脉冲强磁场电源系统设计及实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强磁场作为一种基础研究的重要极端条件,在凝聚态物理、材料科学等研究领域发挥着不可替代的作用。作为获得高场强磁场有效方法的脉冲强磁场实验装置,在全世界范围内受到广泛关注和大力发展。脉冲强磁场电源为脉冲强磁场实验装置提供能量,并影响磁场的强度、波形和质量,是装置的关键和核心部件。本文根据各类脉冲强磁场电源的特点和优劣,并结合华中科技大学国家脉冲强磁场科学中心(筹)现有条件和规划,选择电容器型电源与脉冲发电机型电源作为脉冲强磁场装置的能量来源,重点研究了这两种脉冲强磁场电源系统的具体设计与实现方案。
     针对磁体供电要求,以及电容器型电源单模块和多模块并联两种工作状态,分析了电容器型电源主要参数对磁场强度、波形的影响,并提出了12.6MJ/25kV电容器型电源系统的总体设计方案;根据电容器型电源模块可靠性及稳定运行的要求,确定各组成部分的功能及其参数要求,重点设计了脉冲电容器及阻尼电感、放电开关及保护电感、续流二极管及续流电阻、极性转换开关等主要元件的实现方案。
     在电容器型电源系统研制过程中,对该电源系统的主要元件和整个系统的性能和参数进行了测试和分析,验证了设计方案的可行性,并通过对模块阻抗的测试,建立了精确的电容器型电源模块模型,为后续分析奠定模型基础;针对电容器型电源放电瞬间因线路寄生参数引起的瞬态过电压问题,分析了引起瞬态过电压的具体因素,并设计了相应的阻容吸收支路,实验表明该阻容吸收支路能有效抑制瞬态过电压幅值。
     在脉冲发电机型电源系统设计方面,分析了现有的100MVA/185MJ脉冲发电机系统和磁体需求,优化了脉冲整流器系统的直流侧参数,提出了135MVA脉冲整流器系统的整体设计方案;根据系统特点提出了由晶闸管开关和机械开关并联组成的Crowbar支路作为直流侧故障保护方案;以规划50T/100ms磁体作为负载,仿真分析了脉冲发电机型电源系统的整体工作情况,验证了该设计方案的可行性。
     在脉冲发电机型电源系统纹波分析及控制策略研究方面,分析了单线圈和双线圈磁体的供电方式和影响平顶磁场纹波的主要因素,以磁场纹波最小化为目标,提出了交流电压,出口电抗器,线路阻抗等参数的系统配置原则;针对双线圈磁体等效电路,提出了全电流平顶、无电流平顶、半电流平顶三种控制策略,分析了各自的优缺点和适用场合,并通过实验验证了无电流平顶控制策略的有效性;针对阶梯波单线圈磁体,分析了在串联12脉波与串联24脉波整流器两种拓扑电路下,两个整流器触发角不对称运行方式时产生的磁场纹波,并给出了纹波最小要求下的最优触发角分配曲线。
The high magnetic field is one of the important and basic research tools in condensedmatter physics, materials science and other research areas. Therefore, the pulsed highmagnetic field facility is vigorously developed worldwide as an effective way to obtainhigh magnetic field. The pulsed power supply is one of the core elements of the highmagnetic field facility. The pulsed magnet is energized by the pulsed power supply, whichdirectly determines the strength, waveform and quality of the high magnetic field.Considering the advantages and disadvantages of various pulsed magnetic field powersupplies, and the present conditions and planning of the Wuhan National High MagneticField Center in Huazhong University of Science and Technology, the pulsed capacitor bankand the pulsed generator are selected as the high magnetic field power supply. This paperstudies the design and realization of these two kinds of pulsed power supply for highmagnetic field.
     According to the single module and multi-module two operation modes of pulsedcapacitor bank power supply, the relation of the main parameters of pulsed capacitor bankpower supply and the strength, waveform of magnetic field is analyzed, and the overalldesign of the pulsed capacitor bank power supply system is proposed. According to thedesign requirements of the main components of the pulsed capacitor bank power supplymodule, the specific design of the pulsed capacitor with the damping inductor, the dischargeswitch with the protection inductor, crowbar branch is present.
     The pulsed capacitor bank power supply system testing includes main componentstesting and power supply module testing, wherein the module impedance test builds themore precise model of the pulsed capacitor bank power supply module for subsequentanalysis. The circuit with the parasitic capacitance of the cable is analyzed for the transientovervoltage occurred at the moment of discharge, and a RC snubber circuit branch isdesigned to absorb the transient overvoltage.
     This paper analyses the demand of pulsed generator system and pulsed magnet, anddetermined the DC parameters of the pulse rectifier system, then the overall design of thepulsed rectifier system is proposed. According to the characteristics of the pulsed rectifiersystem, the crowbar branch consisted of a thyristor crowbar branch and a mechanical switch is designed as the protection of DC fault. At last, the overall design of the pulsedrectifier system is verified through the simulation with the planning pulsed magnet.
     With the analysis of the monocoil magnet circuit and flat-top magnetic field ripple, thesystem configuration principles about AC voltage, export reactor and line impedance isproposed for the magnetic field ripple minimization. According to the analysis of dual-coilmagnet circuit, three control strategies, full current flat-top, no current flat-top, semi-currentflat-top are proposed. The optimal control strategy and the system configuration, which areput forward for the magnetic field ripple minimization, and verified by experiment.According to the analysis of the magnetic field ripple of two topologies,12-pulse rectifierin series and24-pulse rectifier in series, the optimal firing angle distribution curve, underthe asymmetrical trigger angle mode, is obtained.
引文
[1] Motokawa Mitsuhiro. Physics in High Magnetic Fields. Reports on Progress inPhysics,2004,67(11):1995
    [2] K. V. Klitzing, G. Dorda, M. Pepper. New Method for High-Accuracy Determinationof the Fine-Structure Constant Based on Quantized Hall Resistance. Physical ReviewLetters,1980,45(6):494-497
    [3] H. L. Stormer, A. Chang, D. C. Tsui et al. Fractional Quantization of the Hall Effect.Physical Review Letters,1983,50(24):1953-1956
    [4] Paul C. Lauterbur. All Scienee is Interdisciplinary–from Magnetic Moments toMolecules to Men. Angewandte Chemie International Edition,2005
    [5] J. R. Sims, M. A. Hill, R. P. Walsh. Developments in Materials for High-FieldMagnets. IEEE Trans. on Magnetics,1994,30(4):2211~2213.
    [6] J. Vanacken, V. V. Moshchalkov, F. Herlach. High TcSuperconductors in PulsedMagnetic Fields. USA: World Seientific Publishing Co.,2004
    [7] Drachenko, D.V. Kozlov, V. Ya. Aleshkin, V. I. Gavrilenko, K. V. Maremyanin, et al.High-field Splitting of the Cyclotron Resonance Absorption in Strainedp-InGaAs/GaAs Quantum Wells. Phys. Rev. B,2009,79
    [8] J. S. Brooks, J. E. Crow,W. G. Moulton. Science Opportunities at High MagneticFields. J. Phys. Chem Solids,1998,59(4):569-590
    [9] C.B. Grissom,magnetic field effects in biology: A Survey of Possible Mechanismswith Emphasis on Radical-pair Reeombination. Chemieal Reviews,2000,95(l)
    [10] Fritz Herlach. Magnets for the21st century. Physica B: Condensed Matter,1998,246-247:152-157
    [11] J.R. Miller. The NHMFL45T Hybrid Magnet System: Past, Present, And Future.IEEE Transactions on Applied Superconductivity,2003
    [12] Herlach F and Miura N, eds., High Magnetic Fields: Science and Technology, WorldScientific, Singapore,2003
    [13] K. Kindo, S. Takeyama, M. Tokunaga et al. The International MegaGauss Laboratoryat ISSP, The University of Tokyo. Journal of Low Temp Phys,2010(159):381-388
    [14] Portugall O., Puhlmann N.; MullerH. U., Barczewski M., Stolpe I., von Ortenberg,,M. Megagauss Magnetic Field Generation in Single-Turn Coils: New Frontiers forScientific Experiments. Journal of Physics D: Applied Physics,1999,32(18):2354-2366
    [15] Fritz Herlach. Pulsed Magnets. Rep. Prog. Phys.,1999(62):859-920
    [16]彭涛,辜承林.脉冲强磁场及其发展动态.电工技术杂志,2002(11):1-3
    [17]彭涛,辜承林.脉冲强磁场发展技术.核技术,2003(3):185-188
    [18] http://www.lanl.gov/science-innovation/science-features/world-record-set-magnetic-field.php
    [19]张裕恒.脉冲强磁场系统最佳设计的理论.物理学报,1980(9):1121-1134
    [20]汪茂泉,张裕恒.脉冲强磁场电路系统的最佳设计——理论和方法.低温物理,1984(2):109-116
    [21]施嘉标,潘引年,查秀英等.41T脉冲强磁场.核科学与工程,1984(02):163-166
    [22]曹效文.强磁场技术进展.物理,1996(09):552-555
    [23] T. Peng, C. L. Gu, K. Rosseel et al. Advanced Numerical Simulation of PulsedMagnets with a Finite Element Method. Measurement Science&Technology,2005,16(2):562-568
    [24]刘克富,王少荣,钟和清等.脉冲强磁场高功率脉冲电源系统研制.核技术,2008(11):864-868
    [25]胡明同.脉冲强磁场下基于虚拟仪器的测量系统:[硕士]:华中科技大学,2006
    [26] L. Li, T. Peng, H. F. Ding et al. Wuhan Pulsed High Magnetic Field Center. ICEMS2008: Proceedings of the11th International Conference on Electrical Machines andSystems, vols1-8,2008:694-698
    [27] L. Li, H. F. Ding, T. Peng et al. The Pulsed High Magnetic Field Facility at HUST,Wuhan, China and Associated Magnets. IEEE Transactions on AppliedSuperconductivity,2008,18(2):596-599
    [28] F. Herlach. The Generation and Use of Pulsed Magnetic Fields,2006IEEEInternational Conference on Megagauss Magnetic Field Generation and RelatedTopics,2006:1-12
    [29] Herlach F and Miura N, eds., High Magnetic Fields: Science and Technology, WorldScientific, Singapore,2003
    [30] Hans Krug, Mathias Doerr, Dieter Eckert et al. The Dresden High-magnetic FieldLaboratory–Overview and First Results. Physica B: Condensed Matter,2001,294–295(0):605-611
    [31] J. Wosnitza, A. D. Bianchi, T. Herrmannsdorfer et al. Recent Developments at theDresden High Magnetic Field Laboratory,2006IEEE International Conference onMegagauss Magnetic Field Generation and Related Topics,2006:197-206
    [32] J. Wosnitza, A. D. Bianchi, J. Freudenberger et al. Dresden Pulsed Magnetic FieldFacility. Journal of Magnetism and Magnetic Materials,2007,310(2, Part3):2728-2730
    [33] J. Jorling, J. Hofmann, Th. H. G. G. Weise et al.49MJ pulsed power facility toproduce high magnetic fields. Pulsed Power Conference,200716th IEEEInternational,2007:1513-1516
    [34] http://www.hzdr.de/db/Cms?pOid=35471&pNid=473
    [35] Portugall, F. Lecouturier, J. Marquez, et al. Pulsed Magnetic Fields in Toulouse-Past,Present and Future. Physica B,2001,294-295:579~584
    [36] P. Frings, J. Billette, J. JBeard et al. New Developments at the National Pulsed FieldLaboratory in Toulouse. IEEE Transactions on Applied Superconductivity,2008,18(2):592-595
    [37] Fran ois Debray, Paul Frings. State of the art and developments of high fieldmagnets at the―Laboratoire National des Champs Magnétiques Intenses‖. ComptesRendus Physique,2013,14(1):2-14
    [38] J. Béard, F. Debray. The French High Magnetic Field Facility, Journal of Low TempPhys,2013,170(5-6):541-552
    [39] J. A. A. J. Perenboom, J. C. Maan, M. R. Breukelen et al. Developments at the HighField Magnet Laboratory in Nijmegen, Jouranl of Low Temp Phys,2013,170(5-6):520-530
    [40] F. Debray, J. Dumas, C. Trophime et al. DC High Field Magnets at the LNCMI.IEEE Transactions on Applied Superconductivity,2012,22(3):4301804
    [41] Bitterly J G. Flywheel technology: Past, Present, and21st Century Projects. IEEEAerospace and Electronic Systems Magazine,1998,13(8):13-16.
    [42]张建成,黄立培,陈志业.飞轮储能系统及其运行控制技术研究.中国电机工程学报,2003(3):108-111
    [43]李华俊,徐丽荣,刘学梅等. HL-2A装置环向场电源系统及其控制.测控技术,2004,23(1):55-57
    [44] H. J. Boenig, J. B. Schillig, H. E. Konkel et al. Design Installation andCommissioning of the Los Alamos National Laboratory Pulsed Power Generator.IEEE Transactions on Energy Conversion,1992,7(2):260-266
    [45] J. B. Schillig, H. J. Boenig, J. D. Rogers et al. Design of a400MW Power Supplyfor a60T Pulsed Magnet. IEEE Transactions on Magnetics,1994,30(4):1770-1773
    [46] J. B. Schillig, H. J. Boenig, J. A. Ferner et al. Design and Testing OF a320MWPulsed Power Supply. Industry Applications Conference,1997. Thirty-Second IASAnnual Meeting, IAS '97., Conference Record of the1997IEEE,1997:1600-1607
    [47] L. J. Campbell, H. J. Boenig, D. G. Rickel et al. Status of the NHMFL60TeslaQuasi-continuous Magnet. IEEE Transactions on Magnetics,1996,32(4):2454-2457
    [48] J. Schillig, H. Boenig, M. Gordon et al. Operating Experience of the United StatesNational High Magnetic Field Laboratory60T Long Pulse Magnet. IEEETransactions on Applied Superconductivity,2000,10(1):526-529
    [49] K. Han, A. Baca, H. Coe et al. Material Issues in the100t Non-destructive Magnet.IEEE Transactions on Applied Superconductivity,2000,10(1):1277-1280
    [50] J. L. Bacon, C. N. Ammerman, H. Coe et al. The U.S. NHMFL100Tesla multi-shotmagnet. IEEE Transactions on Applied Superconductivity,2002,12(1):695-698
    [51] L. J. Campbell, J. B. Schillig. Controlled Waveform Magnets. in High MagneticFields: Science and Technology, F. Herlach and N. Miura, Eds. Singapore: WorldScientific,2003, vol.1.153~202
    [52] G. Aubert, L. van Bockstal, E. Fernandez et al. Quasi-Stationary Magnetic Fields of60T Using Inductive Energy Storage. IEEE Transactions on AppliedSuperconductivity,2002,12(1):703-706
    [53] R. Gr ssinger, H. Sassik, R. Hauser et al. Austromag–a New MultipurposeQuasi-Static High-Field Facility. Physica B: Condensed Matter,2001,294–295:555-561
    [54] R. Gr ssinger, H. Sassik, O. Mayerhofer et al. Austromag: Pulsed Magnetic FieldsBeyond40T. Physica B: Condensed Matter,2004,346–347:609-613
    [55] J. Vanacken, Li Liang, K. Rosseel et al. Pulsed Magnet Design Software. Physica B:Condensed Matter,2001,294-295:674-678
    [56] Fritz Herlach. Magnets for the21st century. Physica B: Condensed Matter,1998,246-247:152-157
    [57] Li And Fritz Herlach Liang. Magnetic And Thermal Diffusion In Pulsed High-fieldMagnets. Journal of Physics D: Applied Physics,1998,31(11):1320
    [58] Fritz Herlach. Pulsed magnets. Rep. Prog. Phys.,1999(62):859-920
    [59]宋运兴.高场磁体的多物理场耦合作用机理:[博士],华中科技大学,2012
    [60]肖后秀,丁洪发,潘垣等.强磁场实验装置中脉冲磁体电阻变化模型.高电压技术,2007(9):46-49
    [61]彭涛.脉冲强磁体分析设计的理论与实践:[博士]:华中科技大学,2005
    [62] L. Li, H. F. Ding, T. Peng et al. The pulsed high magnetic field facility at HUST,Wuhan, China and associated magnets. IEEE Transactions on AppliedSuperconductivity,2008,18(2):596-599
    [63] T. Peng, L. Li, F. Herlach. Development of Pulsed Magnets at WHMFC. IEEETransactions on Applied Superconductivity,2010,20(3):652-655
    [64] L. Li, T. Peng, H. F. Ding et al. Wuhan Pulsed High Magnetic Field Center. ICEMS2008: Proceedings of the11th International Conference on Electrical Machines andSystems, vols1-8,2008:694-698
    [65] X. T. Han, J. F. Xie, Z. W. Song et al. Design and Realization of the Control andMeasurement System of the Wuhan Pulsed High Magnetic Field Facility. Journal ofLow Temperature Physics,2010,159(1-2):345-348
    [66] J. F. Xie, X. T. Han, Z. W. Song et al. Development of an Optical Digitized LocalControl and Measurement System Applied to Pulsed High Magnetic Field Facility.IEEE Transactions on Applied Superconductivity,2010,20(3):1777-1780
    [67] Larson D,MacDougall F W,Hardy P,et al.The Impact of High Energy DensityCapacitors with Metallized Electrode in Large Capacitor Banks for Nuclear FusionApplication. In: Proceeding of9th IEEE International Pulsed Power Conference,Albuquerque (USA).1993
    [68] Maduff G, Nunnally W, Rust K, et al. Diagnostic and Performance Evaluation ofMultikllohertz Capacitors. Proeeedings of the Syrnposium on High-energy DensityCapacitors and Dielectric Materials,NAS/NAE/lOM National Research CouncilReport,1981
    [69]孔中华.金属化膜脉冲电容器若干问题的研究:[博士],华中科技大学,2008
    [70] Ennis J B, Mac Dougall F W, Cooper R A, et al.Self-healing Pulse Capacitors for TheNational Ignition Facility (NIF).Proc of12th IEEE International Pulsed PowerConference. CA, USA.1999
    [71] S. L. Moran, L. W. Hardesty. High-repetition-rate hydrogen spark gap,1990:227-231
    [72] Klaus Frank, E. Dewald, C. Bickes et al. Scientific and technological progress ofpseudospark devices. IEEE Transactions on Plasma Science,1999,27(4):1008-1020
    [73] B. Cummings, R. Kihara, K. S. Leighton. High Current Ignitron Development,1988:122-127
    [74]邹强.基于SOPC技术的智能同步开关研究:[硕士]:西北工业大学,2007
    [75] L. Qiu, Y. L. Lv, L. A. Li. Finite Element Analysis for Stress and Magnetic Field of a40kA Protection Inductor. IEEE Transactions ON Applied Superconductivity,2010,20(3):1936-1939
    [76] Lv Yiliang, Qiu Li, Zhang Shiluo et al.25kV/40kA Protection Inductor forCapacitor Bank of the Wuhan Pulsed High Magnetic Field Facility. IEEETransactions on Applied Superconductivity,2010,20(3):1211-1214
    [77]李化,陈耀红,林福昌等.金属化膜脉冲电容器寿命特性.强激光与粒子束,2010(04):773-776
    [78] H. F. Ding, C. X. Jiang, T. H. Ding et al. Prototype Test and Manufacture of aModular12.5MJ Capacitive Pulsed Power Supply. IEEE Transactions on AppliedSuperconductivity,2010,20(3):1676-1680
    [79] L. Li, T. Peng, H. F. Ding et al. Progress in the Development of the Wuhan HighMagnetic Field Center. Journal of Low Temperature Physics,2010,159(1-2):374-380
    [80] H. F. Ding, C. X. Jiang, Y. Xu et al. Test and Operation of the WHMFC12.6MJCapacitor Bank Power Supply System. Journal of Low Temperature Physics,2013,170(5-6):576-582
    [81]肖后秀,丁洪发,彭涛等.脉冲强磁场电源尖峰电压的消除.电工技术学报,2009(1):14-17
    [82] K. Rosseel, W. Boon, F. Herlach. Pulse shape modification for capacitor drivenpulsed magnets. Measurement Science&Technology,2003,14(7):1075-1082
    [83] K. Rosseel, P. A. J. Dolron, L. P. Nelemans et al. The Pulsed-Field Facility at HFML,Commissioning and First Results. IEEE Transactions on Applied Superconductivity,2006,16(2):1664-1667
    [84] T. Peng, Q. Q. Sun, X. Zhang et al. Design and Performance of the First Dual-CoilMagnet at the Wuhan National High Magnetic Field Center, Journal of Low TempPhys2013,170(5-6):463-468
    [85] Zhuang and Y. Pan G. The reconstruction and research progress of the TEXT-Utokamak in China. Nuclear Fusion,2011,51(9):94020
    [86] Ge and Ding Yonghua Zhuang. Reconstruction of the TEXT-U Tokamak in China.Plasma Science and Technology,2009,11(4):439
    [87]张明. J-TEXT托卡马克装置脉冲电源系统的实现及运行分析:[博士]:华中科技大学,2008
    [88]张明,庄革,于克训等. J-TEXT装置纵场电源系统及其调试.核聚变与等离子体物理,2008(03):238-241
    [89]陈坚.电力电子学——电力电子变换和控制技术.第二版.北京:高等教育出版社,2004
    [90]黄俊,王兆安.电力电子变流技术[第三版].北京:机械工业出版社,1996
    [91] ABB Application Note:5SYA2051http://search-ext.abb.com/library/Download.aspx?documentid=5sya2051-00&languagecode=en&documentpartid=&action=launch
    [92]傅鹏,高格,李定等.晶闸管在大功率变流和开关中的应用.电工技术学报,2004(8):34-39
    [93] X. N. Liu, J. F. Jiang, L. W. Xu, et al. Power Supply for the Superconducting TFMagnet System of EAST. Nuclear Fusion,2006,46(3): S90~S93
    [94] Z. C. Zhang, J. B. Kuang, X. Wang, et al. Force Commutated HVDC and SVC Basedon Phase-Shifted Multi-Converter Modules. IEEE Trans. on Power Delivery,1993,8(2):712~718.
    [95] L. C. Cadwallader, T. Pinna, P. I. Petersen. Power Supply Reliability Estimates forExperimental Fusion Facilities. Fusion Science and Technology,2007,52(4):979~984
    [96] Roshal, B. Bareyt, I. Benfatto, et al. Status of ITER Coil Power Supply Design.Plasma Devices and Operations,1998,6(1-3):193~202
    [97]肖国春,裴云庆,王兆安.直流有源电力滤波技术及其应用.电源技术应用,2001(12):621-624
    [98]肖国春.直流有源电力滤波器的理论及应用研究.[博士],西安交通大学,2002
    [99]王丙元.高精度大功率稳流电源系统的研究.[博士],天津大学,2002
    [100] H. Jin, Y. Wang, G. Joos. A hybrid structure using phase-controlled rectifiers andhigh-frequency converters for magnet-load power supplies. IEEE Transactions onIndustrial Electronics,1996,43(1):126-131
    [101]何仰赞,温增银.电力系统分析(上)(第三版).武汉:华中科技大学出版社,2002,173
    [102] W. W. Liu, H. F. Ding, X. Z. Duan et al. A Novel Control Strategy for the PowerSupply to Achieve the45T/600ms Flat-Top Field. Przeglad Elektrotechniczny,2011,87(11):285-289
    [103]刘威葳.高稳定度平顶长脉冲强磁场电源系统的研究.[博士],华中科技大学,2011
    [104] S. Valiviita. Neural network for zero-crossing detection of distorted line voltages inweak AC-systems, Instrumentation and Measurement Technology Conference,1998.IMTC/98. Conference Proceedings. IEEE,1998:280-285
    [105] S. Das, Syam Prasid, G. Bandyopadhyay et al. Wavelet transform application forzero-crossing detection of distorted line voltages in weak AC-systems, First IndiaAnnual Conference,2004. Proceedings of the IEEE INDICON2004.2004:464-467
    [106]高格,傅鹏,汤伦军等. HT-7U装置极向场电源变流系统的研制.核聚变与等离子体物理,2005(2):124-128
    [107]肖后秀.脉冲强磁场装置及脉冲平顶磁场实现方法的研究.[博士],华中科技大学,2009
    [108]张儒启.可控硅整流装置采用串联顺序控制的分析.煤矿设计,1981(10):22-27