Bip介导内质网应激诱导的tau蛋白过度磷酸化及伴侣蛋白Sil1的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
老年痴呆,又称为阿尔茨海默病(Alzheimer's Disease, AD)是一种进行性发展的神经退行性疾病,其临床表现为认知能力下降、记忆功能降低甚至丧失。随着老龄社会的到来,患阿尔茨海默病的病人会越来越多,给社会和家庭带来沉重的经济负担。AD病人脑中两大病理学特征是:神经元外由Aβ短肽形成的老年斑(Senile plaques,SP)的沉积;神经元内神经纤维缠结(Neurofibrillary tangles, NFTs)的聚集。神经纤维缠结是由过度磷酸化的tau蛋白构成。并且研究发现,由过度磷酸化的tau蛋白形成的NTFs的数量和AD病人的临床痴呆程度成正相关。
     内质网(Endoplasmic reticulum, ER)是真核细胞中最重要的细胞器之一,主要参与维持胞内钙稳态以及新合成的膜蛋白和分泌型蛋白质的翻译后处理过程。多种病理条件,如缺血、缺氧或中毒等刺激下,诱导细胞发生以伴侣蛋白表达及非折叠蛋白反应启动为特征的内质网应激(ER Stress)。有很多研究报道称ER应激参与了AD的发病过程,但具体机制有待深入研究。内质网分子伴侣(ER molecular chaperones) Bip (Immunoglobulin-binding protein)是内质网中最重要的分子伴侣之一,在内质网应激时表达增高,被认为是内质网应激时最重要的标志之一。Bip在AD病人的大脑皮质和海马中表达明显增高;本课题组以前研究发现持续光照会造成大鼠海马中Bip水平增高,tau蛋白过度磷酸化。Bip与tau过度磷酸化之间的关系及相关机制尚无报道。
     糖原合酶激酶-3β(Glycogen synthase kinase-3p, GSK-3p)是在AD发病过程中促使tau蛋白发生过度磷酸化的最重要的磷酸激酶之一,在AD病人脑中GSK-3β过度激活。本课题前期研究发现,ER应激在诱导Bip水平增高、tau蛋白过度磷酸化的同时,激活了GSK-3β;有研究发现,在突变Bip的转基因小鼠中,Bip失去正常功能作用的同时,GSK-3β活性受也到了抑制,上述研究提示Bip和GSK-3β也可能存在着某些必然的联系,但是具体机制不清楚。
     因此,本研究利用ER应激诱导剂毒胡萝卜素(Thapsigargin, TG)在整体或细胞水平诱导ER应激,发现GSK-3β激活、tau在Ser396、Ser198/199/202位点发生过度磷酸化;抑制GSK-3β激活,tau磷酸化水平显著降低。进一步利用RNA干扰技术下调Bip水平,TG诱导的tau过度磷酸化显著降低;ER应激及Bip过表达时,Bip可激活GSK-3β、促进GSK-3β与tau特异性结合而诱导tau过度磷酸化。核酸交换因子(Nucleotide exchange factor) Sil1是Bip的重要的共同伴侣分子。本研究发现在ER应激、Bip过表达的细胞中及AD模型小鼠(Tg2576小鼠)脑中Sil1表达明显降低,在细胞水平过表达Sil1通过抑制GSK-3β激活、减少Bip与GSK-3β、tau结合而显著改善TG和Bip过表达诱导的tau过度磷酸化;下调Sil1则Bip水平增高及tau发生过度磷酸化。此外,在培养的大鼠原代海马神经元过表达Bip或下调Sill水平,神经元的轴突生长明显抑制。
     本研究系统证明了Bip可通过激活GSK-3β、促进GSK-3β与tau特异性结合而诱导tau过度磷酸化,Sil1对ER应激及Bip过表达诱导的tau蛋白过度磷酸化具有保护作用。研究结果为进一步认识内质网相关的分子伴侣在AD发病中的作用及防治研究提供了依据。
Senile dementia, also named Alzheimer's Disease (AD), the main clinical symptoms of which include cognitive impairment and the degraded learning and memory ability, is characterized by degeneration of neurons. More people may suffer from the risk of AD as the aged society coming, which bring financial burdens to society and families. Senile plaques (SP) and neurofibrillary tangles (NTFs) are the two main pathological changes of AD. NTFs which are compose of hyperphosphorylated tau, are closely positive correlated with the clinical dementia degree of AD patients.
     Endoplasmic reticulum (ER) is an important organelle which is involved in the balance of cellular Ca2+, synthesis and modify of proteins after proteins translation. Many pathological stimulation, such as ischemia, hypoxia and poison, induces ER stress, which is characterized as overexpression of ER molecular chaperone and unfolded protein response (UPR). Many researchs demonstrate that ER stress may be contribute to the progress of AD. ER molecular chaperone Immunoglobulin-binding protein (Bip) is important for ER, which increases during ER stress. So Bip is considered as a marker of ER stress. Upregulation of BiP in neurons of temporal cortex and hippocampus of AD patients is found. Our laboratory previously finds hyperphosphorylated tau increases with high-expression Bip in hippocampus of SD rats which suffer from constant illumination. However, the relationship between Bip and tau remains unclear.
     Glycogen synthase kinase-3β(GSK-3β) is an important protein phosphorylated kinase of tau. In AD, GSK-3βis activated. Our laboratory previously finds ER stress induces hyperphosphorylation of tau and activation of GSK-3β. And the activity of GSK-3βin knock-out Bip mice is inhibited. So we infer that Bip may be relevant to GSK-3β.
     In our research, we induced ER stress in vivo or vitro by inducer thapsigargin (TG). And we found hyperphosphorylation of tau at Ser396, Ser198/199/202 sites and activation of GSK-3β; While TG-induced phosphorylation of tau reduced after knocking down Bip; Overexpression of Bip induced hyperphosphorylation of tau via activating GSK-3βand increasing the association of GSK-3P with tau. Nucleotide exchange factor Sill is the most important nucleotide exchange factor of Bip, disorder of which affect on the energy exchange and fuction of Bip. We found Expression of Sill was reduced in ER stress, Bip-overexpression cells and the brain of Tg2576 mice. Overexpression of Sill reduced TG-induced and Bip-overexpression-induced hyperphophorylation of tau via inhibiting activation of GSK-3P and the binding of Bip with GSK-3βand tau; Knocking down Sill induced overexperssion of Bip and hyperphosphorylation of tau. Furthermore, overexpression of Bip or knocking down Sill remarkably inhibited neuronal axon growth in SD rat primary neurons.
     In our study, we demonstrate that Overexpression of Bip induces hyperphosphorylation of tau via activating GSK-3P and increasing the association of GSK-3P with tau; Sill protects from ER stress-induced and Bip-overexpression-induced hyperphosphorylation of tau. In conclusion, our research provides some proofs for the role of ER associative molecular chaperone in progress and prevention of AD.
引文
1 Hendrie, H. C. (1998) Epidemiology of dementia and Alzheimer's disease. Am J Geriatr Psychiatry.6, S3-S18
    2 Fratiglioni, L., Ahlbom, A., Viitanen, M. and Winblad, B. (1993) Risk factors for late-onset Alzheimer's disease:a population-based, case-control study. Ann Neurol.33, 258-266
    3 O'Meara, E. S., Kukull, W. A., Sheppard, L., Bowen, J. D., McCormick, W. C., Teri, L., Pfanschmidt, M., Thompson, J. D., Schellenberg, G. D. and Larson, E. B. (1997) Head injury and risk of Alzheimer's disease by apolipoprotein E genotype. Am J Epidemiol.146, 373-384
    4 Bennett, D. A., Schneider, J. A., Bienias, J. L., Evans, D. A. and Wilson, R. S. (2005) Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions. Neurology.64,834-841
    5 Jorm, A. F., Korten, A. E. and Henderson, A. S. (1987) The prevalence of dementia:a quantitative integration of the literature. Acta Psychiatr Scand.76,465-4796 Burmester, T., Weich, B., Reinhardt, S. and Hankeln, T. (2000) A vertebrate globin expressed in the brain. Nature.407,520-523
    7 Wang, Z. F., Li, H. L., Li, X. C., Zhang, Q., Tian, Q., Wang, Q., Xu, H. and Wang, J. Z. (2006) Effects of endogenous beta-amyloid overproduction on tau phosphorylation in cell culture. J Neurochem.98,1167-1175
    8 Zhang, W., Bai, M., Xi, Y., Hao, J., Liu, L., Mao, N., Su, C., Miao, J. and Li, Z. (2012) Early memory deficits precede plaque deposition in APPswe/PS1dE9 mice:Involvement of oxidative stress and cholinergic dysfunction. Free Radic Biol Med.2012
    9 Koronyo, Y., Salumbides, B. C., Black, K. L. and Koronyo-Hamaoui, M. (2012) Alzheimer's Disease in the Retina:Imaging Retinal Abeta Plaques for Early Diagnosis and Therapy Assessment. Neurodegener Dis.2012
    10 Vitek, M. P., Christensen, D. J., Wilcock, D., Davis, J., Van Nostrand, W. E., Li, F. Q. and Colton, C. A. (2012) APOE-Mimetic Peptides Reduce Behavioral Deficits, Plaques and Tangles in Alzheimer's Disease Transgenics. Neurodegener Dis.2012
    11 Lasagna-Reeves, C. A., Castillo-Carranza, D. L., Sengupta, U., Sarmiento, J., Troncoso, J., Jackson, G. R. and Kayed, R. (2012) Identification of oligomers at early stages of tau aggregation in Alzheimer's disease. Faseb J.2012
    12 Doran, T. M., Anderson, E. A., Latchney, S. E., Opanashuk, L. A. and Nilsson, B. L. (2012) Turn Nucleation Perturbs Amyloid beta Self-Assembly and Cytotoxicity. J Mol Biol. 2012
    13 Capetillo-Zarate, E., Gracia, L., Tampellini, D. and Gouras, G. K. (2012) Intraneuronal Abeta Accumulation, Amyloid Plaques, and Synapse Pathology in Alzheimer's Disease. Neurodegener Dis.2012
    14 Wang, J. Z. and Liu, F. (2008) Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol.85,148-175
    15 Rapoport, S. I. and Nelson, P. T. (2011) Biomarkers and evolution in Alzheimer disease. Prog Neurobiol.95,510-513
    16 Combs, B., Voss, K. and Gamblin, T. C. (2011) Pseudohyperphosphorylation has differential effects on polymerization and function of tau isoforms. Biochemistry-Us.50, 9446-9456
    17 Lindwall, G. and Cole, R. D. (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem.259,5301-5305
    18 Cleveland, D. W., Hwo, S. Y. and Kirschner, M. W. (1977) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol. 116,227-247
    19 Matsuoka, Y., Gray, A. J., Hirata-Fukae, C., Minami, S. S., Waterhouse, E. G., Mattson, M. P., LaFerla, F. M., Gozes, I. and Aisen, P. S. (2007) Intranasal NAP administration reduces accumulation of amyloid peptide and tau hyperphosphorylation in a transgenic mouse model of Alzheimer's disease at early pathological stage. J Mol Neurosci.31,165-170
    20 Vana, L., Kanaan, N. M., Ugwu, I. C., Wuu, J., Mufson, E. J. and Binder, L. I. (2011) Progression of tau pathology in cholinergic Basal forebrain neurons in mild cognitive impairment and Alzheimer's disease. Am J Pathol.179,2533-2550
    21 Morioka, M., Kawano, T., Yano, S., Kai, Y., Tsuiki, H., Yoshinaga, Y., Matsumoto, J., Maeda, T., Hamada, J., Yamamoto, H., Fukunaga, K. and Kuratsu, J. (2006) Hyperphosphorylation at serine 199/202 of tau factor in the gerbil hippocampus after transient forebrain ischemia. Biochem Biophys Res Commun.347,273-278
    22 Imamura, K., Sawada, M., Ozaki, N., Naito, H., Iwata, N., Ishihara, R., Takeuchi, T. and Shibayama, H. (2001) Activation mechanism of brain microglia in patients with diffuse neurofibrillary tangles with calcification:a comparison with Alzheimer disease. Alzheimer Dis Assoc Disord.15,45-50
    23 Schnaider, B. M., Silverman, J. M., Schmeidler, J., Wysocki, M., Grossman, H. Z., Purohit, D. P., Perl, D. P. and Haroutunian, V. (2008) Clinical dementia rating performed several years prior to death predicts regional Alzheimer's neuropathology. Dement Geriatr Cogn Disord.25,392-398
    24 Yang, G., Wang, L., Zhu, M. and Xu, D. (2008) Identification of non-Alzheimer's disease tauopathies-related proteins by proteomic analysis. Neurol Res.30,613-622
    25 Lindholm, D., Wootz, H. and Korhonen, L. (2006) ER stress and neurodegenerative diseases. Cell Death Differ.13,385-392
    26 Katayama, T., Imaizumi, K., Manabe, T., Hitomi, J., Kudo, T. and Tohyama, M. (2004) Induction of neuronal death by ER stress in Alzheimer's disease. J Chem Neuroanat.28, 67-78
    27 Hoozemans, J. J., Veerhuis, R., Van Haastert, E. S., Rozemuller, J. M., Baas, F., Eikelenboom, P. and Scheper, W. (2005) The unfolded protein response is activated in Alzheimer's disease. Acta Neuropathol.110,165-172
    28 Salminen, A., Kauppinen, A., Suuronen, T., Kaarniranta, K. and Ojala, J. (2009) ER stress in Alzheimer's disease:a novel neuronal trigger for inflammation and Alzheimer's pathology. J Neuroinflammation.6,41
    29 Ho, Y. S., Yang, X., Lau, J. C., Hung, C. H., Wuwongse, S., Zhang, Q., Wang, J., Baum, L., So, K. F. and Chang, R. C. (2012) Endoplasmic reticulum stress induces tau pathology and forms a vicious cycle:implication in Alzheimer's disease pathogenesis. J Alzheimers Dis.28,839-854
    30 Lee, A. S. (2001) The glucose-regulated proteins:stress induction and clinical applications. Trends Biochem Sci.26,504-510
    31 Lee, A. S. (2005) The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods.35,373-381
    32 Lee, A. S. (1992) Mammalian stress response:induction of the glucose-regulated protein family. Curr Opin Cell Biol.4,267-273
    33 Jolly, C. and Morimoto, R. I. (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst.92,1564-1572
    34 Liu, C., Bhattacharjee, G., Boisvert, W., Dilley, R. and Edgington, T. (2003) In vivo interrogation of the molecular display of atherosclerotic lesion surfaces. Am J Pathol.163, 1859-1871
    35 Arap, M. A., Lahdenranta, J., Mintz, P. J., Hajitou, A., Sarkis, A. S., Arap, W. and Pasqualini, R. (2004) Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell.6,275-284
    36 Gonzalez-Gronow, M., Selim, M. A., Papalas, J. and Pizzo, S. V. (2009) GRP78:a multifunctional receptor on the cell surface. Antioxid Redox Signal.11,2299-2306
    37 Wang, M., Wey, S., Zhang, Y., Ye, R. and Lee, A. S. (2009) Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid Redox Signal.11,2307-2316
    38 Zhai, L., Kita, K., Wano, C., Wu, Y., Sugaya, S. and Suzuki, N. (2005) Decreased cell survival and DNA repair capacity after UVC irradiation in association with down-regulation of GRP78/BiP in human RSa cells. Exp Cell Res.305,244-252
    39 Huang, S. P., Chen, J. C., Wu, C. C., Chen, C. T., Tang, N. Y., Ho, Y. T., Lo, C., Lin, J. P., Chung, J. G. and Lin, J. G. (2009) Capsaicin-induced apoptosis in human hepatoma HepG2 cells. Anticancer Res.29,165-174
    40 Luo, S., Mao, C., Lee, B. and Lee, A. S. (2006) GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Mol Cell Biol.26,5688-5697
    41 Mimura, N., Yuasa, S., Soma, M., Jin, H., Kimura, K., Goto, S., Koseki, H. and Aoe, T. (2008) Altered quality control in the endoplasmic reticulum causes cortical dysplasia in knock-in mice expressing a mutant BiP. Mol Cell Biol.28,293-301
    42 Hoozemans, J. J., Veerhuis, R., Van Haastert, E. S., Rozemuller, J. M., Baas, F., Eikelenboom, P. and Scheper, W. (2005) The unfolded protein response is activated in Alzheimer's disease. Acta Neuropathol.110,165-172
    43 Hoozemans, J. J., van Haastert, E. S., Nijholt, D. A., Rozemuller, A. J., Eikelenboom, P. and Scheper, W. (2009) The unfolded protein response is activated in pretangle neurons in Alzheimer's disease hippocampus. Am J Pathol.174,1241-1251
    44 Ling, Z. Q., Tian, Q., Wang, L., Fu, Z. Q., Wang, X. C., Wang, Q. and Wang, J. Z. (2009) Constant illumination induces Alzheimer-like damages with endoplasmic reticulum involvement and the protection of melatonin. J Alzheimers Dis.16,287-300
    45 Petit-Paitel, A. (2010) [GSK-3beta:a central kinase for neurodegenerative diseases?]. Med Sci (Paris).26,516-521
    46 Cai, Z., Zhao, Y. and Zhao, B. (2012) Roles of Glycogen synthase kinase 3 in Alzheimer's disease. Curr Alzheimer Res.2012
    47 Dobashi, T., Tanabe, S., Jin, H., Mimura, N., Yamamoto, T., Nishino, T. and Aoe, T. (2010) BiP, an endoplasmic reticulum chaperone, modulates the development of morphine antinociceptive tolerance. J Cell Mol Med.14,2816-2826
    48 Arnaud, L., Chen, S., Liu, F., Li, B., Khatoon, S., Grundke-Iqbal, I. and Iqbal, K. (2011) Mechanism of inhibition of PP2A activity and abnormal hyperphosphorylation of tau by I2(PP2A)/SET. Febs Lett.585,2653-2659
    49 Torrent, L. and Ferrer, I. (2012) PP2A and Alzheimer Disease. Curr Alzheimer Res. 2012
    50 Chung, K. T., Shen, Y. and Hendershot, L. M. (2002) BAP, a mammalian BiP-associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP. J Biol Chem.277,47557-47563
    51 Yan, M., Li, J. and Sha, B. (2011) Structural analysis of the Sill-Bip complex reveals the mechanism for Sill to function as a nucleotide-exchange factor. Biochem J.438, 447-455
    52 Zhang, C. E., Wei, W., Liu, Y. H., Peng, J. H., Tian, Q., Liu, G. P., Zhang, Y. and Wang, J. Z. (2009) Hyperhomocysteinemia increases beta-amyloid by enhancing expression of gamma-secretase and phosphorylation of amyloid precursor protein in rat brain. Am J Pathol.174,1481-1491
    53 Qian, Y., Zheng, Y., Ramos, K. S. and Tiffany-Castiglioni, E. (2005) GRP78 compartmentalized redistribution in Pb-treated glia:role of GRP78 in lead-induced oxidative stress. Neurotoxicology.26,267-275
    54 Chiou, J. F., Tai, C. J., Huang, M. T., Wei, P. L., Wang, Y. H., An, J., Wu, C. H., Liu, T. Z. and Chang, Y. J. (2010) Glucose-regulated protein 78 is a novel contributor to acquisition of resistance to sorafenib in hepatocellular carcinoma. Ann Surg Oncol.17, 603-612
    55 Fu, Z. Q., Yang, Y., Song, J., Jiang, Q., Lin, Z. C., Wang, Q., Zhu, L. Q., Wang, J. Z. and Tian, Q. (2010) LiCl attenuates thapsigargin-induced tau hyperphosphorylation by inhibiting GSK-3beta in vivo and in vitro. J Alzheimers Dis.21,1107-1117
    56 Bax, B., Carter, P. S., Lewis, C., Guy, A. R., Bridges, A., Tanner, R., Pettman, G., Mannix, C., Culbert, A. A., Brown, M. J., Smith, D. G. and Reith, A. D. (2001) The structure of phosphorylated GSK-3beta complexed with a peptide, FRATtide, that inhibits beta-catenin phosphorylation. Structure.9,1143-1152
    57 Dozza, B., Smith, M. A., Perry, G., Tabaton, M. and Strocchi, P. (2004) Regulation of glycogen synthase kinase-3beta by products of lipid peroxidation in human neuroblastoma cells. J Neurochem.89,1224-1232
    58 Lin, C. L., Tseng, H. C., Chen, R. F., Chen, W. P., Su, M. J., Fang, K. M. and Wu, M. L. (2011) Intracellular zinc release-activated ERK-dependent GSK-3beta-p53 and Noxa-Mcl-1 signaling are both involved in cardiac ischemic-reperfusion injury. Cell Death Differ.18,1651-1663
    59 Zhu, Z., Kremer, P., Tadmori, I., Ren, Y., Sun, D., He, X. and Young, W. (2011) Lithium suppresses astrogliogenesis by neural stem and progenitor cells by inhibiting STAT3 pathway independently of glycogen synthase kinase 3 beta. PLoS One.6, e23341
    60 Lesort, M., Jope, R. S. and Johnson, G. V. (1999) Insulin transiently increases tau phosphorylation:involvement of glycogen synthase kinase-3beta and Fyn tyrosine kinase. J Neurochem.72,576-584
    61 Buttrick, G. J. and Wakefield, J. G. (2008) PI3-K and GSK-3:Akt-ing together with microtubules. Cell Cycle.7,2621-2625
    62 Hayashi, H. and Sudo, T. (2009) Effects of the cAMP-elevating agents cilostamide, cilostazol and forskolin on the phosphorylation of Akt and GSK-3beta in platelets. Thromb Haemost.102,327-335
    63 Gum, R. J., Gaede, L. L., Koterski, S. L., Heindel, M., Clampit, J. E., Zinker, B. A., Trevillyan, J. M., Ulrich, R. G., Jirousek, M. R. and Rondinone, C. M. (2003) Reduction of protein tyrosine phosphatase 1B increases insulin-dependent signaling in ob/ob mice. Diabetes.52,21-28
    64 Vilimek, D. and Duronio, V. (2006) Cytokine-stimulated phosphorylation of GSK-3 is primarily dependent upon PKCs, not PKB. Biochem Cell Biol.84,20-29
    65 Baluch, D. P. and Capco, D. G. (2008) GSK3 beta mediates acentromeric spindle stabilization by activated PKC zeta. Dev Biol.317,46-58
    66 Hagen, T. and Vidal-Puig, A. (2002) Characterisation of the phosphorylation of beta-catenin at the GSK-3 priming site Ser45. Biochem Biophys Res Commun.294, 324-328
    67 Anttonen, A. K., Siintola, E., Tranebjaerg, L., Iwata, N. K., Bijlsma, E. K., Meguro, H., Ichikawa, Y., Goto, J., Kopra, O. and Lehesjoki, A. E. (2008) Novel SIL1 mutations and exclusion of functional candidate genes in Marinesco-Sjogren syndrome. Eur J Hum Genet. 16,961-969
    68 Eriguchi, M., Mizuta, H., Kurohara, K., Fujitake, J. and Kuroda, Y. (2008) Identification of a new homozygous frameshift insertion mutation in the SIL1 gene in 3 Japanese patients with Marinesco-Sjogren syndrome. J Neurol Sci.270,197-200
    69 Zhao, L., Longo-Guess, C., Harris, B. S., Lee, J. W. and Ackerman, S. L. (2005) Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat Genet.37,974-979
    70 Anttonen, A. K., Mahjneh, I., Hamalainen, R. H., Lagier-Tourenne, C., Kopra, O., Waris, L., Anttonen, M., Joensuu, T., Kalimo, H., Paetau, A., Tranebjaerg, L., Chaigne, D., Koenig, M., Eeg-Olofsson, O., Udd, B., Somer, M., Somer, H. and Lehesjoki, A. E. (2005) The gene disrupted in Marinesco-Sjogren syndrome encodes SIL1, an HSPA5 cochaperone. Nat Genet.37,1309-1311
    71 Senderek, J., Krieger, M., Stendel, C., Bergmann, C., Moser, M., Breitbach-Faller, N., Rudnik-Schoneborn, S., Blaschek, A., Wolf, N. I., Harting, I., North, K., Smith, J., Muntoni, F., Brockington, M., Quijano-Roy, S., Renault, F., Herrmann, R., Hendershot, L. M., Schroder, J. M., Lochmuller, H., Topaloglu, H., Voit, T., Weis, J., Ebinger, F. and Zerres, K. (2005) Mutations in SIL1 cause Marinesco-Sjogren syndrome, a cerebellar ataxia with cataract and myopathy. Nat Genet.37,1312-1314
    72 Zhao, L., Rosales, C., Sebum, K., Ron, D. and Ackerman, S. L. (2010) Alteration of the unfolded protein response modifies neurodegeneration in a mouse model of Marinesco-Sjogren syndrome. Hum Mol Genet.19,25-35
    73 Zhao, L., Longo-Guess, C., Harris, B. S., Lee, J. W. and Ackerman, S. L. (2005) Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat Genet.37,974-979
    74 Song, S., Lee, H., Kam, T. I., Tai, M. L., Lee, J. Y., Noh, J. Y., Shim, S. M., Seo, S. J., Kong, Y. Y., Nakagawa, T., Chung, C. W., Choi, D. Y., Oubrahim, H. and Jung, Y. K. (2008) E2-25K/Hip-2 regulates caspase-12 in ER stress-mediated Abeta neurotoxicity. J Cell Biol.182,675-684
    75 Shipton, O. A., Leitz, J. R., Dworzak, J., Acton, C. E., Tunbridge, E. M., Denk, F., Dawson, H. N., Vitek, M. P., Wade-Martins, R., Paulsen, O. and Vargas-Caballero, M. (2011) Tau protein is required for amyloid{beta}-induced impairment of hippocampal long-term potentiation. J Neurosci.31,1688-1692
    76 DaRocha-Souto, B., Coma, M., Perez-Nievas, B. G., Scotton, T. C., Siao, M., Sanchez-Ferrer, P., Hashimoto, T., Fan, Z., Hudry, E., Barroeta, I., Sereno, L., Rodriguez, M., Sanchez, M. B., Hyman, B. T. and Gomez-Isla, T. (2012) Activation of glycogen synthase kinase-3 beta mediates beta-amyloid induced neuritic damage in Alzheimer's disease. Neurobiol Dis.45,425-437
    77 Cai, Z., Zhao, Y. and Zhao, B. (2012) Roles of Glycogen synthase kinase 3 in Alzheimer's disease. Curr Alzheimer Res.2012
    78 Koral, K. and Erkan, E. (2012) PKB/Akt partners with dab2 in albumin endocytosis. Am J Physiol Renal Physiol.2012
    79 Moore, P., White, J., Christiansen, V. and Grammas, P. (1998) Protein kinase C-zeta activity but not level is decreased in Alzheimer's disease microvessels. Neurosci Lett.254, 29-32
    80 Vestling, M., Cedazo-Minguez, A., Adem, A., Wiehager, B., Racchi, M., Lannfelt, L. and Cowburn, R. F. (1999) Protein kinase C and amyloid precursor protein processing in skin fibroblasts from sporadic and familial Alzheimer's disease cases. Biochim Biophys Acta.1453,341-350
    81 de Barry, J., Liegeois, C. M. and Janoshazi, A. (2010) Protein kinase C as a peripheral biomarker for Alzheimer's disease. Exp Gerontol.45,64-69
    82 Yao, X. Q., Zhang, X. X., Yin, Y. Y., Liu, B., Luo, D. J., Liu, D., Chen, N. N., Ni, Z. F., Wang, X., Wang, Q., Wang, J. Z. and Liu, G. P. (2011) Glycogen synthase kinase-3beta regulates Tyr307 phosphorylation of protein phosphatase-2A via protein tyrosine phosphatase 1B but not Src. Biochem J.437,335-344
    83 Utrera, J., Junyent, F., de Lemos, L., Pallas, M., Camins, A., Romero, R. and Auladell, C. (2010) Tau hyperphosphorylation and axonal damage induced by N,N-diethyldithiocarbamate (DEDTC) treatment along late postnatal development is followed by a rescue during adulthood. J Neurosci Res.88,1083-1093
    84 Leugers, C. J. and Lee, G. (2010) Tau potentiates nerve growth factor-induced mitogen-activated protein kinase signaling and neurite initiation without a requirement for microtubule binding. J Biol Chem.285,19125-19134
    85 Dill, J., Wang, H., Zhou, F. and Li, S. (2008) Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS. J Neurosci.28,8914-8928
    86 Hur, E. M. and Zhou, F. Q. (2010) GSK3 signalling in neural development. Nat Rev Neurosci.11,539-551
    87 Shen, J. Y., Yi, X. X., Xiong, N. X., Wang, H. J., Duan, X. W. and Zhao, H. Y. (2011) GSK-3beta activation mediates Nogo-66-induced inhibition of neurite outgrowth in N2a cells. Neurosci Lett.505,165-170
    1 Palade, G. (1975) Intracellular aspects of the process of protein synthesis. Science.189, 347-358
    2 Blobel, G. and Dobberstein, B. (1975) Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol.67,835-851
    3 Ma, Y. and Hendershot, L. M. (2001) The unfolding tale of the unfolded protein response. Cell.107,827-830
    4 Zhang, K. and Kaufman, R. J. (2004) Signaling the unfolded protein response from the endoplasmic reticulum. J Biol Chem.279,25935-25938
    5 Meldolesi, J. and Pozzan, T. (1998) The endoplasmic reticulum Ca2+store:a view from the lumen. Trends Biochem Sci.23,10-14
    6 Clapham, D. E. (2007) Calcium signaling. Cell.131,1047-1058
    7 Helenius, A., Marquardt, T. and Braakman, I. (1992) The endoplasmic reticulum as a protein-folding compartment. Trends Cell Biol.2,227-231
    8 Shimoda, M., Kanda, Y., Hamamoto, S., Tawaramoto, K., Hashiramoto, M., Matsuki, M. and Kaku, K. (2011) The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetologia.54,1098-1108
    9 Hasnain, S. Z., Lourie, R., Das, I., Chen, A. C. and McGuckin, M. A. (2012) The interplay between endoplasmic reticulum stress and inflammation. Immunol Cell Biol. 2012
    10 So, J., Warsh, J. J. and Li, P. P. (2007) Impaired endoplasmic reticulum stress response in B-lymphoblasts from patients with bipolar-I disorder. Biol Psychiatry.62,141-147
    11 Kahle, P. J. and Haass, C. (2004) How does parkin ligate ubiquitin to Parkinson's disease? Embo Rep.5,681-685
    12 Mattson, M. P., Gary, D. S., Chan, S. L. and Duan, W. (2001) Perturbed endoplasmic reticulum function, synaptic apoptosis and the pathogenesis of Alzheimer's disease. Biochem Soc Symp.2012,151-162
    13 de la Monte, S. M., Re, E., Longato, L. and Tong, M. (2012) Dysfunctional Pro-Ceramide, ER Stress,and Insulin/IGF Signaling Networks with Progression of Alzheimer's Disease. J Alzheimers Dis.2012
    14 Ferri, K. F. and Kroemer, G. (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol.3, E255-E263
    15 Kadowaki, H., Nishitoh, H. and Ichijo, H. (2004) Survival and apoptosis signals in ER stress:the role of protein kinases. J Chem Neuroanat.28,93-100
    16 Ni, M. and Lee, A. S. (2007) ER chaperones in mammalian development and human diseases. Febs Lett.581,3641-3651
    17 Haas, I. G. and Wabl, M. (1983) Immunoglobulin heavy chain binding protein. Nature. 306,387-389
    18 Hendershot, L. M., Valentine, V. A., Lee, A. S., Morris, S. W. and Shapiro, D. N. (1994) Localization of the gene encoding human BiP/GRP78, the endoplasmic reticulum cognate of the HSP70 family, to chromosome 9q34. Genomics.20,281-284
    19 Ting, J. and Lee, A. S. (1988) Human gene encoding the 78,000-dalton glucose-regulated protein and its pseudogene:structure, conservation, and regulation. DNA. 7,275-286
    20 McKay, D. B. (1993) Structure and mechanism of 70-kDa heat-shock-related proteins. Adv Protein Chem.44,67-98
    21 King, L. S., Berg, M., Chevalier, M., Carey, A., Elguindi, E. C. and Blond, S. Y. (2001) Isolation, expression, and characterization of fully functional nontoxic BiP/GRP78 mutants. Protein Expr Purif.22,148-158
    22 Munro, S. and Pelham, H. R. (1986) An Hsp70-like protein in the ER:identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell.46, 291-300
    23 Matsumoto, A. and Hanawalt, P. C. (2000) Histone H3 and heat shock protein GRP78 are selectively cross-linked to DNA by photoactivated gilvocarcin V in human fibroblasts. Cancer Res.60,3921-3926
    24 Liu, C., Bhattacharjee, G., Boisvert, W., Dilley, R. and Edgington, T. (2003) In vivo interrogation of the molecular display of atherosclerotic lesion surfaces. Am J Pathol.163, 1859-1871
    25 Arap, M. A., Lahdenranta, J., Mintz, P. J., Hajitou, A., Sarkis, A. S., Arap, W. and Pasqualini, R. (2004) Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell.6,275-284
    26 Sun, F. C., Wei, S., Li, C. W., Chang, Y. S., Chao, C. C. and Lai, Y. K. (2006) Localization of GRP78 to mitochondria under the unfolded protein response. Biochem J. 396,31-39
    27 Ni, M., Zhou, H., Wey, S., Baumeister, P. and Lee, A. S. (2009) Regulation of PERK signaling and leukemic cell survival by a novel cytosolic isoform of the UPR regulator GRP78/BiP. PLoS One.4, e6868
    28 Lievremont, J. P., Rizzuto, R., Hendershot, L. and Meldolesi, J. (1997) BiP, a major chaperone protein of the endoplasmic reticulum lumen, plays a direct and important role in the storage of the rapidly exchanging pool of Ca2+. J Biol Chem.272,30873-30879
    29 Lee, A. S. (1992) Mammalian stress response:induction of the glucose-regulated protein family. Curr Opin Cell Biol.4,267-273
    30 Jolly, C. and Morimoto, R. I. (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst.92,1564-1572
    31 Lee, A. S. (2005) The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods.35,373-381
    32 Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P. and Ron, D. (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol.2,326-332
    33 Shen, J., Chen, X., Hendershot, L. and Prywes, R. (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell.3,99-111
    34 Malhotra, J. D. and Kaufman, R. J. (2007) The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol.18,716-731
    35 Lee, A. S. (2001) The glucose-regulated proteins:stress induction and clinical applications. Trends Biochem Sci.26,504-510
    36 Hendershot, L. M. (2004) The ER function BiP is a master regulator of ER function. Mt Sinai J Med.71,289-297
    37 Molinari, M. and Helenius, A. (2000) Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science.288,331-333
    38 Kleizen, B. and Braakman, I. (2004) Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol.16,343-349
    39 Gething, M. J. (1999) Role and regulation of the ER chaperone BiP. Semin Cell Dev Biol.10,465-472
    40 Rao, R. V., Peel, A., Logvinova, A., Del, R. G., Hermel, E., Yokota, T., Goldsmith, P. C., Ellerby, L. M., Ellerby, H. M. and Bredesen, D. E. (2002) Coupling endoplasmic reticulum stress to the cell death program:role of the ER chaperone GRP78. Febs Lett.514, 122-128
    41 Reddy, R. K., Mao, C., Baumeister, P., Austin, R. C., Kaufman, R. J. and Lee, A. S. (2003) Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors:role of ATP binding site in suppression of caspase-7 activation. J Biol Chem.278,20915-20924
    42 Zhai, L., Kita, K., Wano, C., Wu, Y., Sugaya, S. and Suzuki, N. (2005) Decreased cell survival and DNA repair capacity after UVC irradiation in association with down-regulation of GRP78/BiP in human RSa cells. Exp Cell Res.305,244-252
    43 Huang, S. P., Chen, J. C., Wu, C. C., Chen, C. T., Tang, N. Y., Ho, Y. T., Lo, C., Lin, J. P., Chung, J. G. and Lin, J. G. (2009) Capsaicin-induced apoptosis in human hepatoma HepG2 cells. Anticancer Res.29,165-174
    44 Gonzalez-Gronow, M., Selim, M. A., Papalas, J. and Pizzo, S. V. (2009) GRP78:a multifunctional receptor on the cell surface. Antioxid Redox Signal.11,2299-2306
    45 Wang, M., Wey, S., Zhang, Y., Ye, R. and Lee, A. S. (2009) Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid Redox Signal.11,2307-2316
    46 Watson, L. M., Chan, A. K., Berry, L. R., Li, J., Sood, S. K., Dickhout, J. G., Xu, L. Werstuck, G. H., Bajzar, L., Klamut, H. J. and Austin, R. C. (2003) Overexpression of the 78-kDa glucose-regulated protein/immunoglobulin-binding protein (GRP78/BiP) inhibits tissue factor procoagulant activity. J Biol Chem.278,17438-17447
    47 Bhattacharjee, G., Ahamed, J., Pedersen, B., El-Sheikh, A., Mackman, N., Ruf, W., Liu, C. and Edgington, T. S. (2005) Regulation of tissue factor--mediated initiation of the coagulation cascade by cell surface grp78. Arterioscler Thromb Vasc Biol.25,1737-1743
    48 Misra, U. K., Gonzalez-Gronow, M., Gawdi, G., Wang, F. and Pizzo, S. V. (2004) A novel receptor function for the heat shock protein Grp78:silencing of Grp78 gene expression attenuates alpha2M*-induced signalling. Cell Signal.16,929-938
    49 Gonzalez-Gronow, M., Cuchacovich, M., Llanos, C., Urzua, C., Gawdi, G. and Pizzo, S. V. (2006) Prostate cancer cell proliferation in vitro is modulated by antibodies against glucose-regulated protein 78 isolated from patient serum. Cancer Res.66,11424-11431
    50 Shani, G., Fischer, W. H., Justice, N. J., Kelber, J. A., Vale, W. and Gray, P. C. (2008) GRP78 and Cripto form a complex at the cell surface and collaborate to inhibit transforming growth factor beta signaling and enhance cell growth. Mol Cell Biol.28, 666-677
    51 Kelber, J. A., Panopoulos, A. D., Shani, G., Booker, E. C., Belmonte, J. C., Vale, W. W. and Gray, P. C. (2009) Blockade of Cripto binding to cell surface GRP78 inhibits oncogenic Cripto signaling via MAPK/PI3K and Smad2/3 pathways. Oncogene.28, 2324-2336
    52 Davidson, D. J., Haskell, C., Majest, S., Kherzai, A., Egan, D. A., Walter, K. A., Schneider, A., Gubbins, E. F., Solomon, L., Chen, Z., Lesniewski, R. and Henkin, J. (2005) Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Res.65,4663-4672
    53 McFarland, B. C., Stewart, J. J., Hamza, A., Nordal, R., Davidson, D. J., Henkin, J. and Gladson, C. L. (2009) Plasminogen kringle 5 induces apoptosis of brain microvessel endothelial cells:sensitization by radiation and requirement for GRP78 and LRP1. Cancer Res.69,5537-5545
    54 Lee, E., Nichols, P., Spicer, D., Groshen, S., Yu, M. C. and Lee, A. S. (2006) GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer. Cancer Res.66, 7849-7853
    55 Li, J. and Lee, A. S. (2006) Stress induction of GRP78/BiP and its role in cancer. Curr Mol Med.6,45-54
    56 Kern, J., Untergasser, G., Zenzmaier, C., Sarg, B., Gastl, G., Gunsilius, E. and Steurer, M. (2009) GRP-78 secreted by tumor cells blocks the antiangiogenic activity of bortezomib. Blood.114,3960-3967
    57 Tsunemi, S., Nakanishi, T., Fujita, Y., Bouras, G., Miyamoto, Y., Miyamoto, A., Nomura, E., Takubo, T. and Tanigawa, N. (2010) Proteomics-based identification of a tumor-associated antigen and its corresponding autoantibody in gastric cancer. Oncol Rep. 23,949-956
    58 Pootrakul, L., Datar, R. H., Shi, S. R., Cai, J., Hawes, D., Groshen, S. G., Lee, A. S. and Cote, R. J. (2006) Expression of stress response protein Grp78 is associated with the development of castration-resistant prostate cancer. Clin Cancer Res.12,5987-5993
    59 Lee, A. S. (2007) GRP78 induction in cancer:therapeutic and prognostic implications. Cancer Res.67,3496-3499
    60 Philippova, M., Ivanov, D., Joshi, M. B., Kyriakakis, E., Rupp, K., Afonyushkin, T., Bochkov, V., Erne, P. and Resink, T. J. (2008) Identification of proteins associating with glycosylphosphatidylinositol-anchored T-cadherin on the surface of vascular endothelial cells:role for Grp78/BiP in T-cadherin-dependent cell survival. Mol Cell Biol.28, 4004-4017
    61 Martindale, J. J., Fernandez, R., Thuerauf, D., Whittaker, R., Gude, N., Sussman, M. A. and Glembotski, C. C. (2006) Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated form of ATF6. Circ Res.98,1186-1193
    62 Rauschert, N., Brandlein, S., Holzinger, E., Hensel, F., Muller-Hermelink, H. K. and Vollmers, H. P. (2008) A new tumor-specific variant of GRP78 as target for antibody-based therapy. Lab Invest.88,375-386
    63 Mimura, N., Yuasa, S., Soma, M., Jin, H., Kimura, K., Goto, S., Koseki, H. and Aoe, T. (2008) Altered quality control in the endoplasmic reticulum causes cortical dysplasia in knock-in mice expressing a mutant BiP. Mol Cell Biol.28,293-301
    64 Luo, S., Mao, C., Lee, B. and Lee, A. S. (2006) GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Mol Cell Biol.26,5688-5697
    65 Hamos, J. E., Oblas, B., Pulaski-Salo, D., Welch, W. J., Bole, D. G. and Drachman, D. A. (1991) Expression of heat shock proteins in Alzheimer's disease. Neurology.41, 345-350
    66 Hoozemans, J. J., Veerhuis, R., Van Haastert, E. S., Rozemuller, J. M., Baas, F., Eikelenboom, P. and Scheper, W. (2005) The unfolded protein response is activated in Alzheimer's disease. Acta Neuropathol.110,165-172
    67 Hoozemans, J. J., van Haastert, E. S., Nijholt, D. A., Rozemuller, A. J., Eikelenboom, P. and Scheper, W. (2009) The unfolded protein response is activated in pretangle neurons in Alzheimer's disease hippocampus. Am J Pathol.174,1241-1251
    68 Dobashi, T., Tanabe, S., Jin, H., Mimura, N., Yamamoto, T., Nishino, T. and Aoe, T. (2010) BiP, an endoplasmic reticulum chaperone, modulates the development of morphine antinociceptive tolerance. J Cell Mol Med.14,2816-2826
    69 Kimura, K., Jin, H., Ogawa, M. and Aoe, T. (2008) Dysfunction of the ER chaperone BiP accelerates the renal tubular injury. Biochem Biophys Res Commun.366,1048-1053
    70 Chung, K. T., Shen, Y. and Hendershot, L. M. (2002) BAP, a mammalian BiP-associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP. J Biol Chem.277,47557-47563
    71 Anttonen, A. K., Mahjneh, I., Hamalainen, R. H., Lagier-Tourenne, C., Kopra, O., Waris, L., Anttonen, M., Joensuu, T., Kalimo, H., Paetau, A., Tranebjaerg, L., Chaigne, D., Koenig, M., Eeg-Olofsson, O., Udd, B., Somer, M., Somer, H. and Lehesjoki, A. E. (2005) The gene disrupted in Marinesco-Sjogren syndrome encodes SIL1, an HSPA5 cochaperone. Nat Genet.37,1309-1311
    72 Yan, M., Li, J. and Sha, B. (2011) Structural analysis of the Sill-Bip complex reveals the mechanism for Sill to function as a nucleotide-exchange factor. Biochem J.438, 447-455
    73 Awe, K., Lambert, C. and Prange, R. (2008) Mammalian BiP controls posttranslational ER translocation of the hepatitis B virus large envelope protein. Febs Lett.582,3179-3184
    74 Anttonen, A. K., Siintola, E., Tranebjaerg, L., Iwata, N. K., Bijlsma, E. K., Meguro, H., Ichikawa, Y., Goto, J., Kopra, O. and Lehesjoki, A. E. (2008) Novel SIL1 mutations and exclusion of functional candidate genes in Marinesco-Sjogren syndrome. Eur J Hum Genet. 16,961-969
    75 Eriguchi, M., Mizuta, H., Kurohara, K., Fujitake, J. and Kuroda, Y. (2008) Identification of a new homozygous frameshift insertion mutation in the SIL1 gene in 3 Japanese patients with Marinesco-Sjogren syndrome. J Neurol Sci.270,197-200
    76 Zhao, L., Longo-Guess, C., Harris, B. S., Lee, J. W. and Ackerman, S. L. (2005) Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat Genet.37,974-979
    77 Anttonen, A. K., Mahjneh, I., Hamalainen, R. H., Lagier-Tourenne, C., Kopra, O., Waris, L., Anttonen, M., Joensuu, T., Kalimo, H., Paetau, A., Tranebjaerg, L., Chaigne, D., Koenig, M., Eeg-Olofsson, O., Udd, B., Somer, M., Somer, H. and Lehesjoki, A. E. (2005) The gene disrupted in Marinesco-Sjogren syndrome encodes SIL1, an HSPA5 cochaperone. Nat Genet.37,1309-1311
    78 Senderek, J., Krieger, M., Stendel, C., Bergmann, C., Moser, M., Breitbach-Faller, N., Rudnik-Schoneborn, S., Blaschek, A., Wolf, N. I., Harting, I., North, K., Smith, J., Muntoni, F., Brockington, M., Quijano-Roy, S., Renault, F., Herrmann, R., Hendershot, L. M., Schroder, J. M., Lochmuller, H., Topaloglu, H., Voit, T., Weis, J., Ebinger, F. and Zerres, K. (2005) Mutations in SIL1 cause Marinesco-Sjogren syndrome, a cerebellar ataxia with cataract and myopathy. Nat Genet.37,1312-1314
    79 Maki, R. G., Old, L. J. and Srivastava, P. K. (1990) Human homologue of murine tumor rejection antigen gp96:5'-regulatory and coding regions and relationship to stress-induced proteins. Proc Natl Acad Sci U S A.87,5658-5662
    80 Chen, B., Piel, W. H., Gui, L., Bruford, E. and Monteiro, A. (2005) The HSP90 family of genes in the human genome:insights into their divergence and evolution. Genomics.86, 627-637
    81 Eletto, D., Dersh, D. and Argon, Y. (2010) GRP94 in ER quality control and stress responses. Semin Cell Dev Biol.21,479-485
    82 Ishiguro, S., Watanabe, Y., Ito, N., Nonaka, H., Takeda, N., Sakai, T., Kanaya, H. and Okada, K. (2002) SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins. Embo J.21,898-908
    83 Maynard, J. C., Pham, T., Zheng, T., Jockheck-Clark, A., Rankin, H. B., Newgard, C. B., Spana, E. P. and Nicchitta, C. V. (2010) Gp93, the Drosophila GRP94 ortholog, is required for gut epithelial homeostasis and nutrient assimilation-coupled growth control. Dev Biol.339,295-306
    84 Wanderling, S., Simen, B. B., Ostrovsky, O., Ahmed, N. T., Vogen, S. M., Gidalevitz, T. and Argon, Y. (2007) GRP94 is essential for mesoderm induction and muscle development because it regulates insulin-like growth factor secretion. Mol Biol Cell.18, 3764-3775
    85 Randow, F. and Seed, B. (2001) Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability. Nat Cell Biol.3,891-896
    86 Ostrovsky, O., Ahmed, N. T. and Argon, Y. (2009) The chaperone activity of GRP94 toward insulin-like growth factor II is necessary for the stress response to serum deprivation. Mol Biol Cell.20,1855-1864
    87 Yang, Y. and Li, Z. (2005) Roles of heat shock protein gp96 in the ER quality control: redundant or unique function? Mol Cells.20,173-182
    88 Melnick, J., Dul, J. L. and Argon, Y. (1994) Sequential interaction of the chaperone BiP and GRP94 with immunoglobulin chain in the endoplasmic reticulum. Nature.370, 373-375
    89 Liu, B. and Li, Z. (2008) Endoplasmic reticulum HSP90b1 (gp96, grp94) optimizes B-cell function via chaperoning integrin and TLR but not immunoglobulin. Blood.112, 1223-1230
    90 Macer, D. R. and Koch, G. L. (1988) Identification of a set of calcium-binding protein in reticuloplasm, the luminal content of the endoplasmic reticulum. J Cell Sci.91 (Pt 1), 61-70
    91 Van PN, Peter, F. and Soling, H. D. (1989) Four intracisternal calcium binding glycoprotein from rat liver microsome with high affinity for calcium. No indication for calsequestrin-like proteins in inositol 1,4,5-trisphosphate-sensitive calcium sequestering rat liver vesicles. J Biol Chem.264,17494-17501
    92 Biswas, C., Ostrovsky, O., Makarewich, C. A., Wanderling, S., Gidalevitz, T. and Argon, Y. (2007) The peptide-binding activity of GRP94 is regulated by calcium. Biochem J.405,233-241
    93 Vitadello, M., Penzo, D., Petronilli, V., Gomirato, S., Michieli, G., Menabo, R., Di Lisa, F. and Gorza, L. (2003) Overexpression of the stress protein Grp94 reduces cardiomyocyte necrosis due to calcium overload and simulated ischemia. Faseb J.17, 923-25
    94 Sonnichsen, B., Fullekrug, J., Nguyen, V. P., Diekmann, W., Robinson, D. G. and Mieskes, G. (1994) Retention and retrieval:both mechanism cooperate to maintain calreticulin in the endoplasmic reticulum. J Cell Sci.107 (Pt 10),2705-17
    95 (1997) Calnexin, calreticulin and the folding of glycoproteins. Trends Cell Biol.7, 193-200
    96 Nakamura, K., Zuppini, A., Arnaudeau, S., Ahsan, I.,Lynch, J., Krause, R., De Smedt, Papp, S., H., Parys, J. B., Muller-Esterl, W., Lew, D. P., Krause, K. H., Demaurex, N., Opas, M. and Michalak, M. (2001) Functional specialization of calreticulin domain. J Cell Biol.154,961-972