Okamura H, Nagata K, Komatsu T. A novel costimulatory factor for gamma interferon
    induction found in the rivers of mice causes endotoxic shock. Infect Inenun..1995,63: 3966-3972.
    33. Ushio S, Namba M, Okura T, Hattori K, Nukada Y, Akita K, Tanabe F, Konishi K, Micallef M, Fujii M, Torigoe K, Tanimoto T, Fukuda S, Ikeda M, Okamura H, Kurimoto M.Cloning of the cDNA for human IFN-garmna-inducing factor, expression in Escherickia coli, and studies on the biologic activities of the protein. J Immunol.1996,156:4274-4279.
    34. Stoll S, Muller, Kurimoto M. Production of IL-18(IFN-γ-inducing factor) mRNA and functional protein by nmrine kerationcyter. J Immunol.1997,159:298-302.
    35. Conti B, Jahng JW, Tinti C, Son JH, Joh TH. Induction of interferon-yinducing factor in the adrenal cortex. J Biol Chem.1997,272:2035-2037.
    36. Tone M, Thompson SA, Tone Y. Regulation of IL-18 (IFN-gamma-inducing factor)gene expression.J Immunol.1997,159:6156-6163.
    37. Li SG, Wang L,Zhao CH Li LZ,Peng J,Hou M.CD8(+) T cells suppress autologous megakaryocyte apoptosis in idiopathic thrombocytopenic purpura. British Journal of Haematology.2007,139:605-611.
    38. Gutierrez-Espindola GR, Morales-Polanco MR, Guerrero-Rivera S,et al. High doses of dexamethasone in adult patients with idiopathic thrombocytopenic purpura. Arch Med Res. 2003,34:31-34.
    39. Borst F, Keuning JJ, van Hulsteijn H, Sinnige H, Vreugdenhil G. High-dose dexamethasone as a first- and second-line treatment of idiopathic thrombocytopenic purpura in adults. Ann Hematol.2004,83:764-768.
    40. Adcock IM, Brown CR, Gelder CM, Shirasaki H, Peters MJ, Barnes PJ. The effects of glucocorticoids on transcription factor activation in human peripheral blood mononuclear cells. Am J Physiol.1995,268:331-338.
    1. Olsson M, Bruhns P,Frazier WA, Ravetch JV,Oldenborg PA. Platelet homeostasis is regulated by platelet expression of CD 47 under normal conditions and in passive immune thrombocytopenia. Blood.2005,105:3577-3582.
    2. McMillan R, Wang L, Tomer A, Nichol J, Pistillo J. Suppression of in vitro megakaryocyte production by antiplatelet autoantibodies from adult patients with chronic ITP. Blood.2004, 103:1364-1369.
    3. Bussel JB, Kuter DJ, George JN, McMillan R, Aledort LM, Conklin GT, Lichtin AE, Lyons RM, Nieva J, Wasser JS, Wiznitzer I, Kelly R, Chen CF, Nichol JL. AMG 531, a thrombopoiesis-stimulating protein, for chronic ITP. N Engl J Med.2006,355:1672-1681.
    4. Semple JW, Milev Y, Cosgrave D, Mody M, Hornstein A, Blanchette V, Freedman J. Differences in serum cytokine levels in acute and chronic autoimmune thrombocytopenic purpura:relationship to platelet phenotype and antiplatelet T-cell reactivity. Blood.1996,87: 4245-4254.
    5. Nagahama M, Nomura S, Kanazawa S, Ozaki Y, Kagawa H, Fukuhara S. Significance of chemokines and soluble CD40 ligand in patients with autoimmune thrombocytopenic purpura. Eur J Haematol.2002,69:303-308.
    6. Solanilla A, Pasquet JM, Viallard JF, Contin C, Grosset C, Dechanet-Merville J, Dupouy M, Landry M, Belloc F, Nurden P, Blanco P, Moreau JF, Pellegrin JL, Nurden AT, Ripoche J. Platelet-associated CD 154 in immune thrombocytopenic purpura. Blood.2005,105:215-218.
    7. Dao, T., Ohashi, K., Kayano, T., Kurimoto, M. and Okamura, H.. Interferon-gamma-inducing factor, a novel cytokine, enhances Fas ligand-mediated cytotoxicity of murine T helper 1 cells. Cell Immunol.1997,173:230-235.
    8. Kohno K, Kataoka J, Ohtsuki T, Suemoto Y, Okamoto I, Usui M, Ikeda M, Kurimoto M. IFN-gamma-inducing factor (IGIF) is a costimulatory factor on the activation of Thl but not Th2 cells and exerts its effect independently of IL-12. J Immunol.1997,158:1541-1550.
    9. Tone M, Thompson SA, Tone Y, Fairchild PJ,Waldmann H. Regulation of IL-18 (IFN-gamma-inducing factor)gene expression. J Immunol.1997,159:6156-6163.
    10. Kawanaka N, Yamamura M, Aita T, Morita Y, Okamoto A, Kawashima M, Iwahashi M, Ueno
    A, Ohmoto Y, Makino H. CD14+,CD16+blood monocytes and joint inflammation in rheumatoid arthritis. Arthritis Rheum.2002,46:2578-2586.
    11. Koizumi H, Sato-Matsumura KC, Nakamura H, Shida K, Kikkawa S, Matsumoto M, Toyoshima K, Seya T.Distribution of IL-18 and IL-18 receptor in human skin:various forms of IL-18 are produced in keratinocytes.Arch Dermatol Res.2001,293:325-333.
    12. Nicoletti F, Conget I, Di Marco R, Speciale AM, Morinigo R, Bendtzen K, Gomis R. Serum levels of interferon-gamma-inducing cytokine Interleukin-18 are increased in individuals at high risk of developing type 1 diabetes.Diabeologla.2001,44:309-311.
    13. Mallat Z, Corbaz A, Scoazec A, Besnard S, Leseche G, Chvatchko Y, Tedgui A. Expression of interleukin-18 in human atherosclerotic plaques and rdation to plaque instability. Circulation.2001,104:1598-1603.
    14. Muhl H, Pfeilschifter J. Interleukin-18 bioactivity:a novel target for immmuno-pharmacological anti-inflammatory intervention.Eur J Pharmacol.2004,500:63-71.
    15.哈华兰,张钲,王恒大.急性冠脉综合征患者外周血MCP-1和IL-18水平变化的临床意义[J]中国心血管病研究杂志.2005,3:427-429.
    16. Kohka H, Yoshino T, Iwagaki H, Sakuma I, Tanimoto T, Matsuo Y, Kurimoto M, Orita K, Akagi T, Tanaka N. Interleukin-18/interferon-gamma-inducing factor, a novel cytokine, up-regulates ICAM-1(CD54) expression in KG-1 cells. J Leukoc Biol.1998,64:519-527.
    17. Fujibayashi Y, Fujimori Y, Kasumoto I, Kai S, Hara H, Okamura H, Tsutsui H, Ogawa H, Nakanishi K. Interleukin-18 regulates T helper 1 or 2 immune responses of human cord blood CD4+V alpha 24+V beta 11+natural killer T cells. Int J Mol Med.2007,20:241-245.
    18. Born TL, Thomassen E, Bird TA, Sims JE. Cloning of a novel receptor subunit, AcpL, required for interleukin-18 signaling. J Biol Chem.1998,273:29445-29450.
    19. Aizawa Y, Akita K, Taniai M, Torigoe K, Mori T, Nishida Y, Ushio S, Nukada Y, Tanimoto T, Ikegami H, Ikeda M, Kurimoto M.Cloning and expression of interleukin-18 binding protein. FEBS Lett.1999,445:338-342.
    20. Paulukat J, Bosmann M, Nold M, Garkisch S, Kampfer H, Frank S, Raedle J, Zeuzem S, Pfeilschifter J, Muhl H.. Expression and release of IL-18 binding protein in response to IFN-gamma. J Immunol.2001,167:7038-7043.
    21. Smeets RL, van de Loo FA, Arntz OJ, Bennink MB, Joosten LA, van den Berg WB.Adenoviral delivery of IL-18 binding protein C ameliorates collagen-induced arthritis in mice. Gene Ther. 2003,10:1004-1011.
    22. Banda NK, Vondracek A, Kraus D, Dinarello CA, Kim SH, Bendele A, Senaldi G, Arend WP.. Mechanisms of inhibition of collagen-induced arthritis by murine IL-18 binding protein. J Immunol.2003,170:2100-2105.
    23. Dinarello, C.A.Targeting interleukin 18 with interleukin 18 binding protein. Ann Rheum Dis.2000,59:17-20.
    24. Kimura T, Kato Z, Ohnishi H, Tochio H, Shirakawa M, Kondo N. Expression, purification and structural analysis of human IL-18 binding protein:a potent therapeutic molecule for allergy.Allergol Int,2008,57:367-376.
    25. Leng J, Yao H, Shen J, Wang K, Zhuo G, Wang Z. Co-expression of IL-18 binding protein and IL-4 regulates Thl/Th2 cytokine response in murine collagen-induced arthritis. Acta Biochim Biophys Sin.2008,40:116-124.
    26. Nold M, Hauser IA, Hofler S, Goede A, Eberhardt W, Ditting T, Geiger H, Pfeilschifter J, Muhl H. IL-18BPa:Fc cooperates with immunosuppressive drugs in human whole blood. Biochem Pharmacol.2003,66:505-510.
    27. Kim,S.H, Eisenstein,M., Reznikov,L., Fantuzzi,G., Novick,D., Rubinstein,M. Dinarello,C.A. Structural requirements of six naturally occurring isoforms of the IL-18 binding protein to inhibit IL-18. Proc Natl Acad Sci USA.2000,97:1190-1195.
    28. Shenoy S, Mohanakumar T, Chatila T, Tersak J, Duffy B, Wang R, Thilenius AR, Russell JH.. Defective apoptosis in lymphocytes and the role of IL-2 in autoimmune hematologic cytopenias. Clin Immunol.2001,99:266-275.
    29. Olsson B, Andersson PO, Jernas M, Jacobsson S,Carlsson B,Carlsson LM,Wadenvik H. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med.2003,9:1123-1124.
    30. Olsson B, Andersson PO, Jacobsson S, Carlsson L. Wadenvik H.Disturbed apoptosis of T-cells in patients with active idiopathic thrombocytopenic purpura. Thromb Haemost.2005, 93:139-144.
    31. Wu CL, Liu F, Zhou X, Cheng ZW, Yang XM, Xiao H, Chen Q, Cai KQ. Effect of protein kinase C on proliferation and apoptosis of T lymphocytes in idiopathic thrombocytopenic purpura children. Cell Mol Immunol.2005,2:197-203.
    1. Dameshek W, Miller EB. The megakaryocytes in idiopathic thrombocytopenic purpura, a form of hypersplenism. Blood.1946,1:27-52.
    2. Diggs LW, Hewlett JS. A study of the bone marrow from 36 patients with idiopathic hemorrhagic, thrombopenic purpura. Blood.1948,3:1090-1104.
    3. Mitchison NA. T-cell-B-cell cooperation. Nat Rev Immuol.2004,4:308-312.
    4. Luk SC, Musclow E, Simon GT. Platelet phagocytosis in the spleen of patients with idiopathic thrombocytopenic purpura. His topathology.1980,4:127-136.
    5. George JN, el-Harake MA, Raskob GE. Chronic idiopathic thrombocytopenic purpura. N Engl J Med.1994,331:1207-1211.
    6. Cooper N, Bussel J. The pathogenesis of immune thrombocytopaenic purpura. Br J Haematol. 2006,133:364-374.
    7. Fujisawa K, Tani P, O'Toole TE, Ginsberg MH, McMillan R. Different specificities of platelet-associated and plasma autoantibodies to platelet GPIIb/IIIa in patients with chronic immune thrombocytopenic purpura. Blood.1992,79:1441-1446.
    8. McMillan R. Autoantibodies and autoantigens in chronic immune thrombocytopenic purpura. Semin Hematol.2000,37:239-248.
    9. Picker LJ, Singh MK, Zdraveski Z, Treer JR, Waldrop SL, Bergstresser PR, Maino VC. Direct demonstration of cytokine synthesis heterogeneity among human memory/effector T cells by flow cytometry. Blood.1995,86:1408-1419.
    10. Coopamah MD, Garvey MB, Freedman J, Semple JW. Cellular immune mechanisms in autoimmune thrombocytopenic purpura:An update. Transfus Med Rev.2003,17:69-80.
    11. Wang T, Zhao H, Ren H, Guo J, Xu M, Yang R, Han ZC. Type 1 and type 2 T-cell profiles in idiopathic thrombocytopenic purpura. Haematologica.2005,90:914-923.
    12. Panitsas FP, Theodoropoulou M, Kouraklis A, Karakantza M, Theodorou GL, Zoumbos NC, Maniatis A, Mouzaki A. Adult chronic idiopathic thrombocytopenic purpura (ITP) is the manifestation of a type-1 polarized immune response. Blood.2004,103:2645-2647.
    13. Olsson B, Andersson PO, Jernas M, Jacobsson S, Carlsson B, Carlsson LM, Wadenvik
    H.T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med.2003,9:1123-1124.
    14. Zhang F, Chu X, Wang L, Zhu Y, Li L, Ma D, Peng J, Hou M. Cell-mediated lysis of autologous platelets in chronic idiopathic thrombocytopenic purpura. Eur J Haematol.2006, 76:427-431.
    15. McIntire JJ, Umetsu SE, Akbari O, Potter M, Kuchroo VK, Barsh GS, Freeman GJ, Umetsu DT, DeKruyff RH. Identification of Tapr(all airway hyperreactivity regulatory locus)and the linked Tim gene family. Nat Immunol.2001,2:1109-1116.
    16. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, Zheng XX, Strom TB, Kuchroo VK. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol.2005,6:1245-1252.
    17. Meyers JH, Sabatos CA, Chakravarti S, Kuchroo VK.The TIM gene family regulates autoimmune and allergic diseases.Trends Mol Med.2005,11:362-369.
    18. Sanchez-Fueyo A, Tian J, Picarella D, Domenig C, Zheng XX, Sabatos CA, Manlongat N, Bender O, Kamradt T, Kuchroo VK, Gutierrez-Ramos JC, Coyle AJ, Strom TB. Tim-3 inhibits T helper type 1-mediated auto-and alloimmune responses and promotes immunological tolerance.Nat Immunol.2003,4:1093-1101.
    19. Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T, Manning S,Greenfield EA, Coyle AJ, Sobel RA, Freeman GJ, Kuchroo VK. Thl-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature.2002, 415:536-541.
    20. Sabatos CA, Chakravarti S, Cha E, Schubart A, Sanchez-Fueyo A, Zheng XX, Coyle AJ, Strom TB, Freeman GJ, Kuchroo VK. Tim-3/Tim-3 Ligand interaction regulates Th1 responses and induction of peripheral tolerance. Nat Immunol.2003,4:1102-1110.
    21. Yang L,Anderson DE,Kuchroo J,Hafler DA. Lack of TIM-3 Immunoregulation in Multiple Sclerosis. The Journal of Immunology.2008,180:4409-4414.