空冷条件下金属相变潜热对组织转变的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属相变时伴随相变潜热的释放。金属材料相变潜热将影响材料本身的组织转变,而组织转变过程又影响相变潜热的释放量,两者相互影响。以精确描述奥氏体相变过程为目的,对轧后采取空冷工艺条件下的奥氏体相变过程进行研究,深入的分析研究奥氏体相变过程中相变潜热对组织转变的影响。
     在对圆钢轧后空冷状态下的表面温降过程的基础上,在实验室采用埋偶法直接测定40Cr和低铌钢试样心部温降规律。其目的是为了排除轧件心部对表面的反热影响更精确反映相变潜热的影响。通过实验得到了冷却过程中的心部温降曲线、心部的冷却速率,判断了金属相变开始与结束温度,并与40Cr钢的CCT曲线上相变点进行了对比。
     以实际生产中热轧圆钢后的空冷过程为计算条件,以40Cr为研究对象,考虑了热传导、辐射、对流等热损失过程,以及相变过程相变潜热的释放等,利用有限单元法建立了圆钢40Cr瞬态温度场模型。计算了整个空冷过程中轧件横断面的温度分布和冷却速度分布,得到了圆钢在考虑相变潜热和未考虑相变潜热两种情况内部温度随时间变化的规律,为分析考虑相变潜热的组织模拟与预报的奠定了基础。
     采用反算法对相变热焓进行计算并与综合热分析仪(DSC)实验结果相对比,并且对恒速冷却试件与实际空冷试样进行金相组织观察对比。以温度场模拟为基础上,对是否考虑相变潜热两种情况计算相变过程,得到了相变潜热对各相的体积分数影响。
Latent heat was released in metal phase transformation. Latent heat could influence structural transformation of metallic materials, which could also impact the burst size of latent heat. The impacts between latent heat and structural transformation were mutual. Austenite phase transformation in the air-cooling process after rolling was studied to describe austenite phase transformation exactly. The impacts of latent heat in austenite phase transformation were analyzed in more depth.
     The law of temperature dropping in 40Cr and low-Nb cores was determined directly by thermocouple in laboratory on the basis of researching the round steel surface state of temperature dropping by air cooling after rolling. The purpose of experiments was ruling out the impacts of anti-heat in surface by core, reflecting the influences of latent heat more accurately. A number of parameters were got by experiments, including curves of temperature dropping and cooling rate in core, temperatures of beginning and ending in metal phase transformation which were contrasted with transformation points in CCT of 40Cr.
     The round steel 40Cr transient temperature field model was established by finite element method. The design condition of the model was air cooling process after round steel hot rolling in actual products. The model used 40Cr as Research Object, considering calorific losses caused by Heat conduction, radiation, convection and so on, the release of latent heat in phase transformations etc. The temperature distribution and cooling rate of rolling cross-section in the whole cooling were calculated, receiving rules of internal temperature changes over time in two conditions with latent heat and no latent heat of round steel, which laid the foundation for latent heat analysis.
     Phase transition enthalpies were calculated by anti-algorithm. The result was compared to experimental results calculated with a comprehensive thermal analysis instrument (DSC), and the metallurgical structure in test pieces cooling in constant-speed was examined. Impacts of volume fraction in items caused by latent heat in the conditions of latent heat and no latent heat were calculated on the basis of temperature field simulation.
引文
[1]王国栋,刘相华.钢材热轧过程中组织-性能预测技术的发展现状和趋势[J].钢铁,2007,42(10):1-5.
    [2]刘振宇. C-Mn钢热轧板带组织-性能预测模型的开发及在生产中的应用[D].辽宁:东北大学,1995:26-43.
    [3]许云波.基于物理冶金和人工智能的热轧钢材组织-性能预测与控制[D].辽宁:东北大学,2003:16-27.
    [4]陈连生,狄国标.热变形奥氏体CCT曲线实用化修正研究[J].上海金属,2006,28(2): 21-24.
    [5]齐建军,陈红卫,席军良.珠光体相变点在线测定法.中国专利:CN1651908[P],2005-08-10.
    [6]陈连生,齐建军,席军良.一种空冷状态下的金属相变特征数值的判定方法.中国专利:CN1908639[P],2007-02-07.
    [7]蒲玉梅,蔡庆伍,米振莉.考虑相变过程的高碳钢线材温度场计算[J].轧钢,1999(6):19-21.
    [8]刘效东,方鸿生,刘南平.奥氏体形变条件下铁素体成分的计算[J].钢铁,1991(26):51.
    [9] Essers W G, Jelmorini G, Tichelaar G W. Arc characteristics and metal transfer with plasma-MIG welding[J]. Metal Construction and British Welding Journal, 1972, 4(12): 439-447.
    [10] Essers W G, Jelmorini G, Tichelaar G W. The plasma-MIG welding process[J]. Philips Welding Reporter, 1972, 8(4): 1-7.
    [11] Church J. What is Plasma-MIG welding[J]. Canadian Welder and Fabricator, 1977, 68(1): 6-8.
    [12] Akulov A I, Bozhenko B L. Ronskii V L.Heating of electrode metal in consumable electrode plasma arc welding in argon[J]. Welding Production, 1983, 30(2): 6-8.
    [13]刘东升,王国栋,刘相华. P20钢变形奥氏体连续冷却时的相变规律[J].金属学报, 1998,34(3):271-274.
    [14]王佳夫,林清华,漆世泽.冷却速度对高强度低合金钢组织和性能的影响[J].钢铁研究学报,2004,16(5):51-53.
    [15]乔桂英,肖福仁,胡怡.热变形对86CrMoV7钢过冷奥氏体连续冷却转变的影响[J].钢铁研究学报,2000,12(1):42-44.
    [16]刘东升,王国栋,刘相华. P20钢变形奥氏体连续冷却时的相变规律[J].金属学报,1998,34(3):271-274.
    [17]董瀚,孙新军,刘清友.变形诱导铁素体相变现象与理论[J].钢铁,2003,38(10):56-67.
    [18]杜林秀.低碳钢变形过程及冷却过程的组织演变与控制[D].东北大学,2003:81-104.
    [19]林慧国,傅代直.钢的奥氏体转变曲线[M].北京:机械工业出版社,1988:34.
    [20] Suehiro M, Senuma T, Yada T. Mathematical Models for Predicting Microstruc-tural Evolution and Mechanical Properties of Hot Strips[J]. ISIJ Int, 1992(32): 433.
    [21] Kiuchi M, Yanagimoto J. Thermal Analysis of Hot Plate/Sheet Rolling[J]. Ironmaking and Steelmaking, 1996(23): 52.
    [22] Sellars C M. TiAl-SiC Composites Prepared by High temperature Synthesis[J]. Mat Sci Tech, 1990(6): 187.
    [23] Sellars C M . Recrystallization and Grain Growth in Hot Rolling[J]. Metal Science, 1979 (3): 187.
    [24] Diahazi M, Jonas J J. Nb(CN) Precipitation and Austenite Recrystallization in Boron-Containing High-Strength Low-Alloy Steels[J]. Metall Trans A, 1992(23): 20-21.
    [25]刘振宇,许云波,王国栋.热轧钢材组织-性能演变的模拟和预测[M].辽宁:东北大学出版社,2004:117.
    [26]钱滨江,伍贻文,常家芳.简明传热手册[M].北京:高等教育出版社,1984:418.
    [27] Sellars C M. Modeling-An Interdisciplinary Activity, YueSed, Int Conf on Mathematical Modeling of Hot Rolling of Steel[J], Hamilton, CIMM, 1990(3): 1-18.
    [28]薄玉梅,蔡庆伍,米振莉.考虑相变过程的高碳钢线材温度场计算[J].轧钢,1999(12):6.
    [29]李辉平,赵国群.热处理淬火工艺温度场有限元模拟[J].航空制造技术,2004(5):3-7.
    [30] Sun W P , Hawbolt H B. Comparison between Static and Metadynamic Recrystallization-An Application to the Hot Rolling of Steels [J], ISIJ Int, 1997 (37): 1000-1009.
    [31]孔祥谦.有限元法在传热学中的应用[M].北京:科学出版社,1998:65-73.
    [32]美国金属学会.金属手册[M].北京:机械工业出版社,1988(1):243.
    [33]刘庄,吴景之.热处理过程的数值模拟[M].北京:科学出版社,1996:137-162.
    [34]江坂一彬,肋田淳一,高桥学.材质予测·制御モデルの开发[J].制铁研究,1986(321):92.
    [35] Aaronson H I, Domian H A. Partition of Alloying Elements between Austenite and Ferrite or Bainite[J]. Trans AIME, 1966(236): 781.
    [36] Shifet G J, Bradley J R, Aaronson H I. A Re-examination of the Thermodynamics of the Proeuteoid Ferrite Transformation in Fe-C Alloys[J]. Metall Trans A, 1978(9): 999.
    [37]李曼云,孙本荣.钢的控制轧制与控制冷却技术手册[M].北京:冶金工业出版社,1990:90-91.
    [38]王顺兴,王祝伟.提高淬火模拟精度的系统化处理方法[J].材料热处理学报,2003(24):3.
    [39]潘健生.热处理数学模型与计算机模拟.首届中国热处理活动周论文集[C],大连:2002:1-10.
    [40]张伟民,潘健生.热处理模拟与远程服务[J].材料热处理学报,2001,22(1):60-66.
    [41] Sellars C M. TiAl-SiC Composites Prepared by High temperature Synthesis[J]. Mat Sci Tech, 1990, (6): 187.
    [42]徐祖耀.相变原理[M].北京:科学出版社,2000:408-418.
    [43]林慧国,傅代直.钢的奥氏体转变曲线[M].北京:机械工业出版社,1988:134-173.