无机盐催化半纤维素水解制备糠醛的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石资源的日益减少以及化石燃料使用过程中CO2的排放对地球气候造成的影响日益严重,如果继续依赖化石资源,人类将面临的结果是能源危机。因此,许多研究正致力于探索开发非化石碳能源。其中,以木质纤维素为原料发展生物炼制技术被认为是一种最有前途的替代方案。糠醛,一种重要的平台化合物,不仅可以通过进一步反应直接转化为生物燃料,还可以衍生出数量众多的下游产品,成为科学工作者关注的焦点。
     本文首先以木糖为模型化合物,在140-160℃温度范围内,考察了甲苯/水双相体系中不同金属氯化物催化木糖的转化效果。随后,在上述研究的基础上,选取AlC13·6H2O为催化剂,在单因素实验的基础上,采用响应面法考察了反应温度、反应时间、AICl3浓度及木糖浓度、固液比对木糖和玉米芯水转化制备糠醛的影响,建立预测模型;采用一级反应模型对实验数据进行动力学研究,得到相关动力学参数,建立动力学模型。最后,针对甲苯/水双相反应体系中A1C13催化玉米芯半纤维素水解制备糠醛的反应机理进行了探讨。
     通过以上研究,得出以下结论:
     (1)与未添加催化剂相比,选用的金属氯化物均具有一定的催化效果,其中两性金属氯化物AICl3及过渡金属CrCl3的催化效果较优。动力学分析结果表明,AICl3为催化剂时,糠醛生成速率常数k1与糠醛分解速率常数k2的比值大于CrCl3为催化剂时的比值,表明AICl3为催化剂时,木糖转化为糠醛的相对反应速率较快,糠醛产率高,即AICl3的催化效果优于CrCl3。
     (2)反应温度、反应时间及AICl3浓度是木糖脱水制备糠醛的重要影响因素。反应温度的升高及AICl3浓度的增加均能促进木糖发生转化,提高糠醛产率。响应面分析表明,当反应温度为149.71℃,反应时间为112.79min, AlC13浓度为0.10mol·L-1,木糖初始浓度为0.35mol·L-1时,木糖转化率接近100%,此时糠醛产率为46.51%。动力学分析表明:木糖脱水生成糠醛的反应活化能为110.76kJ·mol-1,而糠醛发生分解反应的活化能为158.38kJ·mol-1。
     (3)甲苯/水双相反应体系中,AICl3可以有效催化玉米芯半纤维素水解制备糠醛。响应面分析表明:反应温度、AICl3浓度是糠醛产率的主要影响因素。当反应温度为177℃,反应时间为78.38min, AICl3浓度为0.08mol·L-1,固液比为0.15g·mL-1时,糠醛产率为52.69%。动力学研究表明,AICl3为催化剂时,木糖转化为糠醛的活化能小于半纤维素转化为木糖的活化能,且随着AICl3浓度的增加,木糖转化为糠醛的活化能降低。当AlC13浓度分别为0.06mol·L-1、0.10mol·L-1、0.14mol·L-1时,木糖转化为糠醛的活化能分别为95.87kJ·mol-1、78.91kJ·mol-1、75.68kJ·mol-1。玉米芯水解前后XRD及SEM分析表明,AICl3能够有效破坏玉米芯致密的纤维组织结构,实现半纤维素水解。
     综合实验结果(1)、(2)、(3),对双相体系中AICl3催化玉米芯中半纤维水解的作用机理进行初步探讨。反应机理主要包括两方面:一方面,Al3+发生水解,形成的H+能够有效催化半纤维素水解生成木糖;另一方面,AICl3中的金属中心可以与木糖分子中的氧原子发生配位作用,促使木糖异构为木酮糖,进而脱去三分子水形成糠醛。
With the accessible oil fields are becoming depleted and CO2emissions from fossil fuel are affecting the earth's climate, the most imminent result that awaits mankind is the tremendous crisis of energy if we remain dependent on the fossil resources. Hence, much research is being devoted to exploring non-fossil carbon energy resources. Among these, the lignocellulosic refining technology with lignocellulose as raw materials is considered as a promising alternative program. Furfural, an important platform compound, which can be directly converted into biofuels or many down-stream products through further reaction, has become the focus of scientists.
     The effects of different metal chlorides on conversion of xylose into furfural in toluene/water system at140~160℃were studied first in this paper. Based on the above research, aluminum chloride was chosen as catalyst. The response surface methodology was used to determine the effects of independent variables, including reaction temperature, reaction time, concentration of aluminum trichloride and xylose concentration, liquid solid ratio on the conversion of xylose and corncob. Meanwhile, the first order reaction model were developed to explain the relationship between the reaction rate constants and reaction temperature and AICl3concentrations, and the kinetic parameters were obtained. Finally, the mechanism of conversion of corncob into furfural catalyzed by AICl3in biphasic system was discussed.
     Through the above research, the main conclusions were summarized as follows:
     (1) Compared with no catalyst loading, all the tested chlorides could converse xylose into furfural, the amphoteric metal chloride AICl3and transition metal chloride CrCl3had better catalytic performances. The kinetic study results showed that the ratio of rate constants beween formation and decomposition of furfural catalyzed by AICl3was greater than that catalyzed by CrCl3, which indicated that the catalytic activity of AICl3was better than that of CrCl3.
     (2) The independent variables including reaction temperature, reaction time and concentration of AICl3had a significant effect on dehydration of xylose into furfural. With the reaction temperature and concentration of AICl3increasing,the xylose conversion could be promoted and the furfural yield should be improved respectively. The maximum predicted furfural yield was46.51%when the temperature, reaction time, AICl3concentration and the initial xylose concentration were149.71℃,112.79min, O.lmol·L-1and0.35mol·L-1, respectively. Under these conditions, the xylose conversion was nearly100%. With the first order kinetic equation, the evaluated activation energies of formation and decomposition reaction of furfural were110.76kJ·mol-1,158.38kJ-mol"1, respectively.
     (3) AICl3was an effective catalyst for corncob hydrolysis into furfural in biphasic system. The surface response analysis for corncob conversion indicated that reaction temperature and AICl3concentration were highly significant term. A furfual yield of52.66%could be achieved at temperature of177℃, time of78.38min, AlC13concentration of0.08mol·L-1and the solid liquid ratio of0.15g·L-1.Kinetic study showed that the activation energy of furfural formation was less than xylose formation with AICl3as catalyst, and with increasing concentration of AICl3, the activation energy of furfural formation decreased. When the concentration of AICl3were0.06mol·L-1,0.10mol·L-1,0.14mol·L-1, the activation energies of the conversion xylose into furfural were95.87kJ·mol'1,78.91kJ·mol-1and75.68kJ·mol-1, respectively. The XRD and SEM analysis of corncob before and after hydrolysis showed that AICl3could effectively break the structure of fibrous tissue and promote the hydrolysis of corncob.
     (4) Above all, the mechanism of hydrolysis of corncob hemicellulose into furfural catalyzed by AICl3in biphasic system was discussed. It can be devided into two parts. On the one hand, hydrogen ions from aluminum ions hydrolysis in water, could improve the formation of xylose. On the other hand, the coordination effect between metal center of AICl3and oxygen atom of xylose molecule could isomerize xylose into xylulose, then remove three molecules of water to form furfural.
引文
[1]陈洪章,李佐虎.木质纤维素原料组分分离的研究[J].纤维素科学与技术,2003,11(4):32-36.
    [2]谢克昌,李忠.煤基燃料的制备与应用[J].化工学报,2004,155(9):1393-1399.
    [3]Zaldivar J, Nielaen J, Olsson L. Fuel ethanol production from lignocellulose:a challenge for metabolic enginerring and process integration[J]. Applied Microbiology Biotechnology,2001, 56(1-2):17-34.
    [4]Keller M, McMillan J D, Sheehan J, et al. How biotech can transform biofuels[J]. Nature Biotechnology,2008,26(2):169-172.
    [5]李淑君.植物纤维水解技术[M].北京:化学工业出版社,2009.
    [6]金强,张红漫,严立石,等.生物质半纤维素稀酸水解反应[J].化学进展,2010,22(4):654-651.
    [7]Sun X J, Sun X F, Sun R C, ea al. Fractional extraction and structural characterization of sugarcane bagasse hemicellulose[J]. Carbohydrate Polymers,2004,56(2):195-204.
    [8]Gray K A, Zhao L S, Empage M. Bioethanol[J]. Current Opinion in Chemial Biology,2006, 10(2):141-146.
    [9]Saha B C. Hemicellulose bioconversion[J]. Journal of Industrial Microbiology and Biotechnology,2003,30(5):279-291.
    [10]Chen H Z, Liu L Y. Unpolluted fractionation of wheat straw by stream explosion and ethanol extraction[J]. Bioresource Technology,2007,98(3):666-676.
    [11]Chaikumpollert O, Methacanon P, Suchiva K. Structure elucidiation of hemicellulose from vetiver grass[J]. Carbohydrate Polymers,2004,57(2):191-196.
    [12]马隆龙,王铁军,吴创之,等.木质纤维素化工技术及应用[M].北京:科学出版社,2010.
    [13]Alonso D M, Bond J Q, Dumesic J A. Catalytic conversion of biomass to biofuels[J]. Green Chemistry,2010, (12):1493-1513.
    [14]Dutta S, De S, Saha B, et al. Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels[J]. Catalysis Science and Technology,2012, (2):2025-2036.
    [15]Bel'skii I F, Shuikim N I. Catalytic hydrogenation and hydrogenolysis of furan compounds[J]. Russian Chemical Reviews,1963,32(6):307-321.
    [16]Gennari U, Kramer R, Gruber H L. Hydrogenolysis of methyltetrahydrofurane on platinum[J]. Applied Catalysis,1984,11(2):341-351.
    [17]Roman-Leshkov Y, Barrett C J, Liu Z Y, et al. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates[J]. Nature,2007(447):982-985.
    [18]Lange J P, Price R, Ayoub P M, et al. Valeric biofuels:a platform of cellulosic transportation fuels[J]. Angewandte Chemie,2010,49(26):4479-4483.
    [19]Bond J Q, Aloso D M, Wang D, et al. Integrated catalytic conversion of Y-valerolactone to liquid alkenes for transportation fuels[J]. Science,2010,327(5969):1110-1114.
    [20]Lange J P, Vestering J Z, Haan R J. Towards 'bio-based' nylon:conversion of Y-valerolactone to methyl pentenoate under catalytic distillation conditions[J]. Chemical Communications, 2007:3488-3490.
    [21]Zeitsch K J. The Chemistry and Technology of Furfural and its many ByProducts[M]. Elsevier, Amsterdam,2000.
    [22]曾宪海,赵耿,孙勇,等.基于固体超强酸催化糠醇醇解制备乙酰丙酸乙酯的方法[P].中国专利:201310267359,2013-09-04.
    [23]曾宪海,赵耿,孙勇,等.基于碳基固体酸催化糠醇醇解制备乙酰丙酸乙酯的方法[P].中国专利:201310268889,2013-09-12.
    [24]Lejemble P, Gaset A, Kalck P. From biomass to furan through decarbonylation of furfural under mild conditions[J]. Biomass,1984,4(4):263-274.
    [25]薛莉,刘淑文,徐贤伦.糠醛气相脱羰基制呋喃催化剂研究进展[J].工业催化,2001,9(3):21-25.
    [26]Wildberger M D, Mallat T, Gobel U, et al. Oxidation of batane and batadiene to furan over vanadia-silica mixed oxides[J]. Applied Catalysis,1998,168(1):69-80.
    [27]Lange J P, van der Heide E, van Buijtenen J, et al. Furfural-a promising platform for lignocellulosic biofuels[J]. CHEMSUSCHEM,2012,5(1):150-166.
    [28]Barrett C J, Chheda J N, Huber G W, et al. Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water[J]. Applied Catalysis B:Evironmental,2006,66(1-2):111-118.
    [29]Chheda J N, Dumesic J A. An overview of dehydration, adol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates[J]. Catalysis Today,2007,123(1-4):59-70.
    [30]Tong X L, Ma Y, Li Y D. Biomass to chemicals:conversion of sugars to furan derivatives by catalytic processes[J]. Applied Catalysis A:General,2010,385(1-2):1-13.
    [31]West R M, Liu Z Y, Peter M, et al. Carbon-carbon bond formation for biomass-derived furfurals and ketones by aldol condeznsation in a biphasic system[J]. Journal of Molecular Catalysis A:Chemical,2008,296(1-2):18-27.
    [32]杨光瑞,李东颖,金栋.纳米氧化铜催化氧化糠醛制备糠酸的实验研究[J].华北水利水电学院学报,2008,29(3):74-76.
    [33]王守庆.糠酸制备工艺条件的改进[J].化学工程师,2006,132(9):58-59.
    [34]李艳,魏作君,陈传杰,等.碳水化合物降解为5-羟甲基糠醛的研究[J].化学进展,2010,22(8):1063-1069.
    [35]项东升,朱驯,曾韬.乙酸/磷酸体系水解杨木屑制备糠醛的研究[J].现代化工,2010,30(6):63-66.
    [36]Gamez S, Gonzalez-Cabriales J J, Ramirez J A, et al. Study of the hydrolysis of sugar canebagasse using phosphoric acid[J]. Journal of Food Engineering,2006,74(1):78-88.
    [37]Rodriguez-Chong A, Ramirez J A, Garrote G, et al. Hydrolysis of sugar cane bagasse using nitric acid:a kinetic assessment [J]. Journal of Food Engineering,2004,61(2):143-152.
    [38]Esteghlalian A, Hashimoto A G, Fenske J J, et al. Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass[J]. Bioresource Technology,1997,59(2-3):129-136.
    [39]Bustos G, Ramirez J A, Garrote G, et al. Modeling of the hydrolysis of sugar cane bagasse with hydrochloric acid[J]. Applied Biochemistry and Biotechnology,2003,104(1):51-68.
    [40]Rong C G, Ding X F, Zhu Y C, et al. Production of furfural from xylose at atmospheric pressure by dilute sulfuric acid and inorganic salts[J]. Carbohydrate Research,2012,350: 77-80.
    [41]Yemis O, Mazza G. Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction[J]. Bioresource Technology,2011,102(15):7371-7378.
    [42]Corma Avelino, Iborra S, Vety A. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews,2007,107(6):2411-2502.
    [43]Mansilla H, Baeza J, Urzua S, et al. Acid-catalysed hydrolysis of rice hull:evaluation of furfural production[J]. Bioresource Technology,1998,66(3):189-193.
    [44]Montane D, Salvado J, Torras C, et al. High-temperature dilute-acid hydrolysis of olive stones for furfural production[J]. Biomass & Bioenergy,2002,22(4):295-304.
    [45]Aguilar R, Ramirez J A, Garrote G, et al. Kinetic study of the acid hydrolysis of sugar cane bagasse[J]. Journal of Food Engineering,2002,55(4):309-318.
    [46]Vazquez M, Oliva M, Tellez-Luis S J, et al. Hydrolysis of sorghum straw using phosphoric acid:evaluation of furfural production[J]. Bioresource Technology,2007,8(16):3053-3060.
    [47]Bamufleh H S, Alhamed Y A, Daous M A. Furfural from midribs of date-palm trees by sulfuric acid hydrolysis[J]. Industrial Crops and Products,2013,42:421-428.
    [48]Kim E S, Liu S, Abu-Omar M M, et al. Selective conversion of biomass hemicellulose to furfural using maleic acid with microwave heating[J]. Energy & Fuels,2012,26 (2): 1298-1304.
    [49]Sanchez C, Serrano L, Anders M A, et al. Furfural production from corn cobs autohydrolysis liquors by microwave technology[J]. Industrial Crops and Products,2013,42:513-519.
    [50]Yang W D, Li P L, Bo D C, et al. The optimization of formic acid hydrolysis of xylose in furfural production[J]. Carbohydrate Research,2012,357:53-61.
    [51]Choudhary V, Sandler S I, Vlachos D G. Conversion of xylose to furfural using Lewis and Bronsted Acid catalysts in aqueous Media[J]. Catalysis,2012,2(9):2022-2028.
    [52]Mao L Y, Zhang L, Gao N B, et al. FeCl3 and acetic acid co-catalyzed hydrolysis of corncob for improving furfural production and lignin removal from residue[J]. Bioresource Technology,2012,123:324-31.
    [53]Zhang L X, Yu H B, Wang P, et al. Conversion of xylan, D-xylose and lignocellulosic biomass into furfural using AICl3 as catalyst in ionic liquid[J]. Bioresource Technology,2013, 130:110-116.
    [54]Marcotullio G. Jong W D. Furfural formation from D-xylose:the use of different halides in dilute aqueous acidic solutions allows for exceptionally high yields[J]. Carbohydrate Research,2011,346(11):1291-1293.
    [55]Sadaba I, Lima S, Valente A A, et al. Catalytic dehydration of xylose to furfural:vanadyl pyrophosphate as source of active soluble species [J]. Carbohydrate Research,2011,346(17): 2785-2791.
    [56]Agirrezabal-Telleria I, Larreategui A, Requies J, et al. Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen[J]. Bioresource Technology,2011,102(16):7478-7485.
    [57]Dias A S, Pillinger M, Valente A A. Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts[J]. Journal of Catalysis,2005,229(2):414-423.
    [58]Lima S, Pillinger M, Valente A A, et al. Dehydration of D-xylose into furfural catalysed by solid acids derived from the layered zeolite Nu-6(1)[J]. Catalysis Communications,2008, 9(11-12):2144-2148.
    [59]Lam E, Chong J H, Majid E, et al. Carbocatalytic dehydration of xylose to furfural in water [J].Carbon,2012,50(3):1033-1043.
    [60]Binder J B, Blank J J, Cefali A V, et al. Synthesis of furfural from xylose and xylan[J]. ChemSusChem,2010,3(11):1268-1272.
    [61]Zhang Z H, Zhao Z K. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid[J]. Bioresource Technology,2010,101(3):1111-1114.
    [62]胡磊,孙勇,林鹿.离子液体介导制备5-羟甲基糠醛[J].化学进展,2012,24(4):483-491.
    [63]Weingarten R, Cho J, Conner W C, et al. Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating[J]. Green Chemistry,2010, 12:1423-1429.
    [64]Yang W D, Li P L, Bo D C, et al. Optimization of furfural production from D-xylose with formic acid as catalyst in a reactive extraction system[J]. Bioresource Technology,2013, 133:361-369.
    [65]Stein T V, Grande P M, Leitner W, et al. Iron-catalyzed furfural production in biobased biphasic systems:from pure sugars to direct use of crude xylose effluents as feedstock[J]. ChemSusChem,2011,4(11):1592-1594.
    [66]Yang Y, Hu C W, Abu-Omar M M. Synthesis of furfural from xylose, xylan, and biomass using AlCl3-6H2O in biphasic media via xylose isomerization to xylulose[J]. ChemSusChem,2012, 5(2):405-409.
    [67]Zhang J H., Zhuang J P, Lin L, et al. Conversion of D-xylose into furfural with mesoporous molecular sieve MCM-41 as catalyst and butanol as the extraction phase[J]. Biomass and Bioenergy,2012,39:73-77.
    [68]Barbosa B M, Colodette J L, Junior D L, et al. Preliminary studies on furfural production from lignocellulosics[J]. Journal of Wood Chemistry and Technology,2014,34(3):178-190.
    [69]阎立峰,朱清时.以生物质为原材料的化学化工[J].化工学报,2004,55(12):1938-1943.
    [70]沈静茹,雷灼霖,陆俭洁,等.新型-p环糊精衍生物催化糠醛制备糠酸[J].化学研究与应用,1998,10(5):543-546.
    [71]Gallezot P. Conversion of biomass to selected chemical products[J]. Chemical Society Reviews,2012,41(4):1538-1558.
    [72]高美香,刘宗章,张敏华.生物质转化糠醛工艺的研究进展[J].化工进展,2013,32(4):878-884.
    [73]许汉英,赵晓君.分光光度法测定白酒中的糠醛[J].应用化学,1997,14(3):84-86.
    [74]荣春光.糠醛生产工艺研究及糠醛废渣的综合利用[D].长春:吉林大学,2012.
    [75]Eberts T J, Sample R H, Glick M R, et al. A simple, colorimetric micromethod for xylose in serum or urine, with phloroglucinol [J]. Clinical Chemistry,1979,25(8):1440-1443.
    [76]王君福,吴丁丁,刘倩倩,等.间苯三酚法测定玉米芯水解液中木糖含量[J].安徽农业科学,2011,39(2):13542-13544.
    [77]Yemis O, Mazza G Optimization of furfural and 5-hydroxymethylfurfural production from wheat straw by a microwave-assisted process[J]. Bioresource Technology,2012,109:215-223.
    [78]薛慧琴,杭怡琼.稻草秸秆中木质素、纤维素测定方法的研讨[J].上海畜牧兽医通讯,2001,(2):15-15.
    [79]吴春燕.离子液体中木质纤维素制备5-羟甲基糠醛和糠醛[D].天津:天津大学,2010.
    [80]熊素敏,左秀凤,朱永义.稻壳中纤维素、半纤维素和木质素的测定[J].粮食与饲料工业,2005,(8):40-41.
    [81]迟聪聪,张曾,柴欣生,等.用双波长可见光谱法快速测定半纤维素提取液中糖的含量[J].光谱学与光谱分析,2010,30(4):1084-1087.
    [82]Douglas S G. A rapid method for the determination of pentosans in wheat flour[J]. Food Chemistry,1981,7(2):139-145.
    [83]Onda A, Ochi T, Yanagisawa K. Selective hydrolysis of cellulose into glucose over solid acid catalysts[J]. Green Chemistry,2008,10:1033-1037.
    [84]刘维娜.生物质在离子液体和高温液态水中转化为化学品的研究[D].北京:北京化工大学,2012.
    [85]Branca C, Blasi D, Galgano A. Catalyst screening for the production of furfural from corncob pyrolysis[J]. Energy & Fuel,2012,26(3):1520-1530.
    [86]Huang Y Q, Wei Z G. Qiu Z J, et al. Study on structure and pyrolysis behavior of lignin derived from corncob acid hydrolysis residue[J]. Journal of Analytical and Applied Prolysis, 2012,93:153-159.
    [87]Yang H P, Yan R, Chen H, et al. In-depth investigation of biomass pyrolysis based on three major components:hemicellulose, cellulose and lignin[J]. Energy & Fuels,2006,20 (1):388-393.
    [88]Liu Z L, Weber S A, Cotta M A, et al. A new (3-glucosidase producing yeast for lower-cost cellulosic ethanol production from xylose-extracted corncob residues by simultaneous saccharification and fermentation[J]. Bioresource Technology,2012,104:410-416.
    [89]Zhang M Z, Wang F, Su R S, et al. Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment[J]. Bioresource Technology,2010,101(13):4959-4964.
    [90]Talebnia F, Karakashev D, Angelidaki I. Production of bioethanol from wheat straw:An overview on pretreatment, hydrolysis and fermentation[J]. Bioresource Technology,2010,101 (13):4744-4753.
    [91]陈泽智,陈迁,杨金兰,等.响应面法优化乙酸催化果糖制备5-羟甲基糠醛的研究[J].广东农业科学,2011,38(9):99-102.
    [92]Seri K, Inoue Y, Ishida H. Highly efficient catalytic activity of lanthanide(Ⅲ) ions for conversion of saccharides to 5-hydroxymethyl-2-furfural in organic solvents[J]. Chemistry Letters,2000,29(1):22-23.
    [93]Su Y, Brown H M, Huang X W, et al. Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical[J]. Applied Catalysis A: General,2009,361(1-2):117-122.
    [94]Zhao H, Holladay J E, Brown H, et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science,2007,316(5831):1597-1600.
    [95]Mascal M, Nikitin E B. Direct high-yield conversion of cellulose into biofuel[J]. Angewandte Chemie Inernational Edition,2008,120(41):8042-8044.
    [96]Dumesic J A, Roman L Y, Chheda J N. Catalytic process for producing furan derivatives from carbohydrates in a biphasic reactor[P]. US,20080033188.2008-02-07.
    [97]Joglekar A M, May A T. Product excellence through design of experiments[J]. Cereal Foods World,1987,32(12):857-68.
    [98]Oomah B D, Xmazza G. Optimization of a spray drying process for flaxseed gum[J]. Food Science & Technology,2001,36(2):135-143.
    [99]李庭琛,王杰,颜涌捷.稻壳两步水解工艺条件及动力学研究[J].太阳能学报,1995,16(2):143-149.
    [100]亓伟,张素平,任铮静,等.酸浓度对水解液中葡萄糖分解反应的影响研究[J].太阳能学报,2008,29(11):1395-1398.
    [101]Peterson A A, Vogel F, Lachance R P, et al. Thermochemical biofuel production in hydrothermal media:a review of sub-and supercritical water technologies[J]. Energy Environmental Science,2008,1:32-65.
    [102]Kobayashi T, Sakai Y. Hydrolysis rate of pentose of hardwood in dilue sulfuric acid[J]. Bull. Agr. Chem. Soc. Japan,1956,10(1):1-7.
    [103]Esteghlalian A, Hashimoto A G, Fenske J J, et al. Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass[J]. Bioresource Technology,1997,59(2-3):129-136.
    [104]Saeman J F. Kinetics of wood saccharification:Hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature[J]. Industrial and Engineering Chemistry,1945, 37(1):43-52.
    [105]Guerra-Rodriguez E, Portilla-Rivera O M, Jarquin-Enriquez L, et al. Acid hydrolysis of wheat straw:A kinetic study[J]. Biomass & Bioenergy,2012,36:346-355.
    [106]Garrote G, Dominguez H, Parajo J C. Kinetic modeling of corncob autohydrolysis[J]. Process Biochemistry,2001, (36):571-578.
    [107]Augilar R, Ramirez J A, Garrote G, et al. Kinetic study of the acid hydrolysis of sugar cane bagasse[J]. Journal of Food Engineering,2002, (55):309-318.
    [108]Arslan Y, Takac S, Eken-Saracoglu N. Kinetic study of hemicellulosic sugar production from hazelnut shells[J]. Chemical Engineering Journal,2012,185-186:23-28.
    [109]Mochidzuki K, Sakoda A, Suzuki M. Liquid-phase thermogravimetric measurement of reaction kinetics of the conversion of biomass wastes in pressurized hot water:a kinetic study[J]. Advances in Environmental Research,2003,7(2):421-428.
    [110]Arslan Y, Saracoglu-Eken N. Effects of pretreatment methods for hazelnut shell hydrolysate fermentation with pichia stipitis to ethanol[J]. Bioresource Technology,2010,101:8664-8670
    [111]Maloney M T, Chapman T W, Baker A J. Dilute acid hydrolysis of paper birch:kinetics studies of xylan and acetyl-group hydrolysis[J]. Biotechnology and Bioengineering,1985,27:355-361.
    [112]Lavarack B P, Griffin G J, Rodman D. The acid hydrolysis of sugarcan bagasse hemicellulose to produce xylose, arabinose, glucose and other products[J]. Biomass and Bioenergy,2002, 23(5):367-380.
    [113]Lavarack B P, Griffin G J, Rodman D. Measured kinetics of the acid catalysed hydrolysis of sugar cane bagasse to produce xylose[J]. Catalysis Today,2000,63:257-265.
    [114]Chen R F, Lee Y Y, Torget R. Kinetic and modeling investigation on two-stage reverse-flow reactor as applied to dilute-acid pretreatment of agricultural residues[J]. Applied Biochemistry and Biotechnology,1996,57-58:133-146.
    [115]Antal Jr M J, Mok W S. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose[J]. Carbohyrate research,1990,199(1):91-109.
    [116]Nimlos M R, Qian X H, Davis M, et al. Energetics of xylose decomposition as determined using quantum mechanics modeling[J]. The Journal of Physical Chemistry A,2006,110 (42): 11824-11838.
    [117]Feather M S, Harris D W, Nichols S B. Route for conversion of D-xylose, hexuronic acids, and L-ascorbic to 2-furaldehyde[J]. The Journal of Organic Chemical,1972,37 (10):1606-1608.
    [118]Marcotullio G, de Jong W. Chloride ions enhance furfural formation from D-xylose in dilute aqueous acidic solutions[J]. Green Chemistry,2010,12:1739-1746.