玉米干旱胁迫相关基因的克隆与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米(Zea mays L.)不仅是重要的粮食和饲料作物,也是重要的食品工业原料和能源植物。在我国,玉米产量仅次于水稻,在国民经济中占有非常重要的地位。干旱胁迫是自然界中主要的非生物胁迫之一,严重影响植物生长及作物生产。我国有60%的玉米种植面积受到干旱胁迫,每年因旱灾而减产20%~30%,直接影响国民经济发展及灾区人民生活。在玉米的生育期中,玉米苗期相对而言较为耐旱,适度的苗期干旱处理还可促进根系发育,增加玉米产量。而开花期前后受到干旱胁迫会严重影响玉米的产量。抽雄开花期是玉米对干旱最为敏感的时期之一,搞清楚在这一时期干旱对玉米的伤害及玉米对干旱的适应和调节机制,对于培育抗旱玉米品种具有重要意义,也是国内外学者关注的重要课题之一。
     本研究以抽雄开花期的玉米为材料,利用玉米全基因组芯片检测了叶片在玉米植株受到干旱胁迫1天和7天时的基因表达谱;利用抑制性消减杂交技术构建了1天和7天干旱胁迫下抽雄开花期玉米叶片的两个消减文库并对部分阳性克隆进行了测序分析。本研究还克隆了玉米基因ZmFtsH2A、ZmFtsH2B和Ⅱ型H~+-PPase全长,并对它们进行了初步分析。
     主要实验结果如下:
     利用玉米全基因组芯片(microarray)检测了抽雄开花期玉米在1天和7天干旱胁迫下叶片中基因表达谱的变化情况。该芯片包含了57452个玉米寡核苷酸探针,代表了3万多个基因。以处理和对照样品的信号值的比值不低于2倍的探针为有意义的差异表达基因,发现在1天和7天两种干旱胁迫处理的玉米叶片中分别有195个和1008个基因呈现差异表达。在1天胁迫下的叶片中有102个基因表现上调,93个基因表现下调,上调的基因数占差异表达基因总数的52%;而在7天胁迫的叶片中有332个基因表现上调,676个基因表现下调,上调基因数只占33%。在两种处理下的叶片中则共有1144个基因呈现差异表达,其中有上调基因412个,下调基因732个,而在两种胁迫的叶片中均表现上调和均表现下调的基因分别只有22个和37个。通过对这些差异表达基因的生物信息学分析,发现在干旱胁迫1天表达显著上调的基因中,约有1/3属于信号传导类基因,参与细胞不同信号转导途径,表明信号传导相关基因在玉米对干旱胁迫的早期反应中起重要作用。在7天干旱胁迫下,大量的代谢相关基因差异表达,特别是渗透保护因子代谢相关基因的表达变化,如脯氨酸合成途径中的P5CS和P5CR基因表达上调而其降解途径的关键酶基因ProDH表达下调,海藻糖合成途径中的TPS和TPP表达下调而其降解途径的酶基因Trehalase表达上调,而参与棉子糖合成代谢的多个重要酶基因均受胁迫诱导上调表达。该工作表明,干旱对抽雄开花期玉米叶片基因表达的影响是复杂的,涉及到多条代谢途径,较长时间的干旱处理引起大量代谢相关基因差异表达,并且以下调表达为主;脯氨酸积累和糖代谢变化在玉米叶片对干旱胁迫的应答中起重要作用。本实验所得芯片杂交数据已提交至NCBI的GEO数据库(Gene Expression Omnibus database),获得的注册号为:GSE10596。
     分别以1天干旱和7天干旱处理的抽雄开花期玉米叶片cDNA为tester,正常生长的玉米叶片cDNA为driver,使用抑制性消减杂交技术构建了两个干旱胁迫下玉米叶片的消减文库。两个文库的重组率均高于95%,插入片段集中在300—600bp之间。对两个文库部分克隆进行测序发现,文库中含有脱水素、蔗糖合成酶、甜菜碱醛脱氢酶、DRE结合因子等大量的抗旱相关基因,说明两个干旱胁迫下抽雄开花期玉米抑制性消减文库已经构建成功,且具有重要意义。
     在抽雄开花期玉米叶片消减文库阳性克隆测序结果中,得到一条长为192bp的EST,使用同源性分析软件BLASTN检索NCBI的GenBank数据库发现该EST是玉米FtsH蛋白酶基因的部分cDNA序列。以该EST序列为种子探针,检索玉米EST数据库,将得到的匹配序列进行拼接,得到两条contig(重叠群)序列,分别长为2510bp和2430bp,两条序列在核苷酸水平上的相似性为95%,均含有2034bp的完整的开放读码框(open reading frame,ORF),是玉米的AtFtsH2-like(类拟南芥FtsH2)基因,被分别命名为ZmFtsH2A和ZmFtsH2B。根据电子克隆结果,分别在ZmFtsH2A和ZmFtsH2B的ORF两侧设计基因特异性引物,以玉米cDNA为模板,PCR扩增得到含有ORF的cDNA片段,测序结果证实了电子克隆的正确性。将ZmFtsH2A和ZmFtsH2B的cDNA序列提交至GeneBank数据库,获得的登录号为EU257690与EU257691。ZmFtsH2A的cDNA序列长2510bp,包含217bp的5′非翻译区(UTR)和241bp长的3′非翻译区(UTR)以及一个2034bp的开放读码框(ORF);与其相类似,ZmFtsH2B的cDNA序列长2430bp,包含222bp的5'UTR和56bp长的3'UTR及2034bp长的ORF。两个基因均编码677个氨基酸,其蛋白序列相似性高达97%且均存在AAA结构域和Zn~(2+)结合结构域等已知的金属蛋白酶FtsH家族的特征结构域。这两个基因的全长基因组序列分别长为4420bp(ZmFtsH2A)和5187bp(ZmFtsH2B),均由5个外显子和4个内含子组成,所有内含子的边界都具有真核生物典型的内含子切除位点GT/AG序列,编码区所在的外显子部分长度完全一样,而两个基因最大的区别在于ZmFtsH2B的第1内含子(1785bp)远长于ZmFtsH2A的第1内含子(913bp)。Southern杂交结果表明两个基因在玉米基因组中均是单拷贝的。表达谱分析表明两个基因在玉米的根、茎、叶、和雌雄穗中都有表达,但ZmFtsH2B在各组织中的表达量均明显高于ZmFtsH2A。在PEG、盐、冷、ABA和MeJA处理下,ZmFtsH2A基因在玉米根和叶片组织中的表达变化水平均没有达到2倍,而ZmFtsH2B基因仅在玉米叶片中受渗透胁迫和外源ABA的诱导上调表达,在其它情况下呈现组成型表达。为了分析ZmFtsH2A、ZmFtsH2B基因的生理功能,通过转基因技术分别获得了分别转ZmFtsH2A和ZmFtsH2B基因的烟草植株,并对转基因植株进行了耐旱性分析。初步结果表明:两个AtFtsH2-like基因在烟草中表达并没有提高烟草植株的耐旱性。
     本论文还构建了18%PEG处理下苗期玉米叶片的消减文库,对部分文库进行测序分析时得到了玉米Ⅱ型H~+-PPase基因的长为764bp的EST序列。以该EST为探针,检索玉米的EST数据库,经几轮电子延伸后得到仅是该基因3′端序列的1511bp长的contig。接下来从水稻的核酸数据库中找出这条contig在水稻中的同源基因,并以该基因的5′端序列为探针,再次检索玉米的EST数据库,将匹配的玉米ESTs进行拼接后得到另一条长为898bp的contig,该contig含有该基因的5′端序列信息。这样,我们电子克隆出玉米Ⅱ型H~+-PPase基因的两端序列(中间序列未知),并依此设计基因特异性引物通过RT-PCR技术获得了该基因完整ORF的cDNA片段,并进一步利用3′RACE方法克隆了该基因的3′非翻译区序列。玉米Ⅱ型H~+-PPase基因全长2974bp,包含一个长2400bp的通读框,编码含779个氨基酸残基的蛋白质序列。该氨基酸序列同样具有H~+-PPase蛋白的5个保守结构域,与拟南芥的Ⅱ型H~+-PPase(AVP2)在氨基酸水平上具有89%的序列相似性,而与玉米Ⅰ型H~+-PPase相似性却只有39%。Southern杂交结果表明Ⅱ型H~+-PPase在玉米基因组中是低拷贝的。表达谱分析表明该基因在根、茎、叶、和雌雄穗中都有表达,其中在叶片和雄穗中表达强度比较高。Real-time PCR实验结果表明该基因的转录水平受缺水、高盐和冷胁迫等非生物胁迫诱导上调,显示该基因可能参与植物对多种非生物胁迫的耐受反应,克隆的玉米Ⅱ型H~+-PPase基因可能有较好的应用前景。
Maize(Zea mays L.)is not only an important economic crop in the world,but also a vital resource for forage and food industry.In China,the yield of maize is higher than those of the other crops except rice and plays an important role in the national economy.Water-deficit stress is one of the major environmental stresses that adversely affect plant growth and crop yield worldwide.In our country,about 60%of the maize area is under water-deficit stress,which causes 20%-30%of reduction in yield every year and affects the development of national economy and the normal life of people in the arid field.Periods of water deficit in soil could occur at any time during the crop season,but maize is particularly sensitive to water stress around flowering time,which cause remarkable yield loss.Heading time,which is just before tassel flowering,is one of the most important stages when maize productivity would be affected severely if plants encounter stresses.Understanding the mechanism of plant tolerance to environmental stresses and the molecular basis of plant responses to water stress,especially at the crucial development stage might provide new strategies to improve the stress tolerance of important agricultural plants.
     To advance our understanding of maize plants response to drought stress at heading stage,we adopted a genomic approach to monitor the transcriptome change of maize leaves subjected to 1 day and 7 days of water deficiency stress,using the Arizona 57K oligo microarray slides,and a large number of genes in response to water deficit were found.And two subtractive cDNA libraries of maize leaves at heading stage under 1 day and 7 days water stress conditions were constructed by adopting suppression subtractive hybridization(SSH)method.Further more,the full-length cDNAs of maize AtFtsH2-like and typeⅡH~+-PPase genes were isolated by RT-PCR approach coupled with in silico cloning with the ESTs obtained from SSH libraries as the probes,and the basic analyses of these genes were performed.
     The main results were shown as follows:
     In this study,maize plants at heading stage suffered from 1 day(short-term)and 7 days(long-term)water-deficit stress separately and the gene expression profiles of their leaves were examined using an Arizona Maize 57K Oligonucleotide Array representing more than 30,000 identifiable unique maize genes.The genes of the stressed sample which were more two-fold than that of the control were defined as stress-inducible(up-regulated)genes.Similarly,the genes expressed in the stressed samples at less than half of the control values were regarded as stress-repressible (down-regulated)genes.We identified 102(52%of differential expression genes)and 93 genes which were stress-inducible and repressible in the short-term stress experiment,while 332(33%of differential expression genes)and 676 genes were upand down-regulated in the long-term stress experiment.And there were only 22 genes whose expressions were induced and 37 genes that were repressed in common under both treatments.The results showed that gene expression changes were significantly different in the short-term and long-term water-deficit treatments.The genes with differential changes in expression by the 1d and 7d water-deficit stress can be divided into several function categories according to the functional categories of the Arabidopsis proteins.It was noteworthy that about one third of 1d stress-induced genes with known or putative functions participated in various cellular signaling pathways,indicating that signal transduction related genes played important roles in the early-responses to water stress of maize leaves.The 7d stress regulated genes were involved in a broad range of cellular and biochemical activities.The most notable genes may function in compatible osmolyte metabolism,particularly in proline, sucrose,trehalose and raffinose metabolism in the leaves.For example,the genes encodingΔ1-pyrroline-5-carboxylate synthetase(P5CS)andΔ1-pyrroline 5-carboxylate reductase(P5CR)were induced and a putative proline dehydrogenase (ProDH)gene was repressed in leaves following long-term water stress.And it is noteworthy that several genes encoding key enzymes functioning in raffinose metabolism were up-regulated by water stress in maize leaves.By contrast,both a putative trehalose-6-phosphate synthase(TPS)gene and a putative trehalose-phosphatase(TPP)gene for the biosynthesis of trehalose were significantly down-regulated in leaves under water-deficit condition.However,a putative trehalase gene involved in the trehalose degradative pathway was up-regulated by the stress. These results revealed that the metabolism related genes differentially expressed in controls and samples undergone water-deficit stress were prominent in the leaves of plants at heading stage.We have submitted the microarray data to public database and now all expression data are available at the NCBI Gene Expression Omnibus(GEO) database(http://www.ncbi.nlm.nih./gov/geo/)under the GSE series accession number GSE10596.
     In order to identify genes induced during the drought stress response in heading maize(Zea mays),suppression subtractive hybridization(SSH)was performed using cDNAs prepared from maize leaves at heading stage treated with water-deficit stress for 1 day and 7days as testers and cDNAs from the control maize leaves as drivers. Two subtractive cDNA libraries were constructed,in which the rate of recombination was 95%and the size of inserts ranged from 300 bp to 600 bp.Analysis of sequences from the positive clones picked randomly revealed that many drought stress associated genes,including dehydrin,sucrose synthase 3,betaine aldehyde dehydrogenase,DRE binding factor 1,et al.,were obtained.The successful construction of the two subtracted cDNA libraries enable us to identify new differentially expressed genes involved in the resistance mechanism of heading maize plants.
     A 192 bp EST was obtained by screening our successful constructed SSH-cDNA library of maize leaf at the heading stage.Following similarity searching from BLASTN at NCBI,the partial cDNA of putative FtsH protease gene fragment was identified.By in silico cloning analysis using the 192 bp EST as a query probe,two contig sequences,2510 and 2430 bp in size,were obtained.And then two maize cDNAs with complete open reading frame(ORF)encoding FtsH protease proteins were amplified by RT-PCR using two pairs of gene-specific primers designed based on the results of in silico cloning.The two cDNAs sequences were 95%identity to each other on nucleotide acid level,and the encoded proteions had 97%sequence identity and showed high degree of amino acid sequence similarity with FtsH2 protease of Arabidopsis thaliana.The full-length cDNA sequences were designated as ZmFtsH2A and ZmFtsH2B,and deposited in the GenBank database under the accession numbers EU257690 and EU257691,respectively.ZmFtsH2A(2510 bp) consisted of an open reading frame(ORF)of 2304bp,a 5'untranslated region(UTR) of 241 bp and a 3'untranslated region of 217 bp.Similarly,ZmFtsH2B(2430 bp) composed of a 2034 bp ORF,a 222 bp 5'UTR and a 156 bp 3'UTR.Both the ORFs of two genes encoded 677 amino acids containing the putative AAA domain and the Zn~(2+)-binding motif,which were the characteristic of FtsH metalloproteases family. The genomic sequences corresponding to ZmFtsH2A and ZmFtsH2B were identified, which were 4420 bp and 5187 bp in length respectively.Both genes have 5 exons and 4 introns and the main difference between the two sequences is that the first intron of ZmFtsH2B is much longer than that of ZmFtsH2A.DNA gel blot analysis showed that the two genes were single-copy in maize genome.RT-PCR analysis revealed that both maize FtsH genes were expressed in all the examined tissues including leaves,roots, stems,ears and tassels and the ZmFtsH2B transcript was higher than ZmFtsH2A in the common tissues.The responses of the two genes in leaves and roots of maize seedlings subjected to drought,cold,high salt,methyl jasmonate and abscisic acid treatments were compared using Real-time PCR approach and the results showed that ZmFtsH2B transcript was markedly up-regulated by osmotic and ABA stresses in leaves while ZmFtsH2A constitutively expressed both in leaves and roots under all tested stressful conditions.To investigate the physiological functions of two FtsH proteases,the full length cDNAs of ZmFtsH2A and ZmFtsH2B driven by 35S promoter were transformed into tobaccos.The presence and expression of the FtsH2 gene in To transgenic tobaccos were confirmed by PCR and RT-PCR approaches and drought tolerance analysis of transgenic plants were carried out.The results showed that drought tolerance of transgenic tobaccos overexpressing the two AtFtsH2-like genes were not improved compared to wild type controls,which indicated that maize FtsH2 might not be involved in plant drought tolerance.
     In our study,a forward cDNA library of seedling leaves treated with 18%PEG was also constructed by suppression subtractive hybridization,and a 764 bp partial cDNA of putative type-ⅡH~+-PPase gene was obtained by screening the SSH-cDNA library.The 764 bp EST was used as the seed to search the NCBI EST database of Zea mays,and only 1511 bp long contig was obtained by in silico approach.This contig was not complete and lacked its 5' end.So its homologous gene of Oryza Sativa was found and used to search the Zea mays EST database as a new seed.Then an 898 bp contig containing its 5' end was obtained.So the possible 5' and 3' sequence of the gene was clear although the sequence between them was still unknown.Primers were designed according to the results of in silico cloning and full length for the cDNA was obtained by RT-PCR.In addition,its 3' UTR was cloned by 3'-RACE method.The isolated 2974bp full-length cDNA of maize type-ⅡH~+-PPase contains a single 2400bp ORF encoding a putative protein of 799 amino acids.The predicted protein has five conserved domains and show 89%identity to Golgi apparatus resident type-ⅡH~+-PPase(AVP2)from Arabidopsis thaliana,but has only 39%amino acid sequence identity to the maize vacuolar H~+-PPase encoded by Vpp1 (GenBank accession no AJ715528).DNA gel blotting analysis showed that H~+-PPase is a low-copy gene.Organ expression pattern analysis revealed that type-ⅡH~+-PPase expressed highly in leaf and tassel,followed by in stem,root,and ear.The Real-time RT-PCR assays showed that the expression of the gene was up-regulated both in shoots and roots of maize seedlings under dehydration,cold and high salt stresses. Those results suggested that maize type-ⅡH~+-PPase product may play an important role in abiotic stress tolerance of Zea mays.
引文
1. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot, 58: 221-227.
    2. Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ, 25: 163-171.
    3. Huang J, Hirji R, Adam L, Rozwadowski K, Hammerlindl J, Keller W, Selvaraj G (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol, 122: 747-756.
    4. Kumar S, Dhingra A, Daniell H (2004) Plastid-expressed Betaine Aldehyde Dehydrogenase gene in carrot cultured cells, roots and leaves confers enhanced salt tolerance. Plant Physiol, 136: 2843-2854.
    5. Yang X, Liang Z, Wen X, Lu C (2008) Genetic engineering of the biosyntheses of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol, 66: 73-86.
    6. Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol J, 2: 477-486.
    7. Lv S, Yang A, Zhang K, Wang L, Zhang J (2007) Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breed, 20: 233-248.
    8. Nyyssola A, Kerovuo J, Kaukinen P, von Weymarn N, Reinikainen T (2000) Extreme halophiles synthesize betaine from glycine by methylation. J Biol Chem, 275:22196-22201.
    9. Nyyssola A, Reinikainen T, Leisola M (2001) Characterization of glycine sarcosine N-methyltransferase and sarcosine dimethylglycine N-methyltransferase. Appl Environ Microbiol, 67: 2044-2050.
    10. Waditee R, Tanaka Y, Aoki K, Hibino T, Jikuya H, Takano J, Takabe T, Takabe T (2003) Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica. J Biol Chem, 278: 4932-4942.
    11. Lu W, Chi Z, Su C (2006) Identification of glycine betaine as compatible solute in Synechococcus sp. WH8102 and characterization of its N-methyltransferase genes involved in betaine synthesis. Arch Microbiol, 186: 495-506.
    12. Waditee R, Bhuiyan M, Rai V, Aoki K, Tanaka Y, Hibino T, Suzuki S, Takano J, Jagendorf A, Takabe T, Takabe T (2005) Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proc Natl Acad Sci USA, 102:1318-1323.
    13. Waditee R, Bhuiyan N, Hirata E, Hibino T, Tanaka Y, Shikata M, Takabe T (2007) Metablic engineering for betaine accumulation in microbes and plants. J Biol Chem,282:34185-34193.
    14.Kusano T,Yamaguchi K,Berberich T,Takahashi Y(2007)Advances in polyamine research in 2007.J Plant Res,120:345-350.
    15.Yang J,Zhang J,Liu K,Wang Z,Liu L(2007)Involvement of polyamines in the drought resistance of rice.J Exp Bot,58:1545-1555.
    16.Urano K,Yoshiba Y,Nanjo T,Igarashi Y,Seki M,Sekiguchi F,Yamaguchi-Shinozaki K,Shinozaki K(2003)Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages.Plant Cell Environ,26:1917-1926.
    17.Kasukabe Y,He L,Nada K,Misawa S,Ihara I,Tachibana S(2004)Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana.Plant Cell Physiol,45:712-722.
    18.Thu-Hang P,Bassie L,Safwat G,Trung-Nghia P,Christou P,Capell T (2002)Expression of a heterologous S-adenosylmethionine decarboxylase cDNA in plants demonstrates that changes in S-adenosyl-L-methionine decarboxylase activity determine levels of the higher polyamines spermidine and spermine.Plant Physiol,129:1744-1754.
    19.Roy M,Wu R(2001)Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice.Plant Sci,160:869-875.
    20.Capell T,Bassie L,Christou P(2004)Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress.Proc Natl Acad Sci USA,101:9909-9914.
    21.Delauney A,Verma D(1993)Proline biosynthesis and osmoregulation in plants.Plant J,4:215-223.
    22.Yoshiba Y,Kiyosue T,Katagiri T,Ueda H,Mizoguchi T,Yamaguchi-Shinozaki K,Wada K,Harada Y,Shinozaki K(1995)Correlation between the induction of a gene for delta 1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress.Plant J,7:751-760.
    23.Kiyosue T,Yoshiba Y,Yamaguchi-Shinozaki K and Shinozaki K(1996)A nuclear gene encoding mitochondrial proline dehydrogenase,an enzyme involved in proline metabolism,is upregulated by proline but downregulated by dehydration in Arabidopsis.Plant Cell,8:1323-1335.
    24.Kavi Kishor P,Hong Z,Miao G,Hu C,Verma D(1995)Overexpression of △~1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants.Plant Physiol,108:1387-1394.
    25.Zhu B,Su J,Chang M,Verma D,Fan Y,Wu R(1998)Overexpresion of a △~1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to waterand salt-stress in transgenic rice.Plant Sci,139:41-48.
    26.Sawahel W,Hassan A(2002)Generation of transgenic wheat plants producing high levels of the osmoprotectant proline.Biotechnol Lett,24:721-725.
    27.Nanjo T,Kobayashi M,Yoshiba Y,Kakubari Y,Yamaguchi-Shinozaki K,Shinozaki K(1999)Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana.FEBS Lett,461:205-210.
    28.Hong Z,Lakkineni K,Zhang Z,Verma D(2000)Removal of Feedback Inhibition of △~1-Pyrroline-5-Carboxylate Synthetase Results in Increased Proline Accumulation and Protection of Plants from Osmotic Stress.Plant Physiol,122:1129-1136.
    29.Goddijn O,van Dun K(1999)Trehalose metabolism in plants.Trends Plant Sci,4:315-319.
    30.Muller J,Aesehbaeher R,Wingler A,Boller T,Wiemken A(2001)Trehalose and trehalase in Arabidopsis thaliana.Plant Physiol,125:1086-1093.
    31.Penna S(2003)Building stress tolerance through over-producing trehalose in transgenic plants.Trends Plant Sci,8:355-357.
    32.Romero C,Belles J,Vayaz J,Serrano R,Culianez-Macia F(1997)Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants:pleiotropic phenotypes include drought tolerance.Planta,201:293-297.
    33.Pilon-Smits E,Terry N,Sears T,Kim H,Zayed A,Hwang S,Van Dun K,Voogd E,Verwoerd T,Krutwagen R,Gooddijn O(1998)Trehalose producing transgenic tobacco plants show improved growth performance under drought stress.J Plant Physiol,152:525-532.
    34.Garg A,Kim J,Owens T,Ranwala A,Choi Y,Kochian L,Wu R(2002)Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses.Proc Natl Acad Sci USA,99:15898-15903.
    35.Jang I,Oh S,Seo J,Choi W,Song S,Kim C,Kim Y,Seo H,Choi Y,Nahm B,Kim J(2003)Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth.Plant Physiol,131:516-524.
    36.Pilon-Smits E,Ebskamp M,Jenken M,Weisbeek P,Smeekens S(1995)Improved performance of transgenic fructan accumulating tobacco under drought stress.Plant Physiol,107:125-130.
    37.Pilon-Smits E,Terry N,Sears T,Van Dun K(1999)Enhanced drought resistance in fructan-producing sugar beet.Plant Physiol Biochem,37:313-317.
    38.Li H,Yang A,Zhang X,Gao F,Zhang J(2007)Improving freezing tolerance of transgenic tobacco expressing sucrose:sucrose 1-fructosyltransferase gene from Lactuca sativa.Plant Cell Tissue Organ Cult,89:37-48.
    39.李慧娟,张学成,岳桂东,张举仁(2007)莴苣1-FFT基因的克隆及其功能分析.高技术通讯,17:424-429.
    40.李慧娟,尹海英,张学成,杨爱芳(2007)转蔗糖:蔗糖-1-果糖基转移酶基因提高烟草的耐旱性.山东大学报,42:89-94.
    41.Patonnier M,Peltier J,Marigo G(1999)Drought-induced increase in xylem malate and mannitol concentrations and closure of Fraxinus excelsior L. stomata. J exp Bot, 50: 1223-1229.
    42. Tarczynski M, Jensen R, Bohnert H (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science, 259: 508-510.
    43. Thomas J, Sepahi M, Arendall B, Bohnert H (1995) Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Environ, 18: 801-806.
    44. Karakas B, Ozias-Akins P, Stushnoff C, Suefferheld M, Rieger M (1997) Salinity and drought tolerance of mannitol-accumulating transgenic tobacco. Plant Cell Environ, 20: 609-616.
    45. Shen B, Jensen R, Bohnert H (1997) Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol, 113: 1177-1183.
    46. Abebe T, Guenzi A, Martin B, Cushman J (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol, 131: 1748-1755.
    47. Dure L (1993) A repeating 11-mer amino acid motif and plant desiccation. Plant J, 12: 363-369.
    48. Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol, 110: 249-257.
    49. Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet, 115: 35-46.
    50. Jang J, Kim D, Kim Y, Kim J, Kang H (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol, 54: 713-725.
    51. Maurel C (2007) Plant aquaporins: Novel functions and regulation properties. FEBS Lett, 581: 2227-2236.
    52. Jeroni G, Alicia P, Maria Mar A, Magdalena T, Hipolito M, Jaume F (2007) Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): relationship with ecophysiological status. Planta, 226: 671-681.
    53. Boursiac Y, Chen S, Luu D, Sorieul M, Deies N, Maurel C (2005) Early Effects of Salinity on Water Transport in Arabidopsis Roots. Molecular and Cellular Features of Aquaporin Expression. Plant Physiol, 139: 790-805.
    54. Johasson I, Karisson M, Shukla V, Chrispeels M, Larsson C, Kjellbom P (1998) Water transport activity of the plasma membrane acquaporin RM28A is regulated by phosphorylation. Plant Cell, 10: 451-459.
    55. Guenther J, Chanmanivone N, Galetovic M, Wallace I, Cobb J, Roberts D (2003) Phosphorylation of soybean Nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals. Plant Cell, 15: 981-991.
    56. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 55: 373-399.
    57. Gupta A, Heinen J, Holaday A, Burke J, Allen R (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA, 90: 1629-1633.
    58. Van Camp W, Willekens H, Bowler C, van Montagu M, Inze D, Reupold-Popp P, Samdermann H, Langebartels C (1994). Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Bio/Technol, 12: 165-168.
    59. Perl A, Perl-Treves R, Galili S, AvivD, Shalgi E, Malkin S, Galun E (1993) Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu/Zn superoxide dismutase. Theor Appl Genet, 85: 568-576.
    60. Hartl F (1996) Molecular chaperones in cellular protein folding. Nature, 381: 571-580.
    61. Gottesman S, Wicker S, Maurizi M (1997) Protein quality control: triage by chaperones and proteases. Genes Dev, 11: 815-823.
    62. Koizumi M, Yamaguchi-Shinozaki K, Tsuji H, Shinozaki K (1993) Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana. Gene, 129: 175-182.
    63. Nakashima K, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1997) A nuclear gene, erdl, encoding a chloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally up-regulated during senescence in Arabidopsis thaliana. Plant J, 12: 851-861.
    64. Sanders D, Brownlee C, Harper J (1999) Communicating with calcium. Plant cell, 11:691-706.
    65. Stone J, Walker J (1995) Plant protein kinase families and signal transduction. Plant Physiol, 108: 451-457.
    66. Harper JF, Braton G, Harmon A (2004). Decoding Ca~(2+) signals through plant protein kinases. Annu Rev Plant Biol, 55:263-288.
    67. Harmon AC, Yoo BC, McCaffery C (1994) Pseudosubstrate inhibition of CDPK, a protein kinase with a calmodulin-like domain. Biochemistry, 33: 7278-7287.
    68. Hrabak E, Chan C, Gribskov M, Harper J, Choi J, Halford N, Kudla J, Luan S, Nimmo H, Sussman M, Thomas M, Walker-simmons K, Zhu J, Harmon A (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol, 132: 660-680.
    69. Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, Shinozaki K (1994) Two genes that encode Ca~(2+)-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Mol Gen Genet, 244:331-340.
    70. Sheen J (1996) Ca~(2+)-dependent protein kinases and stress signal transduction in plants. Science, 274: 1900-1902.
    71. Saijo Y, Hata S, Kyoznka J, Shimarnoto K, Izui K (2000) Over-expression of a single Ca~(2+)-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J, 23: 319-327.
    72. Abbasi F, Onodera H, Tolki S, Tanaka H, Komatsu S (2004) OsCDPKD, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. Plant Mol Biol, 55: 541-552.
    73. Romeis T, Ludwig A, Martin R, Jones J (2001) Calcium-dependent protein kinases play an essential role in a plant defense response. EMBO J, 20: 5556-5567.
    74. Lee S, Cho H, Yoon G, Ahn J, Kim H, Pai H (2003) Interaction of NtCDPK1 calcium-dependent protein kinase with NtRpn3 regulatory subunit of the 26S proteasome in Nicotiana tabacum. Plant J, 33: 825-840.
    75. Patharkar O, Cushman J (2000) A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator. Plant J, 24: 679-691.
    76. Chehab E, Patharka O, Hegeman A, Taybi T, Cushman J (2004) Autophosphorylation and subcellular localization dynamics of a salt- and water deficit-induced calcium-dependent protein kinase from ice plant. Plant Physiol, 135: 1430-1446.
    77. Rodriguez Milla M, Uno Y, Chang I, Townsend J, Maher E, Quilici D, Cushman J (2006) A novel yeast two-hybrid approach to identify CDPK substrates: Characterization of the interaction between AtCPK11 and AtDi19, a nuclear zinc finger protein. FEBS Lett, 580: 904-911.
    78. Rodriguez Milla M, Townsend J, Chang I, Cushman J (2006) The Arabidopsis AtDi19 Gene Family Encodes a Novel Type of Cys2/His2 Zinc-finger Protein Implicated in ABA-independent Dehydration, High-salinity Stress and Light Signaling Pathways. Plant Mol Biol, 61: 13-30.
    79. Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signals response coupling in plants. Plant Cell, 14: s389-s400.
    80. Sanders D, Pelloux J, Brownlee C, Harper J (2002) Calcium at the crossroads of signaling. Plant cell, 14: s401-s417.
    81. Pandey S, Tiwari S, Tyagi W, Reddy, Reddy M, Upadhyaya K, Sopory S (2002) A Ca~(2+)/CaM-dependent kinase from pea is stress regulated and in vitro phosphorylates a protein that binds to AtCaM5 promoter. Eur J Biochem, 269: 3193-3204.
    82. Perruc E, Charpenteau M, Ramirez B, Jauneau A, Galaud J, Ranjeva R, Rant B (2004) A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings. Plant J, 38: 410-420.
    83. Jonak C, Okresz L, Bogre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signaling. Curr Opin Plant Biol, 5: 415-424.
    84. Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci, 10: 339-346.
    85. Ligterink W, Hirt H (2001) Mitogen-activated protein (MAP) kinase pathways in plants: versatile signaling tools. Int Rev Cytol, 201: 209-275.
    86. Mizoguchi T, Hayashida N, Yamaguchi-Shinozaki K, Kamada H, Shinozaki K (1993) ATMPKs: a gene family of plant MAP kinases in Arabidopsis thaliana. FEBS Lett, 336: 440-444.
    87. Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases AtMPK4 and AtMPK6. Plant J, 24: 655-665.
    88. Matsuoka D, Nanmori T, Sato K, Fukami Y, Kikkawa U, Yasuda T (2002) Activation of AtMEK1, an Arabidopsis mitogen-activated protein kinase kinase, in vitro and in vivo: analysis of active mutants expressed in E. coli and generation of the active form in stress response in seedlings. Plant J, 29: 637-647.
    89. Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K (1996) A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci USA, 93: 765-769.
    90. Mizoguchi T, Ichimura K, Irie K, Morris P, Giraudat J, Matsumoto K, Shinozaki K (1998) Identification of a possible MAP kinase cascade in Arabidopsis thaliana based on pairwise yeast two-hybrid analysis and functional complementation tests of yeast mutants. FEBS Lett, 437: 56-60.
    91. Kiegerl S, Cardinale F, Siligan C, Gross A, Baudouin E, Liwosz A, Eklof S, Till S, Bogre L, Hirt H, Meskiene I (2000) SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell, 12: 2247-2258.
    92. Kim C, Liu Y, Throne E, Yang H, Fukushige H, Gassmann W, Hildebrand D, Sharp R, Zhang S (2003) Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants. Plant Cell, 15: 2707-2718.
    93. Chitlaru E, Seger R, Pick U (1997) Activation of a 74 kDa plasma membrane protein kinase by hyperosmotic shocks in the halotolerant alga Dunaliella salina. J Plant Physiol, 151: 429-436.
    94. Jonak C, Kiegerl S, Ligterink W, Barker P, Huskisson N, Hirt H (1996) Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA, 93:11274-11279.
    95. Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 15: 745-759.
    96. Munnik T (2001) Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci, 6: 227-233.
    97. Wang X (2002) Phospholipase D in hormonal and stress signaling. Curr Opin Plant Biol, 5: 408-414.
    98. Hirayama I, Ohto C, Mizoguchi I, Shinozaki K (1995) A gene encoding a phosphotidylinositol-specific phopholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Natl Acad Sci USA, 92: 3903-3907.
    99. Takahashi S, Katagiri T, Hirayama I, Yamaguchi-Shinozaki K, Shinozaki K (2001) Hyperosmotic stress induces a rapid and transient increase in inositol 1,4,5-triphosphate independent of abscisic acid in Arabidopsis cell cultures. Plant Cell Physiol, 42: 214-222.
    100.Zhai S, Sui Z, Yang A, Zhang J (2005) Characterization of a Novel Phosphoinositide-Specific Phospholipase C from Zea mays and its Expression in Escherichia coll Biotech left, 27: 799-804.
    101. Mikami K, Katagiri I, Luchi S, Yamaguchi-Shinozaki K, Shinozaki K (1998) A gene encoding phosphatidylinositol 4-phosphate 5-kinase is induced by water stress and abscisic acid in Arabidopsis thaliana. Plant J, 15: 563-568.
    102.Choi H, Hong J, Ha J, Kang J, Kim S (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem, 275: 1723-1730.
    103. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozoki K, Shinozoki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol, 17: 287-291.
    104.Haake V, Cook D, Riechmann J, Pineda O, Thomashow M, Zhang J (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol, 130: 639-648.
    105.Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plan Cell, 9: 1859-1868.
    106.Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 15: 63-78.
    107. Chen W, Provart N, Glazebrook J, Katagiri F, Chang H, Eulgem T, Mauch F, Luan S, Zou G, Whitham S, Bud worth P, Tao Y, Xie Z, Chen X, Lam S, Kreps J, Harper J, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl J, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell, 14: 559-574.
    108. Olsen A, Ernst H, Leggio L, Skriver K (2005) NAC transcription factors: structurally distinct, funcronally diverse. Trends in Plant Sci, 10: 79-87.
    109.Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 103: 12987-12992.
    110.Lu P, Chen N, An R, Su Z, Qi B, Ren F, Chen J,Wang X (2007) A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol, 63: 289-305.
    111. Tran L-S, Nakashima K, Sakuma Y, Simpson S, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and Functional Analysis of Arabidopsis Stress-inducible NAC Transcription Factors That Bind to a Drought-Responsive cis-Element in the early responsive to dehydration stress 1 Promoter.Plant cell,16:2481-2498
    112.Soderman E,Hjellstrom M,Fahleson J,Engstrom P(1999)The HD-Zip gene A THB6 in Arabidopsis is expressed in developing leaves,root and carpels and up-regulated by water deficit conditions.Plant Mol Biol,40:1073-1083.
    113.Zhu J(2002)Salt and drought stress signal transduction in plants.Annu Rev Plant Biol,53:247-273.
    114.Xiong L,Schumaker K,Zhu J(2002)Cell signaling during cold,drought,and salt stress.Plant Cell,14 Suppl:S165-183.
    115.Liang P,Pardee A(1992)Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction.Science,257:967-971.
    116.Lisitsyn N,Lisitsyn N,Wigler M(1993)cloning the differences between two complex genomes.Science,259:946-951.
    117.Hubank M,Schatz D(1994)Identifying difference in mRNA expression by representational difference analysis of cDNA.Nucl Acids Res,22:5640-5648.
    118.Liang JQ,Kojima T,Shiraiwa M,Takahara H(2003)Cloning of two cysteine proteinase genes,CysP1 and CysP2,from soybean cotyledons by cDNA representational difference analysis.Biochim Biophys Acta,1623:129-139.
    119.Huang W,Fang X,Lin Q,Li G,Zhao W(2003)Identification and expression analysis of a full-length cDNA encoding a Kandelia candel tonoplast intrinsic protein.Chin J Biotechnol,2:148-152.
    120.Park D,Lee S,Lee J,Song M,Song S,Kwak D,Yeo U,Jeon N,Park S,Yi G,Song Y,Nam M,Ku Y,Jeon J(2007)The identification of candidate rice genes that confer resistance to the brown planthopper(Nilaparvata lugens)through representational difference analysis.Theor Appl Genet,115:537-547.
    121.Bachem C,van der Hoeven R,de Bruijn S,Vreugdenhil D,Zabeau M,Visser R(1996)Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP:analysis of gene expression during potato tuber development.Plant J,1996,9:745-753.
    122.Aoki A,Kaneqami A,Mihara M,Kojima T,Shiraiwa M,Takahara H (2005)Molecular cloning and characterization of a novel soybean gene encoding a leucine-zipper-like protein induced to salt stress.Gene,356:135-145.
    123.Suprunova T,Kruqman T,Distelfeld A,Fahima T,Nero E,Korol A(2007)Identification of a novel gene(Hsdr4)involved in water-stress tolerance in wild barley.Plant Mol Biol,64:17-34.
    124.Diatchenko L,Lau Y,Campbell A,Chenchik A,Moqadam F,Huang B,Lukyanov S,Lukyanov K,Gurskaya N,Sverdlov E,Siebert P(1996)Suppression subtractive hybridazation:a method for generating differentially regulated or tissue-specific cDNA probes and libraries.Proc Natl Acad Sci USA,93:6025-6030.
    125.姜淑梅,吕晓梅,胡赞民(2005)差减抑制杂交技术在植物研究中的应用.植物学通报,22:91-98.
    126.Schena M,Shalon D,Davis R,Brown P(1995)Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270: 467-470.
    127. Zinselmeier C, Sun Y, Helentjaris T, Beatty M, Yang S, Smith H, Habben J (2002) The use of gene expression profiling to dissect the stress sensitivity of reproductive development in maize. Field Crop Res, 75: 111-121.
    128.Yu L, Setter T (2003) Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit. Plant Physiol, 131:568-582.
    129. Zheng J, Zhao J, Tao Y, Wang J, Liu Y, Fu J, Jin Y, Gao P, Zhang J, Bai Y, Wang G (2004) Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray. Plant Mol Biol, 55: 807-823.
    130. Jia J, Fu J, Zheng J, Zhou X, Huai J, Wang J, Wang M, Zhang Y, Chen X, Zhang J, Zhao J, Su Z, Lv Y, Wang G (2006) Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L) seedlings. Plant J, 48: 710-727.
    131.Andjelkovic V, Thompson R (2006) Changes in gene expression in maize kernel in response to water and salt stress. Plant Cell Rep, 25: 71-79.
    132. Zhuang Y, Ren G, Yue G, Li Z, Qu X, Hou G, Zhu Y, Zhang J (2007) Effects of water-deficit stress on the transcriptomes of developing immature ear and tassel in maize. Plant Cell Rep, 26: 2137-2147.
    133. Dowler S, Currie R, Campbell D, Deak M, Kular G, Dowries C, Alessi D (2000) Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem J, 351: 19-31.
    134. Song X, Xu W, Zhang A, Huang G, Liang X, Virbasius J, Czech M, Zhou G (2001) Phox homology domains specifically bind phosphatidylinositol phosphates. Biochemistry, 40: 8940-8944.
    135.Yu J, Lemmon M (2001) All phox homology (PX) domains from Saccharomyces cerevisiae specifically recognize phosphatidylinositol 3-phosphate. J Biol Chem, 276: 44179-44184.
    136.Seet L, Hong W (2006) The Phox (PX) domain proteins and membrane traffic. Biochim Biophys Acta, 1761: 878-896.
    137.Lemmon M, Ferguson K (2000) Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J, 350: 1-18.
    138.Vanhaesebroeck B, Leevers S, Khatereh A, Timms J, Katso R, Driscoll P, Woscholski R, Parker P, Waterfield M (2001) Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem, 70: 535-602.
    139. VitaIe N, Caumont A, Chasserot-Golaz S, Du G, Wu S, Sciorra V, Morris A, Frohman M, Bader M (2001) Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. EMBO J, 20: 2424-2434.
    140. Carlson S, Chourey P, Helentjaris T, Datta R (2002) Gene expression studies on developing kernels of maize sucrose synthase (SuSy) mutants show evidence for a third SuSy gene. Plant Mol Biol, 49: 15-29.
    141. Sturm A (1999) Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol, 121: 1-7.
    142.Vargas W, Cumino A, Salerno G (2003) Cyanobacterial alkaline/neutral invertases. Origin of sucrose hydrolysis in the plant cytosol? Planta, 216: 951-960.
    143.Zeng Y, Wu Y, Avigne W, Koch K (1999) Rapid repression of maize invertases by low oxygen. Invertase/sucrose synthase balance, sugar signaling potential, and seedling survival. Plant Physiol, 121: 599-608.
    144.Hannah M, Heyer A, Hincha D (2005) A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet, 1: 179-196.
    145.Brenac P, Horbowicz M, Downer S, Dickermn A, Smith M, Obendorf R (1997) Raffmose accumulation related to desiccation tolerance during maize (Zea mays L.) seed development and maturation. J Plant Physiol, 150: 481-488.
    146Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J, 29: 417-426.
    147.Keller R, Brearley C, Trethewey R, Muller-Rober B (1998) Reduced inositol content and altered morphology in transgenic potato plants inhibited for 1D-myo-inositol 3-phosphate synthase. Plant J, 16: 403-410.
    148.Avonce N, Leyman B, Mascorro-Gallardo J, Van Dijck P, Thevelein J, Iturriaga G (2004) The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling. Plant Physiol, 136: 3649-3659.
    149.Valliyodan B, Nguyen H (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol, 9: 189-195.
    150.Elbein A, Pan Y, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology, 13: 17-27.
    151.Grennan A (2007) The role of trehalose biosynthesis in plants. Plant Physiol, 144: 3-5.
    152.Santos D, de Almeida D (1975) Isolation and characterization of a new temperature-sensitive cell division mutant of Escherichia coli K-12. J Bacteriol, 124:1502-1507.
    153.Langer T (2000) AAA proteases: cellular machines for degrading membrane proteins. Trends Biochem Sci, 25:247-251.
    154.Neuwald A, Aravind L, Spouge J, Koonin E (1999) AAA+: a class of chaperone-like ATPases associated with the assembly, operation and disassembly of protein complexes. Genome Res. 9: 27-43.
    155.Ogura T, Wilkinson A (2001) AAA+ superfamily ATPases: common structure-diverse function. Genes Cells, 6:575-597.
    156.Krzywda S, Brzozowski A, Karata K, Ogura T, Wilkinson A (2002) Crystallization of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli. Acta Crystallogr D Biol Crystallogr, 58:1066-1067.
    157.Makino S, Makinoa T, Abe K, Hashimoto J, Tatsuta T, Kitagawa M, Mori H,Ogura T,Fujii T,Fushinobu S,Wakagi T,Matsuzawa H(1999)Second transmembrane segment of FtsH plays a role in its proteolytic activity and homo-oligomerization.FEES Lett,460:554-558.
    158.Mann N,Novac N,Mullineaux C,Newman J,Bailey S,and Robinson C (2000)Involvement of an FtsH homologue in the assembly of functional photosystem I in the cyanobacterium Synechocystis sp.PCC 6803.FEES Lett,479:72-77.
    159.Sokolenko A,Pojidaeva E,Zinchenko V,Panichkin V,Glaser V,Herrmann R,Shestakov S(2002)The gene complement for proteolysis in the cyanobacterium Synechocystis sp.PCC 6803 and Arabidopsis thaliana chloroplasts.Curt Genet,41,291-310.
    160.Yu F,Park S,Rodermel S(2005)Functional redundancy of AtFtsH metalloproteases in thylakoid membrane complexes.Plant Physiol,138:1957-1966.
    161.Sakamoto W,Zaltsman A,Adam Z,Takahashi Y(2003)Coordinated regulation and complex formation of YELLOW VARIEGATED1 and YELLOW VARIEGATED2,chloroplastic FtsH metalloproteases involved in the repair cycle of photosystem Ⅱ in Arabidopsis thylakoid membranes.Plant Cell,15:2843-2855.
    162.孙爱清,刘箭,张杰道(2006)植物中的金属蛋白酶FtsH.植物生理学通讯42:148-154.
    163.Seo S,Okamoto M,Iwai T,Iwano M,Fukui K,Isogai A,Nakajima N,Ohashi Y(2000)Reduced levels of chloroplast FtsH protein in tobacco mosaic virus-infected tobacco leaves accelerate the hypersensitive reaction.Plant Cell,12:917-932.
    164.Sinvany-Villalobo G,Davydov O,Ben-Ari G,Zaltsman A,Raskind A,Adam Z(2004)Expression in multigene families.Analysis of chloroplast and mitochondrial proteases.Plant Physiol,135:1336-1345.
    165.Ivashuta S,Imai R,Uchiyama K,Gau M,Shimamoto Y(2002)Changes in chloroplast FtsH-like gene during cold acclimation in alfalfa(Medicago sativa).J Plant Physiol,159:85-9.
    166.Sun A,Yi S,Yang J,Zhao C,Liu J(2006)Identification and characterization of a heat-inducible fisH gene from tomato(Lycopersicon esculentum Mill.).Plant Sci,170:551-562.
    167.Chen J,Burke J,Velten J,Xin Z(2006)Ftshll protease plays a critical role in arabidopsis thermotolerance.Plant J,48:73-84.
    168.Sinvany-Villalobo G,Davydov O,Ben-Ari G,Zaltsman A,Raskind A,Adam Z(2004)Expression in multigene families.Analysis of chloroplast and mitochondrial proteases.Plant Physiol,135:1336-1345.
    169.Chen M,Choi Y,Voytas D,Rodermel S(2000)Mutations in the Arabidopsis VAR2 locus cause leaf variegation due to the loss of a chloroplast FtsH protease.Plant J,22:303-313.
    170.Takechi K,Sodmergen,Murata M,Motoyoshi F,Sakamoto W(2000)The YELLOW VARIEGATED(VAR2)locus encodes a homologue of FtsH,an ATP-dependent protease in Arabidopsis. Plant Cell Physiol, 41:1334-1346.
    171.Sakamoto W, Tamura T, Hanba-Tomita Y, Sodmergen, Murata M (2002) The VAR1 locus of Arabidopsis encodes a chloroplastic FtsH and is responsible for leaf variegation in the mutant alleles. Genes Cells, 7:769-780.
    172.Yu F, Park S, Rodermel S (2004) The Arabidopsis FtsH metalloprotease gene family: interchangeability of subunits in chloroplast oligomeric complexes. Plant J, 37:864-876.
    173.Zaltsman A, Ori N, Adam Z (2005) Two types of FtsH protease subunits are required for chloroplast biogenesis and photosystem Ⅱ repair in Arabidopsis. Plant Cell, 17:2782-2790.
    174.LindahI M, Spetea C, Hundal T, Oppenheim B, Adam Z, Anderesson B (2000) The thylakiod FtsH protease plays a role in the light-induced turnover of the Photosystem ⅡD1 protein. Plant cell, 12:419-431
    175.Bailey S, Thompson E, Nixon P, Horton P, Mullineaux C, Robinson C, Mann N (2002) A critical role for the Var2 FtsH homologue of Arabidopsis thalinain the photosystem Ⅱ repair cycle in vivo. J Biol Chem, 277: 2006-2011.
    176.Kapri-Parde E, Naveh L Adam Z (2007) The thylakoid lumen protease Deg1 is involved in the repair of photosystem Ⅱ from photoinhibition in Arabidopsis. Plant cell, 19: 1039-1047.
    177.Yoshioka M, Uchida S, Mori H, Komayama K, Ohira S, Morita N, Nakanishi T, Yamamoto Y (2006) Quality Control Photosystem Ⅱ. Cleavage of reaction center D1 protein in spinach thylakoids by FtsH protease under moderate heat stress. J Biol Chem, 281: 21660-21669.
    178.Komayama K, Khatoon M, Takenaka D, Horie J, Yamashita A, Yoshioka M, Nakayama Y, Yoshida M, Ohira S, Morita N, Velitchkova M, Enami I, Yamamoto Y (2007) Quality control of Photosystem Ⅱ: cleavage and aggregation of heat-damaged Dl protein in spinach thylakoids. Biochim Biophys Acta, 1767: 838-846.
    179.Adams M, Kelley J, Jeannine D, Gocayne, Dubnick M, Polymeropoulos M, Xiao H, Merril C, Wu A, Olde B, Moreno R, Kerlavage A, McCombie W, Venter C (1991) Complementary DNA sequencing expressed sequence tags and human genome project. Science, 252:1651-1656.
    180.Maeshima M (2000) Vacuolar H~+-pyrophosphatase. Bioch Biophy Acta, 1465:37-51.
    181. Kieber J, Signer E (1991) Cloning and characterization of an inorganic pyrophosphatase gene from Arabidopsis thalina. Plant Mol Biol, 16: 345-348.
    182. Jardin P, Rojas-Beltran J, Cebhardt C, Brasseur R (1995) Molecular Cloning and Characterization of a Soluble Inorganic Pyrophosphatase in Potato. Plant Physioi, 109:853-860.
    183.Gaxiola R, Palmgren M, Schumacher K (2007) Plant proton pumps. FEBS Lett., 581:2204-2214.
    
    184.Drozdowicz Y, Kissinger J, Rea P (2000) AVP2, a sequence-divergent, K~+-insensitive H~+-translocating inorganic pyrophosphatase from Arabidopsis thaliana. Plant Physiol, 123:353-362.
    185.Taiz L(1992)THE PLANT VACUOLE.J Exp Biol,172:113-122.
    186.Carystinos G,MacDonald H,Monroy A,Dhindsa R,Poole R(1995)Vacuolar H~+-Translocating Pyrophosphatase Is Induced by Anoxia or Chilling in Seedlings of Rice.Plant Physiol,108:641-649.
    187.Wang B,Lüttge U,Ratajczak R(2001)Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa.J Exp Bot,52:2355-2365.
    188.Fukuda A,Chiba K,Maeda M,Nakamura A,Maeshima M,Tanaka Y (2004)Effect of salt and osmotic stresses on the expression of genes for the vacuolar H~+- pyrophosphatase,H~+-ATPase subunit A,and Na~+/H~+ antiporter from barley.J Exp Bot,55:2585-2594.
    189.Gaxiola R,Li J,Undurraga S,Dang L,Allen G,Alper S,Fink G(2001)Drought- and salt-tolerant plants result from overexpression of the AVP1H~+-pump.Proc Natl Acad Sci USA,98:11444-11449.
    190.Guo S,Yin H,Zhang X,Zhao F,Li P,Chen S,Zhao Y,Zhang H(2006)Molecular cloning and characterization of a vacuolar H~+-pyrophosphatase gene,SsVP,from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis.Plant Mol..Biol,60:41-50.
    191.Gao F,Gao Q,Dua X,Yue G,Yang A,Zhang J(2006)Cloning of an H~+-PPase gene from Thellungiella halophila and its heterologous expression to improve salt-tolerance of tobacco.J Exp Bot,57:3259-3270.
    192.Li B,Wei A,Song C,Li N,Zhang J(2008)Heterologous expression of the TSVP gene improves the drought resistance of maize.Plant Biotechnol J,6:146-159.
    193.Mitsuda N,Enami K,Nakata M,Takeyasu K,Sato M(2001)Novel type Arabidopsis thaliana H~+-PPase is localized to the Golgi apparatus.FEBS Lett,488:29-33.
    194.Oberbeck K,Drucker M,Robinson D(1994)V-type ATPase and pyrophosphatase in endomembranes of maize roots.J Exp Bot,45:235-244.
    195.Drozdowicz Y,Rea P(2001)Vacuolar H~+ pyrophosphatases:from the evolutionary backwaters into the mainstream.Trends in Plant Sci,6:206-211.
    196.Wisniewski J,Rogowsky P(2004)Vacuolar H~+-translocating inorganic pyrophosphatase(Vpp1)marks partial aleurone cell fate in cereal endosperm development.Plant Mol Biol,56:325-337.
    197.岳桂东,隋镇华,李煦,张举仁(2007)利用生物信息数据库克隆玉米基因PIS2与MFSP全长。高技术通讯(已接受).