1.PAX4基因多态性与中国汉族人1型糖尿病的关联研究 2.低出生体重与糖代谢异常相关的分子遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     1型糖尿病(type 1 diabetes,T1D)可以被看作是自身免疫对β细胞的选择性破坏与β细胞再生之间平衡被打破的结果。任何导致β细胞破坏(主要通过免疫机制)和影响β细胞发育及再生的因素都可能参与T1D的发生。PAX4(the paired boxgene 4)基因定位于人染色体7q32,编码一种胚胎时期胰腺β细胞发育的必需转录因子,在引导未分化细胞转化为胰岛素分泌细胞过程中发挥重要作用。国外有研究报道位于PAX4基因外显子9上的一个多态性位点,A1168C(rs712701),与T1D相关,但研究结果报道不一致。本文应用以人群为基础的病例一对照研究方法,以PAX4作为候选基因,在中国汉族人群中探讨其基因多态性与T1D遗传易感的关联性。
     研究方法
     随机选取无亲缘关系的中国汉族人458例,其中T1D患者134例,无糖尿病家族史、无糖尿病史且空腹血糖正常(<100mg/dL)的非糖尿病对照受试者324例。提取外周血白细胞基因组DNA,运用聚合酶链反应—限制性片断长度多态性技术(polymerase chain reaction-restriction fragment length polymorphism,PCR-RFLP)对PAX4基因单核苷酸多态性(single nucleotide polymorphism,SNP) rs712701,rs2233580,rs2233575进行基因分型,分析各SNP及其组成的单倍型与T1D遗传易感的相关性。
     应用SPSS 11.5软件包软件包分析数据。以双侧P<0.05为有统计学显著性。
     研究结果
     1.PAX4基因多态性位点rs712701,rs2233580,rs2233575的基因型频率在对照组和T1D患者中均符合Hardy—Weinberg平衡定律。随机病例—对照研究结果显示3个SNP的基因型分布和等位基因频率在T1D组和非糖尿病对照组间均无显著差别。
     2.SNP rs2233575,rs2233580,rs712701可组成四种常见的单倍型(频率≥3%):A-G-A,G-G-A,G-G-C和G-A-A。四种单倍型频率在T1D组和非糖尿病对照组间均无显著差别。
     3.非糖尿病对照组基因型与临床表型分析结果显示,SNP rs2233575位点GA+AA基因型携带者空腹胰岛素水平显著低于GG基因型携带者(5.7 vs 7.0μmol/L,P=0.048)。
     结论
     本研究首次在中国汉族人群中进行了有关PAX4基因多态性的研究。本组人群的研究结果未发现PAX4基因多态性与T1D的发生相关。位于PAX4基因启动子区的SNP rs2233575可能与空腹胰岛素水平相关。
     研究背景
     流行病学调查研究显示,低出生体重是成年期糖代谢异常(impaired glucosemetabolism,IGM)的独立危险因素。低出生体重与成年期IGM相关的分子机制目前仍不清楚。根据胎儿胰岛素假说,低出生体重与T2D具有相同遗传基础。参与调节胰岛素分泌及其作用的多基因遗传因素,可通过在宫内及成年后的作用,产生两种相关联的表型——低出生体重和成年期胰岛素抵抗及T2D的发生。因此,本研究拟在流行病学调查的基础上,研究T2D易感基因在出生体重与成年期IGM的相关中的作用,初步探讨中国汉族人低出生体重与IGM相关的遗传机制。这将是第一次在中国人群中进行的关于出生体重的遗传基础的研究。
     研究方法
     本研究以1181名1921-1954年间在北京协和医院出生的受试者为研究对象,选择T2D易感基因转录因子7类似物(transcription factor 7 like 2,TCF7L2)、锌转运蛋白-8(solute cartier family 30,member 8,SLC30A8)、电压门控性钾通道(potassiumvoltage-gated channel,KQT-like subfamily,member 1,KCNQ1)及泛酸激酶4(pantothenate kinase 4,PANK4)基因为候选基因,采用Taqman探针等位基因鉴别分析法进行基因分型,探讨基因与出生体重及成年期IGM的相关性。
     应用SPSS 11.5软件包分析数据。以双侧P<0.05为有统计学显著性。
     1校正年龄、性别和BMI的影响后,KCNQ1基因SNP rs2074196、rs2237895,TCF7L2基因SNP rs290487和PANK4基因SNP rs7535528与IGM相关。其中,rs2074196 TT基因型(P=0.016,OR=0.628,95%CI0.430-0.917)、rs2234895 AA基因型(P=0.007,OR=0.706,95%CI 0.549-0.907)、rs290487 CT基因型(P=0.022,OR=0.752,95%CI0.590-0.960)和rs7535528 AA基因型(P=0.007,OR=0.574,95%CI0.384-0.858)分别是IGM发生的保护因素。基因型与临床表型分析结果显示,KCNQ1基因SNP rs2074196与FINS和HOMA-IS相关,GG基因型携带者空腹胰岛素(fasting insulin,FINS)和HOMA-IS均显著低于TT和TG基因型携带者(P值分别为0.043和0.004);TCF7L2基因SNP rs290487与HOMA-IR相关,CT基因型携带者HOMA-IR均显著低于CC和TT基因型携带者(P=0.046)。
     2线性回归分析结果显示,校正了性别、孕周、产次和母亲年龄等混杂因素的影响后,KCNQ1基因SNP rs2074196与出生体重相关(P=0.032),即每多携带一个糖尿病易感G等位基因,出生体重增加40g。
     3按出生体重分层后,在出生体重<3000g的受试者中,TCF7L2基因SNPrs11196218和SLC30A8基因SNP rs2466293与IGM发生相关;在出生体重≥3000g的受试者中,TCF7L2基因SNP rs290487,PANK4基因SNP rs7535528和KCNQ1基因SNP rs2074196、rs2237895与IGM发生相关。基因型和临床表型分析结果显示,按出生体重分层后,仅在出生体重≥3000g的受试者中,KCNQ1基因SNPrs2074196与HOMA-IS相关,GG基因型携带者HOMA-IS显著低于TT和TG基因型携带者(P=0.008)。TCF7L2基因SNP rs290487和PANK4基因SNP rs7535528与HOMA-IR相关:rs290487位点CT基因型携带者HOMA-IR显著低于CC和TT基因型携带者(P=0.044);rs7535528位点GG基因型携带者HOMA-IR显著低于GA和AA基因型携带者(P=0.032)。而出生体重<3000g受试者中未发现基因型与临床表型相关。
     1在本组人群中,KCNQ1基因SNP rs2074196、rs2237895,TCF7L2基因SNPrs290487和PANK4基因SNP rs7535528与IGM相关。基因型与临床表型分析结果显示,KCNQ1基因SNP rs2074196与胰岛素分泌指数相关;TCF7L2基因SNPrs290487与胰岛素抵抗指数相关。
     2本研究是第一项在中国人群中进行的关于出生体重的遗传学研究。研究结果显示KCNQ1基因SNP rs2074196与出生体重相关,每多携带一个糖尿病易感G等位基因与出生体重增加40g相关。
     3基因与出生体重在糖代谢异常发生中存在交互作用。
Backgrounds
     Type 1 diabetes(T1D) can be viewed as the result of an imbalance between autoimmune p cell destruction and p cell regeneration.So alterations in genes invovled in the autoimmune destruction or islet cell development and regeneration should play a role in the pathology of T1D.Pax4(the paired box 4),a member of the Pax family of homeodomain transcription factors,is essential to the differentiation and function ofβcells.Recently,Biasom-Lauber reported a dominant effect of a non-synonymous single nucleotide polymorphism(SNP) in PAX4(rs712701) on the T1D susceptibility in both Swiss and German populations,in which C allele was associated with susceptibility. However,this effect has not been found in studies by Hermann and Maier.In present study,we aimed to evaluate whether the paired box gene 4(PAX4) may play a role in the pathogenesis of type 1 diabetes(T1D) in Chinese Han population.
     Methods
     One hundred and thirty-four cases with T1D and 324 non-diabetic control subjects were selected randomly from Han Chinese.Three single nucleotide polymorphisms (SNPs) rs712701,rs2233580,rs2233575 were genotyped by polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP) and analyzed their association with T1D.
     All statistical analyses were performed using the SPSS statistical package,version 11.5. A P value of less than 0.05 was considered statistically significant.
     Results
     1.Genotype distributions for all the SNPs studied were found to be consistent with HWE in non-diabetic controls.No difference was found in genotype or allele frequencies between patients and non-diabetic controls in all three SNPs.
     2.There were four common haplotypes with a frequency of at least 3%:A-G-A, G-G-A,G-G-C和G-A-A.All the haplotypes had similar frequencies in non-diabetic control subjects and T1D patients.
     3.The association between genotypes and phenotypes in non-diabetic control subjects were analyzed.In SNP rs2233575,we found that the carriers with AA and GA genotypes had lower plasma insulin level than the subjects with GG genotype(5.7 vs 7.0μmol/L, P=0.048)
     Conclusions
     The present study identified that the PAX4 gene was not associated with the risk of T1D in a Han Chinese sample,suggesting that it may not influence T1D risk in this population.SNP rs2233575 in the promoter region of the PAX4 gene might be associated with fasting insulin level.This is the first study on the PAX4 gene in a Chinese population.
     Backgrounds
     Numerous epidemiological studies demonstrated a strong association between low birth weight and the later development of the impaired glucose metabolism.According to the fetal insulin hypothesis,low birth weight and type 2 diabetes(T2D) shared the same insulin-resistant genotype.Common polygenic genetic factors that increase insulin resistance would produce two phenotypes-a small,thin baby in utero and an adult with insulin resistance and increased risk of impaired glucose metabolism.The present study was to study the effect of diabetes-susceptibility genes on the association of low birth weight and impaired glucose metabolism(IGM).This would be the first genetic study of birth weight in Chinese.
     Methods
     One thousand,one hundred and eighty one subjects born in Peking Union Medical College Hospital from 1921 to 1954 were recruited.Four diabetes-susceptibility genes, TCF7L2(transcription factor 7 like 2),SLC30A8(solute carrier family 30,member 8), KCNQ1(potassium voltage-gated channel,KQT-like subfamily,member 1) and PANK4 (pantothenate kinase 4) were selected as candidates genes.Genotyping of the variants was performed using Taqman allelic discrimination assay.
     All statistical analyses were performed using the SPSS statistical package,version 11.5. A P value of less than 0.05 was considered statistically significant.
     Results
     1.Multiple variable logistic regression analyses with adjustment for age,sex and BMI, SNPrs2074196TT(P=0.016,OR=0.628,95%CI 0.430-0.917)、rs2234895AA(P=0.007,OR=0.706,95%CI 0.549-0.907)、rs290487 CT(P=0.022,OR=0.752, 95%CI 0.590-0.960) and rs7535528 AA(P=0.007,OR=0.574,95%CI 0.384-0.858) genotypes appeared protective effect on IGM.SNP rs2074196 in gene KCNQ1 was associated fasting insulin and HOMA-IS,carriers with GG genotype had significant lower fasting insulin(FINS) and HOMA-IS than those with TT and TG genotypes;SNP rs290487 in gene TCF7L2 was associated with HOMA-IR,the carriers with CT genotype had significant lowerHOMA-IR levels than those with other genotypes(P=0.046).
     2.SNP rs2074196 in gene KCNQ1 was associated with birth weight after adjustment for sex,gestational weeks,parity and maternal age,the per-risk allele effect size estimate of the association was 40g.
     3.Stratified by birth weight,the associations between IGM and SNPs rs290487 in gene TCF7L2,rs2074196,rs2237895 in gene KCNQ1,and rs7535528 in gene PANK4 were only found in subject whose birth weight larger than(or equal to) 3000g;the association between impaired glucose metabolism and SNP rs2466293 in gene SLC30A8 and rs11196218 in gene TCF7L2 were found to be associated with IGM in those whose birth weight smaller than 3000g.And in subject whose birth weight larger than(or equal to) 3000g,subjects with CC genotype in rs290487 had higher HOMA-IR than subjects with CT and TT;subjects with GG in rs2074196 had lower HOMA-IS than GT and TT.
     Conclusions
     1.Impaired glucose metabolism were associated with SNPs rs290487 in gene TCF7L2, rs7535528 in gene PANK4,and rs2074196,rs2237895 in gene KCNQ1;no association was found with SNPs rs11196218 in gene TCF7L2,rs1980789 in gene PANK4,and rs13266634,rs2466293 in gene SLC30A8.
     2.The was the first study about the role of genes in birth weight in Chinese.SNP rs2074196 in gene KCNQ1 was associated with birth weight after adjustment for sex, gestational weeks,parity and maternal age,the per-risk allele effect size estimate of the association was 40g.
     3.There were interactions between the effects of genes and birth weighton on impaired glucose metabolism.
引文
1.Abel M,Krokowski M.Pathophysiology of immune-mediated(type l) diabetes mellitus[J].Biodrugs,2001,15(5):291-301.
    2.刘新民.实用内分泌学[M].北京:人民军医出版社,2004.
    3.Rewers M,Norris J,Dabelea D.Epidemiology of type l diabetes mellitus[J].Adv Exp Med Biol,2004,552:219-246.
    4.Sparre T,Bergholdt R,Nerup J,et al.Application of genomics and proteomics in type l diabetes pathogenesis research[J].Expert Rev Mol Diagn,2003,3:743-757.
    5.王克安,李天麟,李新华,杨泽等.中国儿童 l 型糖尿病发病率的研究[J].中华内分泌代谢杂志,1999,15:3-7.
    6.Akerblom HK,Vaarala O,Hyoty H,et al.Environmental factors in the etiology of type l diabetes mellits[J].Am J Med Genet,2002,115:18-29.
    7.Todd JA.Genetie analysis of type l diabetes using whole genome approaches[J].Proc Natl Acad Sci USA,1995,92(19):8560-8565.
    8.Pugliese A,Eisenbarth GS.Type l diabetes mellitus of Man[J].Adv Exp Med Biol,2004,552:170-203.
    9.Bennett S T,Todd J A.Human type l diabetes and the insulin gene:principles of mapping polygenes[J].Ann Rev Genet,1996,30:343-370.
    10.Freiesleben De Blasio B,Bak P,Pociot F,et al.Onset of type l diabetes:a dynamical instability[J].Diabetes,1999,48(9):1677-1685.
    11.Cooke A.An overview on possible mechanisms of destruction of the insulinproducing beta cell[J].Curr Top Microbiol Immunol,1990,164:125-142.
    12.Ogawa N,List JF,Habener JF,et al.Cure of overt diabetes in NOD mice by transient treatment with antilymphocyte serum and exendin-4[J].Diabetes,2004,53:1700-1705.
    13.A.Biason-Lauber,B.Boehm,M.Lang-Muritano,et al.Association of childhood type l diabetes mellitus with a variant of PAX4:possible link to beta cell regenerative capacity[J].Diabetologia,2005,48:900-905.
    14.Bonngr-Weir S.Life and death of the pancreatic beta cells[J].Trends Endocrinol Metab,2000,11:375-378.
    15.Servitja JM,Ferrer J.Transcriptional networks controlling pancreatic development and beta cell function[J].Diabetologia,2004,47:597-613.
    16.Cerf ME.Transcription factors regulationg beta-cell function.Eur J Endocrinol,2006,155(5):671-679.
    17.S.Fajans,GI.Bell,KS.Polonsky.Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young [J].N Engl J Med,2001,345:971-980.
    18.Smith SB,Ee HC,Conners JR,et al.Pairedhomeodomain transcription factor PAX4 acts as a transcriptional repressor in early pancreatic development [J].Mol Cell Biol,1999,19:8272-8280.
    19.Fujitani Y,Kajimoto Y,Yasuda T et al.Identification of a portable repression domain and an ElA-responsive activation domain in Pax4:a possible role of Pax4 as a transcriptional repressor in the pancreas [J].Mol Cell Biol,1999,19:8281-8291.
    20.B.Sosa-Pineda.The gene Pax4 is an essential regulator of pancreatic beta-cell development [J].Mol Cells,2004,18:289-294.
    21.Ueda Y.Activin A increases Pax4 gene expression in pancreatic beta cell lines [J].FEBS Lett,2000,480:101-105.
    22.Demeterco C,Beattie GM,Dib SA,et al.A role for activin A and betacellulin in human fetal pancreatic cell differentiation and growth [J].J Clin Endocrinol Metab,2000,85:3892-3897.
    23.Wang J,Elghazi L,Parker SE,et al.The concerted activities of Pax4 and Nkx2.2 are essential to initiate pancreatic beta-cell differentiation [J].Dev.Biol.2004,266:178-189.
    24.Report of a WHO Consultation,Definition,Diagnosis and Classification of Diabetes Mellitus and its Complications,Geneva,1999.
    25.Tao T,Wasson J,Bemal-Mizrachi E,et al.Isolation and characterization fo the human PAX4 gene [J].Diabetes,1998,47(10):1650-1653.
    26.Y.Shimajiri,T.Sanke,H.Furuta,et al.Amissense mutation of Pax4 gene (R121W)is associated with type 2 diabetes in Japanese [J].Diabetes,2001,50:2864-2869.
    27.Shimajiri Y,Shimabukuro M,Thomoyose T,et al.PAX4 mutation (R121W)as a prodiabetic variant in Okinawans [J].Biochen Biophys Res Commun,2003,302(2):342-344.
    28.Kanatsuka A,Tokuyama Y,Nozaki O,et al.Beta-cell dysfunction in late-onset diabetic subjects carrying homozygous mutation in transcription factors NeuroDl and Pax4 [J].Metabolism,2002,51(9):1161-1165.
    29.Tokuyama Y,Matsui K,Ishizuka T,et al.The Arg 121 Trp variant in PAX4 gene is associated with beta-call dysfunction in Japanese subjects with type 2 diabetes mellitus [J].Metabolism,2006,55(2):213-216.
    30.F.Mauvais-Jarvis,SB.Smith,C.Le May,et al.PAX4 gene variations predispose to ketosis-prone diabetes [J].Hum Mol Genet,2004,13:3151-3159.
    31.N.Plengvidhya,S.Kooptiwut,N.Songtawee,et al.PAX4 Mutations in Thais with Maturity-Onset Diabetes of the Young [J].J Clin Endocrinol Metab,2007,92:2821-2826.
    32.Dupont S,Vionnet N,Chevre JC,et al.No evidence of linkage or diabetes-associated mutations in the transcription factors BETA2/NEUROD1 and PAX4 in Type Ⅱ diabetes in France [J].Diabetologia,1999,42:480-484.
    33.Hermann R,Mantere J,Lipponen K,et al.Lack of association of PAX4 gene with type 1 diabetes in the Finnish and Hungarian populations [J].Diabetes,2005,54 (9):2816-2819.
    34.Gylvin T,Bergholdt R,Nerup J,et al.To:Biason-Lauber A,Boehm B,Lang-Muritano M et al.(2005)association of childhood type 1 diabetes mellitus with a variant of PAX4:possible link to beta cell regenerative capacity.Diabetologia 48:900-905 [J].Diabetologia,2005,48(10):2183-2184.
    35.Geng DG,Liu SY,Steck A,et al.Comment on:Biason-Lauber A,Boehm B,Lang-Muritano M,et al.(2005)association of childhood type 1 diabetes mellitus with a variant of PAX4:possible link to beta cell regenerative capacity.Diabetologia 48:900-905 [J].Diabetologia,2006,49(1):215-216.
    36.R.J.L.Martin,D.A.Savage,D.J.Carson,et al.The PAX4 gene variant A1168C is not associated with early onset Type 1 diabetes in a UK population [J].Diabetic Medicine,2006,23(8):927-928.
    37.Maier LM,Cooper JD,Walker N,et al.Comment to:Biason-Lauber A,Boehm B,Lang-Muritano M et al.(2005)association of childhood type 1 diabetes mellitus with a variant of PAX4:possible link to beta cell regenerative capacity.Diabetologia 48:900-905 [J].Diabetologia,2005,48(10):2180-2182.
    38.A.Biason-Lauber,B.Boehm,M.Lang-Muritano,et al.Reply to comment on:Biason-Lauber A,Boehm B,Lang-Muritano M et al.(2005)Association of childhood type 1 diabetes mellitus with a variant of PAX4:possible link to beta cell regenerative capacity.Diabetologia 48:900-905 [J].Diabetologia,2005,48(10):2185-2186.
    39.Concannon P,Chen WM,Julier C,et al.Genome-wide scan for linkage to type 1 diabetes in 2,496 multiplex families from the Type 1 Diabetes Genetics Consortium [J].Diabetes,2009,58(4):1018-1022.
    40.Concannon P,Rich SS,Nepom GT.Genetics of type 1A diabetes [J].N Engl J Med,2009,360(16):1646-1654.
    41.Cooper JD,Smyth DJ,Smiles AM,et al.Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci [J].Nat Genet,2008,40(12):1399-1401.
    42.Grant SF,Qu HQ,Bradfield JP,et al.Follow-up analysis of genome-wide association data identifies novel loci for type 1 diabetes [J].Diabetes,2009,58(1):290-295.
    43.Hakonarson H,Qu HQ,Bradfield JP,et al.A novel susceptibility locus for type 1 diabetes on Chr12q13 identified by a genome-wide association study [J].Diabetes,2008,57(4):1143-1146.
    44.Hakonarson H,Grant SF,Bradfield JP,et al.A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene [J].Nature,2007,448(7153):591-594.
    45.Jeffrey C Barrett,David G Clayton,Patrick Concannon,et al.Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes [J].Nature Genetics,2009,41(6):703-707.
    1.Hales CN,Barker DJ,Clark PM,et al.Fetal and infant growth and impaired glucose tolerance at age 64 [J].BMJ,1991,303(6809):1019-1022.
    2.Barker DJ,Hales CN,Fall CHD,et al.Type 2 (non-insulin-dependent)diabetes mellitus,hypertension and hyperlipidaemia (Syndrome X):relation to reduced fetal growth [J].Diabetologia,1993,36:62-67.
    3.Valdez R,Athens MA,Thompson GH,et al.Birthweight and adult health outcomes in a biethnic population in the USA [J].Diabetologia,1994,37:624-631.
    4.McCance DR,Pettitt DJ,Hanson RL,et al.Birthweight and non-insulin dependent diabetes:thrifty genotype,thrifty phenotype,or surviving small baby genotype [J]? BMJ,1994,308:942-945.
    5.Lithell HO,McKeigue PM,Berglund L,et al.Relation of size at birth to non-insulin dependent diabetes and insulin concentrations in men aged 50-60 years [J].BMJ,1996,312:406-410
    6.Curhan GC,Willett WC,Rimm EB,et al.Birthweight and adult hypertension,diabetes mellitus and obesity in US men [J].Circulation,1996,94(2):3246-3250.
    7.Ravelli ACJ,Van Der Meulen JHP,Michels RPJ,et al.Glucose tolerance in adults after prenatal exposure to the Dutch famine [J].Lancet,1998,351:173-177.
    8.Singhal A,Fewtrell M,Cole TJ,et al.Low nutrient intake and early growth for later insulin resistance in adolescents born preterm [J].Lancet,2003,361:1089-1097.
    9.Levy-Marchal C,Jaquet D.Long-term metabolic consequences of being born small for gestational age [J].Pediatr Diabetes,2004,5:147-153.
    10.David I.W.Phillips,Peter Goulden,Holly E.et al.Fetal and Infant Growth and Glucose Tolerance in the Hertfordshire Cohort Study:A Study of Men and Women Born Between 1931 and 1939 [J].Diabetes,2005,54 (Suppl.2):S145-S150.
    11.yajnik Cs.Early life origins of insulin resistance and type 2 diabetes in India and other Asian countries [J].J Nutr,2004,134(1):205-210.
    12.Xiao X,Zhang Z,Wang H,et al.Evidence of a Relationship Between Infant Birth Weight and Later Diabetes and Impaired Glucose Regulation in a Chinese Population [J].Diabetes Care,2008,31:483-487.
    13.Snoeck A,Remade C,Reusens B,et al.Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas [J].Biol Neonate,1990,57(2):107-108.
    14.Styrud J,Eriksson UJ,Grill V,Swenne I.Experimental intrauterine growth retardation in the rat causes a reduction of pancreatic B-cell mass,which persists into adulthood [J].Biol Neonate,2005,88(2):122-128.
    15.Hales CN,Barker DJ.Type 2 (non-insulin-dependent)diabetes mellitus:the thrifty phenotype hypothesis [J].Diabetologia,1992,35:595-601.
    16.Hales CN,Barker DPJ.The thrifty phenotype hypothesis [J].Br Med Bull,2001,60:5-20.
    17.Hattersley,AT,Tooke JE.The fetal insulin hypothesis:an alternative explanation of the association of low birth weight with diabetes and vascular disease [J].Lancet,1999,353:1789-1792.
    18.Hattersley AT,Beards F,Ballantyne E,et al.Mutations in the glucokinase gene of the fetus result in reduced birth weight [J].Nat Genet,1998,19:268-270.
    19.Shield JPH.Neonatal diabetes.In:Shield JPH,Baum JD,eds.Childhood diabetes.London:Bailliere Tindall,1996:681-740.
    20.Wannamethee SG,Lawlor DA,Whincup PH,et al.Birthweight of offspring and paternal insulin resistance and paternal diabetes in late adulthood:cross sectional survey [J].Diabetologia,2004,47:12-18.
    21.Johansson S,Iliadou A,Bergvall N,et al.The association between low birth weight and type 2 diabetes:contribution of genetic factors [J].Epidemiology,2008,19(5):659-665.
    22.Baker J,Liu JP,Robertson EJ,et al.Role of insulin-like growth factors in embryonic and postnatal growth [J].Cell,1993,75(1):73-82.
    23.Liu JP,Baker J,Perkins AS,et al.Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1)and type 1 IGF receptor (Igflr)[J].Cell,1993,75(1):59-72.
    24.Tamemoto H,Kadowaki T,Tobe K,et al.Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1 [J].Nature,1994,372(6502):182-186.
    25.Duval A,Busson-Leconiat M,Berger R,et al.Assignment of the TCF-4 (TCF7L2)to human chromosome band 10q25.3 [J].Cytogenet Cell Genet,2000,88(3-4):264-265.
    26.Grant SF,Thorleifsson G,Reynisdottir I,et al.Variant of transcription factor 7-like 2 (TCF7L2)gene confers risk of type 2 diabetes [J].Nat Genet,2006,38(3):320-323.
    27.Groves CJ,Zeggini E,Minton J,et al.Association analysis of 6,736 U.K.subjects provides replication and confirms TCF7L2 as a type 2 diabetes susceptibility gene with a substantial effect on individual risk [J].Diabetes,2006,55:2640-2644.
    28.Damcott CM,Pollin TI,Reinhart LJ,et al.Polymorphisms in the transcription factor 7-like 2 (TCF7L2)gene are associated with type 2 diabetes in the Amish:replication and evidence for a role in both insulin secretion and insulin resistance [J].Diabetes,2006,55: 2654-2659.
    29.Scott LJ,Bonnycastle LL,Wilier CJ,et al.Association of transcription factor 7-like 2 (TCF7L2)variants with type 2 diabetes in a Finnish sample [J].Diabetes,2006,55:2649-2653.
    30.Cauchi S,Meyre D,Dina C,et al.Transcription factor TCF7L2 genetic study in the French population:expression in human beta-cells and adipose tissue and strong association with type 2 diabetes [J].Diabetes,2006,55:2903-2908.
    31.Florez JC,Jablonski KA,Bayley N,et al.TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program [J].N Engl J Med,2006,355:241-250.
    32.Zhang C,Qi L,Hunter DJ,et al.Variant of transcription factor 7-like 2 (TCF7L2)gene and the risk of type 2 diabetes in large cohorts of U.S.women and men [J].Diabetes,2006,55:2645-2648.
    33.Saxena R,Gianniny L,Burtt NP,et al.Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals [J].Diabetes,2006,55:2890-2895.
    34.van Vliet-Ostaptchouk JV,Shiri-Sverdlov R,Zhernakova A,et al.Association of variants of transcription factor 7-like 2 (TCF7L2)with susceptibility to type 2 diabetes in the Dutch Breda cohort [J].Diabetologia,2007,50:59-62.
    35.Chandak GR,Janipalli CS,Bhaskar S,et al.Common variants in the TCF7L2 gene are strongly associated with type 2 diabetes mellitus in the Indian population [J].Diabetologia,2007,50:63-67.
    36.Helgason A,Palsson S,Thorleifsson G,et al.Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution [J].Nat Genet,2007,39:218-225.
    37.Munoz J,Lok KH,Gower BA,et al.Polymorphism in the transcription factor 7-like 2 (TCF7L2)gene is associated with reduced insulin secretion in nondiabetic women.Diabetes,2006,55:3630-3634.
    38.Ng MC,Tarn CH,Lam VK,et al.Replication and identification of Hovejvariants at TCF7L2 associated with type 2 diabetes in Hong Kong Chinese [J].J Clin Endocrinol Metab,2007,92(9):3733-3737.
    39.Miyake K,Horikawa Y,Hara K,et al.Association of TCF7L2 polymorphisms with susceptibility to type 2 diabetes in 4,087 Japanese subjects [J].J Hum Genet,2008,53(2):174-180.
    40.Yi-Cheng Chang,Tien-Jyun Chang,Yi-Der Jiang,et al.Association Study of the Genetic Polymorphisms of the Transcription Factor 7-Like 2 (TCF7L2)Gene and Type 2 Diabetes in the Chinese Population [J].Diabetes,2007,56:2631-2637.
    41.Cauchi S,El Achhab Y,Choquet H,et al.TCFTL2 is reproducibly associated with type 2 diabetes in various ethnic groups:a global meta-analysis.J Mol Med,2007,85(7):777-782.
    42.Schifer SA,Tschritter O,Machicao F,et al.Impaired glucagon-like peptide-1 induced insulin secretion in carriers of transcription factor 7-like 2 (TCFTL2)gene polymorphisms [J].Diabetologia,2007,50:2443-2450.
    43.Korinek V,Barker N,Moerer P,et al.Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf4 [J].Nat Genet,1998,19(4):379-383.
    44.Liu Z,Habener JF.Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta-cell proliferation [J].J Biol Chem,2008,283(13):8723-8735.
    45.Chimienti F,Devergnas S,Favier A.Identification and cloning of a beta-cell-specific zinc transporter,ZnT-8,localized into insulin secretory granules [J].Diabetes,2004,53(9):2330-2337.
    46.Chimienti F,Favier A,Seve M.ZnT-8,a pancreatic beta-cell-specific zinc transporter [J].Biometals,2005,18(4):313-317.
    47.Sladek R,Rocheleau G,Rung J,et al.A genome-wide association study identifies novel risk loci for type 2 diabetes [J].Nature,2007,445(7130):881-885.
    48.Diabetes Genetics Initiative of Broad Institute of Harvard and MIT,Lund University,and Novartis Institutes of BioMedical Research,et al.Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels [J].Science,2007,316(5829):1331-1336.
    49.Scott LJ,Mohlke KL,Bonnycastle LL.A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants [J].Science,2007,316(5829):1341-1345.
    50.Zeggini E,Weedon MN,Lindgren CM,et al.Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes [J].Science,2007,316(5829):1336-1341.
    51.Xiang J,Li XY,Xu M,et al.Zinc transporter-8 gene (SLC30A8)is associated with type 2 diabetes in Chinese [J].J Clin Endocrinol Metab,2008,93(10):4107-4112.
    52.Rong R,Hanson RL,Ortiz D,et al.Association analysis of variation in/near FTO,CDKAL1,SLC30A8,HHEX,EXT2,IGF2BP2,LOC387761,and CDKN2B with type 2 diabetes and related quantitative traits in Pima Indians [J].Diabetes,2009,58(2):478-488.
    53.Lee YH,Kang ES,Kim SH,et al.Association between polymorphisms in SLC30A8, HHEX,CDKN2A/B,IGF2BP2,FTO,WFSl,CDKALl,KCNQl and type 2 diabetes in the Korean population [J].J Hum Genet,2008,53(11-12):991-998.
    54.Wu Y,Li H,Loos RJ,et al.Common variants in CDKALl,CDKN2A/B,IGF2BP2,SLC30A8,and HHEX/IDE genes are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population [J].Diabetes,2008,57(10):2834-2842.
    55.Horikawa Y,Miyake K,Yasuda K,et al.Replication of genome-wide association studies of type 2 diabetes susceptibility in Japan [J].J Clin Endocrinol Metab,2008,93(8):3136-3141.
    56.Ng MC,Park KS,Oh B,et al.Implication of genetic variants near TCF7L2,SLC30A8,HHEX,CDKALl,CDKN2A/B,IGF2BP2,and FTO in type 2 diabetes and obesity in 6,719 Asians [J].Diabetes,2008,57(8):2226-2233.
    57.Lewis JP,Palmer ND,Hicks PJ,et al.Association analysis in african americans of European-derived type 2 diabetes single nucleotide polymorphisms from whole-genome association studies [J].Diabetes,2008,57(8):2220-2225.
    58.Hertel JK,Johansson S,Raeder H,et al.Genetic analysis of recently identified type 2 diabetes loci in 1,638 unselected patients with type 2 diabetes and 1,858 control participants from a Norwegian population-based cohort (the HUNT study)[J].Diabetologia,2008,51(6):971-977.
    59.Cauchi S,Proenca C,Choquet H,et al.Analysis of novel risk loci for type 2 diabetes in a general French population:the D.E.S.I.R.study [J].J Mol Med,2008,86(3):341-348.
    60.Omori S,Tanaka Y,Takahashi A,et al.Association of CDKALl,IGF2BP2,CDKN2A/B,HHEX,SLC30A8,and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population [J].Diabetes,2008,57(3):791-795.
    61.Tabara Y,Osawa H,Kawamoto R,et al.Replication study of candidate genes associated with type 2 diabetes based on genome-wide screening [J].Diabetes,2009,58(2):493-498.
    62.Ruchat SM,Elks CE,Loos RJ,et al.Association between insulin secretion,insulin sensitivity and type 2 diabetes susceptibility variants identified in genome-wide association studies [J].Acta Diabetol,2008 Dec 10.
    63.Boesgaard TW,Zilinskaite J,Vanttinen M,et al.The common SLC30A8 Arg325Trp variant is associated with reduced first-phase insulin release in 846 non-diabetic offspring of type 2 diabetes patients-the EUGENE2 study [J].Diabetologia,2008,51(5):816-820.
    64.Chimienti,F.et al.In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion [J].J Cell Sci,2006,119: 4199-4206.
    65.Fu Y,Tian W,Pratt EB,et al.Down-regulation of ZnT8 expression in INS-1 rat pancreatic beta cells reduces insulin content and glucose-inducible insulin secretion [J].PLoS ONE,2009,4(5):e5679.
    66.Pound LD,Sarkar S,Benninger RK,et al.Deletion of the mouse Slc30a8 gene encoding zinc transporter-8 results in impaired insulin secretion [J].Biochem J,2009,May 18.
    67.Chouabe C,Neyroud N,Guicheney P,et al.Properties of KvLQTl K+ channel mutations in Romano-Ward and Jervell and Lange-Nielsen inherited cardiac arrhythmias [J].EMBO J,1997,16:5472-5479.
    68.Barhanin J,Lesage F,Guillemare E,et al.K(V)LQT1 and IsK (minK)proteins associate to form the I(Ks)cardiac potassium current [J].Nature,1996,384(6604):78.
    69.Sanduinentti MC,Curran ME,Zou A,et al.Cosaaembly of K(V)LQT1 and minK (IsK)proteins to form cardiac I(Ks)potassium channel [J].Nature,1996,384(6604):80.
    70.Neyroud N,Tesson F,Denjoy I,et al.A novel mutation in the potassium channel gene KVLQTl causes the Jervell and Lange-Nielsen cardioauditory syndrome [J].Nat Genet,1997,15:186-189.
    71.Chen YH,Xu SJ,Bendahhou S,et al.KCNQ1 gain-of function mutation in familial atrial fibrillation [J].Science,2003,299:251-254.
    72.Warth R,Garcia AM,Kim J,et al.The role of KCNQ1/KCNE1 K+ channels in intestine and pancreas:lessons from the KCNE1 knockout mouse [J].Eur J Physiol,2002,443:822-828.
    73.Yasuda K,Miyake K,Horikawa Y,et al.Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus [J].Nat Genet,2008,40(9):1092-1097.
    74.Unoki H,Takahashi A,Kawaguchi T,et al.SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian an d European populations [J].Nat Genet,2008,40(9):1098-1102.
    75.Liu Y,Zhou DZ,Zhang D,et al.Variants in KCNQ1 are associated with susceptibility to type 2 diabetes in the population of mainland China [J].Diabetologia,2009,52(7):1315-1321.
    76.Mussig K,Staiger H,Machicao F,Association of type 2 diabetes candidate polymorphisms in KCNQ1 with incretin and insulin secretion [J].Diabetes.2009 Apr 14.
    77.Hu C,Wang C,Zhang R,et al.Variations in KCNQ1 are associated with type 2 diabetes and beta cell function in a Chinese population [J].Diabetologia,2009,52(7):1322-1325.
    78.Tan JT,Nurbaya S,Gardner D,et al.Genetic variation in KCNQl associates with fasting glucose and beta-cell function:a study of 3,734 subjects comprising three ethnicities living in Singapore[J].Diabetes,2009,58(6):14451449.
    79.Ullrich S,Su J,Ranta F et al.Effects of IKs channel inhibitors in insulin-secreting INS-1 cells[J].Pflugers Arch,2005,451:428-436.
    80.Xiang RL,Yang YL,Zuo J,et al.PanK4 inhibits pancreatic beta-cell apoptosis by decreasing the transcriptional level of pro-caspase-9[J].Cell Res,2007,17(11):966-968.
    81.Du W,Sun H,Wang H,et al.Confirmation of susceptibility gene loci on chromosome 1 in northern China Han families with type 2 diabetes[J].Chin Med J (Engl),2001,114(8):876-878.
    82.李义,吴国栋,左瑾,等.应用单核苷酸多态性技术筛查2型糖尿病易感基因[J].中国医学科学院学报,2005,27(3):274-279.
    83.E Matthews DR,Hosker JP,Rudenski AS,et al.Homeostasis model assessment:insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man[J].Diabetologia,1985,28:412-419.
    84.Expert Committee on the Diagnosis and Classification of Diabetes Mellitus:Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus[J].Diabetes Care,2003,26(Suppl.1):S5-S20.
    85.Ren Q,Han XY,Wang F,et al.Exon sequencing and association analysis of polymorphisms in TCF7L2 with type 2 diabetes in a Chinese population[J].Diabetologia,2008,51(7):1146-1152.
    86.Yingying Luo,Hongyuan Wang,Xueyao Han,et al.Meta-analysis of the association between SNPs in TCF7L2 and type 2 diabetes in East Asian population[J].Diabetes Res Clin Pract,2009,May 29.
    87.Elbein SC,Chu WS,Das SK,et al.Transcription factor 7-like 2 polymorphisms and type 2 diabetes,glucose homeostasis traits and gene expression in US participants of European and African descent[J].Diabetologia,2007,50(8):1621-1630.
    88.Farmer G,Russell G,Hamilton-Nicol DR,et al.The influence of maternal glucose metabolism on fetal growth,development and morbidity in 917 singleton pregnancies in nondiabetic women[J].Diabetologia,1988,31:134-141.
    89.Breschi MC,Seghieri G,Bartolomei G,et al.Relation of birthweight to maternal plasma glucose and insulin concentrations during normal pregnancy[J].Diabetologia,1993,36:1315-1321.
    90.Kieffer EC,Tabaei BP,Carman WJ,et al.The influence of matemal weight and glucose tolerance on infant birthweight in Latino motherinfant pairs[J].Am J Public Health,2006,96:2201-2208.
    91.Lindley AA,Gray RH,Herman AA,et al.Maternal cigarette smoking during pregnancy and infant ponderal index at birth in the Swedish Medical Birth Register,1991-1992 [J].Am J Public Health,2000,90:420-423.
    92.Clausson B,Lichtenstein P,Cnattingius S.Genetic influence on birthweight and gestational length determined by studies in offspring of twins [J].BJOG,2000,107(3):375-381.
    93.Magnus P,Gjessing HK,Skrondal A,et al.Paternal contribution to birth weight [J].J Epidemiol Community Health,2001,55:873-877.
    94.Lindsay RS,Kobes S,Knowler WC,et al.Genome-wide linkage analysis assessing parent-of-origin effects in the inheritance of birth weight [J].Hum Genet,2002,110:503-509.
    95.Arya R,Demerath E,Jenkinson CP,et al.A quantitative trait locus (QTL)on chromosome 6q influences birth weight in two independent family studies [J].Hum Mol Genet,2006,15:1569-1579.
    96.Fradin D,Heath S,Lepercq J,et al.Identification of distinct quantitative trait loci affecting length or weight variability at birth in humans [J].J Clin Endocrinol Metab,2006,91:4164-4170.
    97.Vaessen N,Janssen JA,Heutink P,et al.Association between genetic variation in the gene for insulin-like growth factor-I and low birthweight [J].Lancet,2002,359:1036-1037.
    98.Lindsay RS,Hanson RL,Wiedrich C,et al.The insulin gene variable number tandem repeat class Ⅰ/Ⅲ polymorphism is in linkage disequilibrium with birth weight but not type 2 diabetes in the Pima population [J].Diabetes,2003,52:187-193.
    99.Day IN,King TH,Chen XH,et al.Insulin like growth factor-I genotype and birthweight [J].Lancet,2002,360:945 (author reply 945-946).
    100.Frayling TM,Hattersley AT,McCarthy A,et al.A putative functional polymorphism in the IGF-I gene:association studies with type 2 diabetes,adult height,glucose tolerance,and fetal growth in UK populations [J].Diabetes,2002,51:2313-2316.
    101.Mitchell SM,Hattersley AT,Knight B,et al.Lack of support for a role of the insulin gene variable number of tandem repeats minisatellite (INS-VNTR)locus in fetal growth or type 2 diabetes-related intermediate traits in United Kingdom populations [J].J Clin Endocrinol Metab,2004,89:310-317.
    102.Hansen SK,Gjesing AP,Rasmussen SK,et al.Large-scale studies of the HphI insulin gene variable-number-of-tandem-repeats polymorphism in relation to type 2 diabetes mellitus and insulin release [J].Diabetologia,2004,47:1079-1087.
    103.Bennett AJ,Sovio U,Ruokonen A,et al.Variation at the insulin gene VNTR (variable number tandem repeat)polymorphism and early growth:studies in a large Finnish birth cohort [J].Diabetes,2004,53:2126-2131.
    104.Ong KK,Phillips DI,Fall C,et al.The insulin gene VNTR,type 2 diabetes and birth weight [J].Nat Genet,1999,21:262-263.
    105.Rasmussen SK,Urhammer SA,Hansen T,et al.Variability of the insulin receptor substrate-1,hepatocyte nuclear factor-la (HNF-la),HNF-4a,and HNF-6 genes and size at birth in a population-based sample of young Danish subjects [J].J Clin Endocrinol Metab,2000,85:2951-2953.
    106.A.J.Bennett,U.Sovio,A.Ruokonen,et al.No evidence that established type 2 diabetes susceptibility variants in the PPARG and KCNJ11 genes have pleiotropic effects on early growth [J].Diabetologia,2008,51:82-85.
    107.Weedon MN,Gloyn AL,Frayling TM,et al.Quantitative traits associated with the type 2 diabetes susceptibility allele in Kir6.2 [J].Diabetologia,2003,46:1021-1023.
    108.Pfab T,Poralla C,Richter CM,et al.Fetal and maternal peroxisome proliferator-activated receptor g2 Pro 12Ala does not influence birth weight [J].Obesity (Silver Spring),2006,14:1880-1885.
    109.Johan G Eriksson,Virpi Lindi,Matti Uusitupa,et al.The Effects of the Pro 12 Ala Polymorphism of the Peroxisome Proliferator-Activated Receptor-Y Gene on Insulin Sensitivity and Insulin Metabolism Interact With Size at Birth [J].Diabetes,2002,51:2321-2324.
    110.Weedon MN,Frayling TM,Shields B,et al.Genetic regulation of birth weight and fasting glucose by a common polymorphism in the islet cell promoter of the glucokinase gene [J].Diabetes,2005,54:576-581.
    111.Freathy RM,Weedon MN,Bennett A,et al.Type 2 diabetes TCF7L2 risk genotypes alter birth weight:a study of 24,053 individuals [J].Am J Hum Genet,2007,80(6):1150-1161.
    112.Rachel M.Freathy,Amanda J.Bennett,Susan M.Ring,et al.Type 2 dibetes risk alleles are associated with reduced size at birth [J].Diabetes,2009,58:1428-1433.
    113.Pulizzi N,Lyssenko V,Jonsson A,et al.Interaction between prenatal growth and high-risk genotypes in the development of type 2 dibates [J].Diabetologia,2009,52:825-829.
    114.Barker DJP.Fetal origins of coronary heart disease.BMJ,1995,311:171-174.
    1.Leon DA,Lithell HO,Vagero D,et al.Reduced fetal growth rate and increased risk of death from ischaemic heart disease:cohort study of 15 000 Swedish men and women born 1915-29 [J].BMJ,1998,317:241-244.
    2.Hales CN,Barker DJ,Clark PM,et al.Fetal and infant growth and impaired glucose tolerance at age 64 [J].BMJ,1991,303(6809):1019-1022.
    3.Poulsen P,Vaag AA,Kyvik KO,et al.Low birth weight is associated with NIDDM in discordant monozygotic and dizygotic twin pairs [J].Diabetologia,1997,40:439-446.
    4.Phillips DI,Barker DJ,Hales CN,et al.Thinness at birth and insulin resistance in adult life [J].Diabetologia,1994,37(2):150-154.
    5.Bazaes RA,Salazar TE,Pittaluga E,et al.Glucose and lipid metabolism in small for gestational age infants at 48 hours of age [J].Pediatrics,2003,111(4 Pt 1):804-809.
    6.Soto N,Bazaes RA,Pena V,et al.Insulin sensitivity and secretion are related to catch-up growth in small-for-gestational-age infants at age 1 year:results from a prospective cohort [J].J Clin Endocrinol Metab,2003,88(8):3645-3650.
    7.Ong KK,Perry CJ,Emmett PM,et al.Insulin sensitivity and secretion in normal children related to size at birth,postnatal growth,and plasma insulin-like growth factor-I levels [J].Diabetologia,2004,47(6):1064-1070.
    8.Jaquet D,Gaboriau A,Czernichow P,et al.Insulin resistance early in adulthood in subjects born with intrauterine growth retardation [J].J Clin Endocrinol Metab,2000,85(4):1401-1406.
    9.Barker DJ,Hales CN,Fall CH,et al.Type 2 (non-insulin-dependent)diabetes mellitus,hypertension and hyperlipidaemia (syndrome X):relation to reduced fetal growth [J].Diabetologia,1993,36(1):62-67.
    10.McKeigue PM,Lithell HO,Leon DA.Glucose tolerance and resistance to insulin-stimulated glucose uptake in men aged 70 years in relation to size at birth [J].Diabetologia,1998,41(10):1133-1138.
    11.Martin JF,Johnston CS,Han CT,et al.Nutritional origins of insulin resistance:a rat model for diabetes-prone human populations [J].J Nutr,2000,130(4):741-744.
    12.Jaquet D,Vidal H,Hankard R,et al.Impaired regulation of glucose transporter 4 gene expression in insulin resistance associated with in utero undernutrition [J].J Clin Endocrinol Metab,2001,86(7):3266-3271.
    13.Osmond C,Barker DJ.Fetal,infant,and childhood growth are predictors of coronary heart disease,diabetes,and hypertension in adult men and women [J].Environ Health Perspect,2000,108(Suppl 3):545-553.
    14.Petersen S,Gotfredsen A,Knudsen FU.Lean body mass in small for gestational age and appropriate for gestational age infants[J].J Pediatr,1988,113(5):886-889.
    15.Enzi G,Zanardo V,Caretta F,et al.Intrauterine growth and adipose tissue development[J].Am J Clin Nutr,1981,34(9):1785-1790.
    16.Ravelli GP,Stein ZA,Susser MW,Obesity in young men after famine exposure in utero and early infancy[J].N Engl J Med,1976,295(7):349-353.
    17.Ong KK,Ahmed ML,Emmett PM,et al.Association between postnatal catch-up growth and obesity in childhood:prospective cohort study[J].BMJ,2000,320(7240):967-971.
    18.Leger J,Limoni C,Collin D,et al.Prediction factors in the determination of final height in subjects born small for gestational age[J].Pediatr Res,1998,43(6):808-812.
    19.Jaquet D,Leger J,Tabone MD,et al.High serum leptin concentrations during catch-up growth of children born with intrauterine growth retardation[J].J Clin Endocrinol Metab,1999,84(6):1949-1953.
    20.Jaquet D,Gaboriau A,Czernichow P,et al.Relatively low serum leptin levels in adults born with intra-uterine growth retardation[J].Int J Obes Relat Metab Disord,2001,25(4):491-495.
    21.Hotamisligil GS,Peraldi P,Budavari A,et al.IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance[J].Science,1996,271(5249):665-668.
    22.黄婷婷,丘小汕,杜敏联,等.宫内生长迟缓大鼠脂肪组织肿瘤坏死因子αmRNA 表达与胰岛素抵抗关系的研究[J].中华儿科杂志,2005,43(1):39-43.
    23.Van Assche FA,Aerts L.The fetal endocrine pancreas[J].Contrib Gynecol Obstet,1979,5:44-57.
    24.Fall CH,Stein CE,Kumaran K,et al.Size at birth,maternal weight,and type 2diabetes in South India[J].Diabet Med,1998,15(3):220-227.
    25.Styrud J,Eriksson UJ,Grill V,et al.Experimental intrauterine growth retardation in the rat causes a reduction of pancreatic B-cell mass,which persists into adulthood[J].Biol Neonate,2005,88(2):122-128.
    26.Bavdekar A,Yajnik CS,Fall CH,et al.Insulin resistance syndrome in 8-year-old Indian children:small at birth,big at 8 years,or both[J]? Diabetes,1999,48(12):2422-2429.
    27.Jaquet D,Chevenne D,Czernichow P,et al.No evidence for a major beta-cell dysfunction in young adults born with intra-uterine growth retardation [J].Pediatr Diabetes,2000,1(4):181-185.
    28.Berry LM,Polk DH,Ikegami M,et al.Preterm newborn lamb renal and cardiovascular responses after fetal or maternal antenatal betamethasone [J].Am J Physiol,1997,272(6 Pt 2):R1972-1979.
    29.Levitt NS,Lindsay RS,Holmes MC,et al.Dexamethasone in the last week of pregnancy attenuates hippocampal glucocorticoid receptor gene expression and elevates blood pressure in the adult offspring in the rat [J].Neuroendocrinology,1996,64(6):412-418.
    30.Phillips DI,Barker DJ,Fall CH,et al.Elevated plasma Cortisol concentrations:a link between low birth weight and the insulin resistance syndrome [J]? J Clin Endocrinol Metab,1998,83(3):757-760.
    31.Langley-Evans SC.Hypertension induced by foetal exposure to a maternal low-protein diet,in the rat,is prevented by pharmacological blockade of maternal glucocorticoid synthesis [J].J Hypertens,1997,15(5):537-544.
    32.Hales CN,Barker DJ.Type 2 (non-insulin-dependent)diabetes mellitus:the thrifty phenotype hypothesis [J].Diabetologia,1992,35:595-601.
    33.Simmons RA,Flozak AS,Ogata ES.The effect of insulin and insulin-like growth factor-1 on glucose transport in normal and small for gestational age fetal rats [J].Endocrinology,1993,133:1361-1368.
    34.Levitt NS,Lindsay RS,Holmes MC,et al.Altered regulation of hepatic glucose output in the male offspring of protein-malnourished rat dams [J].Am J Physiol,1996,270:E559-564.
    35.Neel JV.Diabetes mellitus:a thrifty genotype rendered detrimental by “progress” [J]?Am J Hum Genet,1962,14:353-362.
    36.McCance DR,Pettitt DJ,Hanson RL,et al.Birth weight and non-insulin dependent diabetes:thrifty genotype,thrifty phenotype,or surviving small baby genotype [J]?BMJ,1994,308:942-945.
    37.Hattersley AT,Tooke JE.The fetal insulin hypothesis:an alternative explanation of the association of low birth weight with diabetes and vascular disease [J].Lancet,1999,353:1789-1792.
    38.Hattersley AT,Beards F,Ballantyne E,et al.Mutations in the glucokinase gene of the fetus result in reduced birth weight [J].Nat Genet,1998,19:268-270.
    39.Shield JPH.Neonatal diabetes.In:Shield JPH,Baum JD,eds.Childhood diabetes.London:Bailliere Tindall,1996:681-740.
    40.Johansson S,Uiadou A,Bergvall N,et al.The association between low birth weight and type 2 diabetes:contribution of genetic factors [J].Epidemiology,2008,19(5):659-665.
    41.Baker J,Liu JP,Robertson EJ,et al.Role of insulin-like growth factors in embryonic and postnatal growth [J].Cell,1993,75(1):73-82.
    42.Liu JP,Baker J,Perkins AS,et al.Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1)and type 1 IGF receptor (Igflr)[J].Cell,1993,75(1):59-72.
    43.Tamemoto H,Kadowaki T,Tobe K,et al.Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1 [J].Nature,1994,372(6502):182-186.
    44.Wannamethee SG,Lawlor DA,Whincup PH,et al.Birthweight of offspring and paternal insulin resistance and paternal diabetes in late adulthood:cross sectional survey [J].Diabetologia,2004,47:12-18.
    45.Vaessen N,Janssen JA,Heutink P,et al.Association between genetic variation in the gene for insulin-like growth factor-I and low birthweight [J].Lancet,2002,359:1036-1037.
    46.Lindsay RS,Hanson RL,Wiedrich C,et al.The insulin gene variable number tandem repeat class Ⅰ/Ⅲ polymorphism is in linkage disequilibrium with birth weight but not type 2 diabetes in the Pima population [J].Diabetes,2003,52:187-193.
    47.Day IN,King TH,Chen XH,et al.Insulin like growth factor-I genotype and birthweight [J].Lancet,2002,360:945 (author reply 945-946).
    48.Frayling TM,Hattersley AT,McCarthy A,et al.A putative functional polymorphism in the IGF-I gene:association studies with type 2 diabetes,adult height,glucose tolerance,and fetal growth in UK populations [J].Diabetes,2002,51:2313-2316.
    49.Mitchell SM,Hattersley AT,Knight B,et al.Lack of support for a role of the insulin gene variable number of tandem repeats minisatellite (INS-VNTR)locus in fetal growth or type 2 diabetes-related intermediate traits in United Kingdom populations [J].J Clin Endocrinol Metab,2004,89:310-317.
    50.Hansen SK,Gjesing AP,Rasmussen SK,et al.Large-scale studies of the HphI insulin gene variable-number-of-tandem-repeats polymorphism in relation to type 2 diabetes mellitus and insulin release [J].Diabetologia,2004,47:1079-1087.
    51.Bennett AJ,Sovio U,Ruokonen A,et al.Variation at the insulin gene VNTR (variable number tandem repeat)polymorphism and early growth:studies in a large Finnish birth cohort [J].Diabetes,2004,53:2126-2131.
    52.Ong KK,Phillips DI,Fall C,et al.The insulin gene VNTR,type 2 diabetes and birth weight [J].Nat Genet,1999,21:262-263.
    53.Rasmussen SK,Urhammer SA,Hansen T,et al.Variability of the insulin receptor substrate-1,hepatocyte nuclear factor-la (HNF-la),HNF-4a,and HNF-6 genes and size at birth in a population-based sample of young Danish subjects [J].J Clin Endocrinol Metab,2000,85:2951-2953.
    54.A.J.Bennett,U.Sovio,A.Ruokonen,et al.No evidence that established type 2 diabetes susceptibility variants in the PPARG and KCNJ11 genes have pleiotropic effects on early growth [J].Diabetologia,2008,51:82-85.
    55.Weedon MN,Gloyn AL,Frayling TM,et al.Quantitative traits associated with the type 2 diabetes susceptibility allele in Kir6.2 [J].Diabetologia,2003,46:1021-1023.
    56.Pfab T,Poralla C,Richter CM,et al.Fetal and maternal peroxisome proliferator-activated receptor g2 Pro 12Ala does not influence birth weight [J].Obesity (Silver Spring),2006,14:1880-1885.
    57.Johan G Eriksson,Virpi Lindi,Matti Uusitupa,et al.The Effects of the Pro12Ala Polymorphism of the Peroxisome Proliferator-Activated Receptor-_2 Gene on Insulin Sensitivity and Insulin Metabolism Interact With Size at Birth [J].Diabetes,2002,51:2321-2324.
    58.Weedon MN,Frayling TM,Shields B,et al.Genetic regulation of birth weight and fasting glucose by a common polymorphism in the islet cell promoter of the glucokinase gene [J].Diabetes,2005,54:576-581.
    59.Freathy RM,Weedon MN,Bennett A,et al.Type 2 diabetes TCF7L2 risk genotypes alter birth weight:a study of 24,053 individuals [J].Am J Hum Genet,2007,80(6):1150-1161.
    60.Rachel M.Freathy,Amanda J.Bennett,Susan M.Ring,et al.Type 2 dibetes risk alleles are associated with reduced size at birth [J].Diabetes,2009,58:1428-1433.