减毒活菌卡介苗(BCG)早期接种对哮喘小鼠气道炎症保护作用及其免疫机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
支气管哮喘(Asthma)是一种以肥大细胞、嗜酸性粒细胞和T淋巴细胞气道浸润,以黏液高分泌、气道高反应性、气道重构为特征的慢性变态反应性疾病。既往“卫生学说”很好地解释了近来哮喘的高发病率。减毒活菌卡介苗(Mycobacterum bovis bacillus calmette-guerin, BCG)是一种很强的Th1免疫刺激剂,动物和人体研究显示,BCG接种和/或感染可明显抑制哮喘的病理生理改变。我们前期研究发现,新生鼠BCG接种可以明显抑制成年后OVA致敏激发诱导的过敏性气道炎症和气道高反应性(airway hyperresponsiveness, AHR),这一结果令人鼓舞,为哮喘的预防提供了曙光。
     一直来困扰的问题在于:BCG防治哮喘的具体机制是什么?过去的研究均以“卫生学说”来解释,认为BCG接种和/或感染刺激了机体Th1细胞因子的产生,降低了Th2细胞因子的释放,从而达到抑制哮喘的作用.随着新型Th细胞(Th17)以及调节性T细胞(Treg)的发现以及功能的不断研究,这些细胞是否会在BCG防治哮喘中起作用呢?IL-17能够促进Th1免疫,介导Th1细胞分泌IFN-γ,但在特定情形下也能抑制Th1免疫反应,考虑到Th17与Th1细胞之间的相互调节作用,Th17可能在BCG防治哮喘中起到一定的作用.虽然早期的研究认为微卡(Mycobacterium vaccae)能够通过诱导调节性T细胞抑制哮喘炎症,但是其调节性T细胞并不是目前比较公认的Foxp3+ T调节细胞;最近研究发现BCG以及延迟冷冻抽干BCG接种能够通过上调CD4+CD25+T细胞达到保护哮喘的作用,但是这些研究并没有通过流式检测CD4+CD25+Foxp3+T的百分比以及绝对数量,所以目前没有关于BCG通过Treg细胞达到抑制哮喘作用的可信服研究.基于此,Th17和Treg细胞是否参与BCG接种防治哮喘还有待于进一步证实.
     关于BCG防治哮喘比较认可的观点仍然为:BCG促进了机体Th1免疫反应,从而达到了抑制哮喘的病理生理作用。既往的研究几乎局限于脾脏以及BALF的Th1免疫反应,近来有研究表明BCG或者BCG衍生物接种后,局部肺组织内增高的Th1细胞以及Th1免疫反应在哮喘的防治中起到重要的作用。BCG接种促进了机体肺组织内表达IFN-γ的CD4+和/或CD8+T细胞,这可能来自于CD4+和/或CD8+T细胞向肺组织的募集,或者肺内静息的记忆性CD4和/或CD8+T细胞在结核杆菌/OVA攻击后引起了二次免疫。目前尚没有“关于BCG接种后引起机体免疫系统(免疫功能)的变化以及这种变化在抑制哮喘的病理生理中的作用”的系统研究。一个非常重要但没有阐明的问题在于:BCG接种尾根部,其引流淋巴结为腹股沟淋巴结,而哮喘气道炎症发生的部位为肺脏,BCG接种诱发的Th1免疫应答如何在以肺脏Th2为主导的过敏性气道炎症中起到保护作用呢?也就是说BCG皮下接种后,OVA致敏攻击导致肺组织(或BALF)中增高的表达IFN-γ的CD4+T细胞的来源在哪里?BCG皮下接种后,活的细菌主要集中在引流淋巴结,少量迁移到脾脏,而肺组织基本检测不到BCG活菌的菌落数,由此肺组织内不可能产生效应性T细胞。而记忆性T细胞产生的一个必要条件是机体抗原的清除,而BCG接种后抗原在很长时间内不会清除,由此机体产生记忆性T细胞也是很困难的。由于效应性T细胞在机体静息状态下可以由淋巴组织向非淋巴组织迁移,一旦机体发生炎症反应,效应性细胞能够趋化募集到相应的炎症组织,发挥其生物学作用。为此,我们假设“BCG接种后,哮喘小鼠肺脏增高的Th1细胞和Th1免疫应答可能来自BCG接种部位的引流淋巴结”。
     由此,本研究主要分两部分:(1)首先讨论在静息状态以及OVA攻击后,BCG接种对肺组织、脾脏以及引流淋巴结内辅助T细胞(Thl, Th17)以及Treg的改变,我们发现只有表达IFN-γ的CD4+T细胞在OVA攻击后向肺脏发生明显迁移,而且这种转移来自于BCG接种部位的引流淋巴结而不是脾脏;(2)接下来我们系统分析了引流淋巴结内CD4+T细胞的表型以及功能变化,通过过继试验和体内示踪证实引流淋巴结内的CD4+T细胞参与了肺组织的迁移以及抑制哮喘气道炎症的作用。本研究为BCG接种防治哮喘提供更有说服力的试验依据,同时为哮喘的免疫治疗提供了新的方向。
     第一部分:BCG早期皮下接种抑制哮喘小鼠气道炎症以及气道高反应性,该作用与表达IFN-γ的CD4+T细胞向肺组织募集相关
     目的:①探讨早期BCG接种对哮喘小鼠气道炎症和气道高反应性的保护作用;②探讨BCG接种后静息以及OVA攻击后机体的辅助T细胞以及Treg的变化。
     方法:①新生鼠接种BCG,待到6-8W后,分为三组:正常对照组(saline/saline),哮喘组(saline/OVA)和BCG处理组(BCG/OVA).以OVA致敏和激发建立哮喘模型。最后一次抗原激发后24小时检测气道反应性,行支气管肺泡灌洗液(BALF)收集、肺组织病理切片观察炎症浸润以及黏液分泌,检测肺组织内IFN-γ、Foxp3以及IL-17A的mRNA表达,ELISA行BALF中IFN-γ测定;②为了系统观察BCG接种后静息以及OVA攻击后肺脏的辅助T细胞以及Treg变化,我们另行单独试验,小鼠分为四组:正常对照组(saline/saline), BCG接种静息状态组(BCG/saline),模型组(saline/OVA)以及BCG接种激发组(BCG/OVA)。于最后一次OVA激发48小时后,流式检测肺脏内表达IFN-γ以及IL-17的CD4+和CD8+T细胞,以及Foxp3+Treg细胞。同时流式检测肺门纵隔淋巴结(MLN),脾脏(spleen)以及腹股沟淋巴结(ILN)内表达IFN-γ的CD4+和CD8+T细胞。
     结果:①saline/OVA组小鼠气道反应性,BALF中Eos总数,肺组织炎症浸润以及黏液分泌均较saline/saline明显增加(P<0.05).与saline/OVA组相比,早期接种BCG显著抑制了哮喘小鼠BALF中的Eos数,减轻了AHR,抑制了肺组织的气道炎症以及黏液分泌(P值均<0.05)。同时,BCG接种增加了肺组织中IFN-γ的mRNA表达,而不影响Foxp3和IL-17A的mRNA表达.②在静息状态下,BCG接种轻度增加了肺组织中表达IFN-γ的CD4+T细胞,而不改变表达IFN-γ的CD8+T细胞,表达IL-17的CD4+T细胞(Th17细胞)以及CD8+T细胞的比例,同样,BCG接种不增加肺组织内Foxp3+Treg细胞的比例;有趣而且令人惊奇的是,相对于静息状态而言,BCG接种小鼠在OVA致敏攻击后显著增加了肺组织内表达IFN-γ的CD4+T细胞(p<0.001).虽然也显著增加了表达IFN-γ的CD8+T细胞(p=0.026),但是,表达IFN-γ的CD8+T细胞仅仅为表达IFN-γ的CD4+T细胞的1/6。这提示OVA致敏攻击,导致大量表达IFN-γ的CD4+T细胞向BCG接种小鼠肺组织的募集。相反,Th17,表达IL-17A的CD8+T细胞以及Foxp3+ Treg细胞没有出现与Thl细胞相似的变化。③静息状态下,BCG接种没有改变脾脏、纵隔淋巴结内Thl细胞和表达IFN-γ的CD8+T细胞。出乎意料的是,OVA致敏攻击后,BCG接种显著增加了脾脏内表Th1细胞(p=0.001)),但不改变表达IFN-γ的CD8+T细胞;与之对应的是,BCG接种后静息状态下ILN内增高的Thl细胞在OVA致敏攻击后明显减少(p=0.035),而表达IFN-γ的CD8+T细胞没有观察到相似的变化。而在纵隔淋巴结内,单独OVA致敏激发导致Thl细胞和表达IFN-γ的CD8+T细胞显著性降低;与BCG/saline相比,Thl细胞和表达IFN-γ的CD8+T在BCG/OVA组并不增加,反而这些细胞出现降低(虽然统计学上没有显著性的差异)。
     结论:①BCG皮下尾根部接种能够抑制哮喘小鼠的气道炎症以及气道高反应性,这种抑制作用与迅速导致Th1细胞向炎症肺组织的募集相关,而与Th17,表达IL-17A的CD8+T细胞以及Foxp3+ Treg无关;③OVA致敏攻击后,BCG接种小鼠肺内增高的Th1细胞来自于ILN,通过脾脏向肺内迁移,从而达到抑制哮喘气道炎症的作用。
     第二部分:BCG接种部位的局部引流淋巴结内CD4+T细胞的表型及体外功能研究
     目的:进一步探讨BCG接种后局部引流淋巴结(ILN)内CD4+T细胞的表型以及功能。
     方法:BCG接种方法同前。小鼠分为两组:正常对照组(saline)和BCG接种组(BCG)。动态观察BCG接种后ILN和脾脏的细胞数改变;由于第一部分我们已经发现BCG接种12W后ILN内Th1细胞增高,为了进一步证实这一现象,继续观察BCG接种18W以及30W后ILN和脾脏中表达IFN-γ的CD4+T和CD8+T细胞的变化;以12W为时间点,流式检测ILN和脾脏内表达IL-17A的CD4+T和CD8+T细胞以及Foxp3+Treg细胞比例。以12W为时间点,定量PCR测定ILN内IFN-γ、IL-17A以及Foxp3的mRNA水平,同时分析ILN内淋巴细胞的细胞周期、CD4+T细胞的活化程度以及表型;以MTT法以及CFSE稀释法检测ILN内淋巴细胞和CD4+T细胞的体外增殖能力,同时ELISA检测培养上清内IFN-γ的水平。
     结果:①BCG接种促进了ILN细胞数呈指数级增长,但不改变脾脏的细胞数。②无论18W还是30W, BCG接种均促进了ILN内表达IFN-γ的CD4+T细胞比例的增加(p=0.027, p=0.04, respectively).而对于脾脏细胞,BCG接种均不改变表达IFN-γ的CD4+T细胞和CD8+T细胞的百分比。同样,BCG接种不改变ILN和脾脏内Th17细胞和表达IL-17的CD8+T细胞,以及Foxp3+CD4+T细胞。与之相一致的是:BCG接种促进了ILN内IFN-γ和转录因子T-bet的mRNA表达,而不改变IL-17A和Foxp3转录因子的nRNA水平;③BCG接种轻度增加了ILN内效应和/或效应记忆CD4+T细胞(Tef/em) (p=0.042),而对于处女型T细胞(Tnai)和中央记忆型T细胞CD4+T细胞(Tcm)没有明显改变;BCG接种不改变ILN细胞的增殖指数,不改变ILN内CD4+T细胞的活化程度。但是体外刺激后,BCG接种后的ILN细胞表现为活化程度显的著增高,体外增殖能力的增强以及IFN-γ分泌能力的上升.
     结论:①BCG接种促进了ILN而不是脾脏的增生并且导致ILN内储存大量表达IFN-γ的CD4+T细胞,而不改变表达IFN-γ的CD8+T细胞,Th17细胞,表达IL-17的CD8+T细胞,以及Foxp3+CD4+T细胞比例.②BCG接种导致的ILN内的CD4+T细胞处在一种相对静息的状态,但是一旦给予刺激,表现出增强的活化增殖以及分泌效应因子能力。
     第三部分:BCG接种诱导的局部引流淋巴结内淋巴细胞参与OVA激发后向肺组织的募集以及发挥对哮喘小鼠气道炎症的保护作用
     目的:进一步探讨BCG接种以后富集表达IFN-γ的CD4+T细胞的ILN细胞是否参与了OVA致敏激发后向肺脏组织的募集以及这些淋巴细胞是否参与了抑制哮喘气道炎症的作用。
     方法:①本部分试验分两步走,早期接种BCG,这些小鼠待作过继免疫时的“供者小鼠”(donor mice)。同时另选一批小鼠用作哮喘模型,作为细胞过继的“受者小鼠”(recipient mice)。小鼠8W开始建立哮喘模型。“受者小鼠”在OVA激发前一天,接受来自于“供者小鼠”的ILN单个核细胞悬液,后诱发哮喘模型。小鼠分为3组:BCG接种ILN细胞过继OVA攻击组(BCG-ILN/OVA),生理盐水对照ILN细胞过继OVA攻击组(saline-ILN/OVA)和过继PBS对照OVA攻击组(PBS/OVA)。于最后一次抗原激发后24小时检测气道反应性,48小时行支气管肺泡灌洗、肺组织病理切片观察炎症浸润以及黏液分泌情况以及检测Thl细胞因子的表达。在另一单独试验中,过继脾脏细胞,分组基本同ILN细胞过继,分为:BCG-spleen/OVA, saline-spleen/OVA以及PBS/OVA,后检测气道反应性、支气管肺泡灌洗液、肺组织病理切片观察炎症浸润以及黏液分泌情况。②另外,为直接证实BCG接种后的ILN内的淋巴细胞以及CD4+T细胞是否具有向炎症肺组织迁移的优先能力,我们设立三组:CFSE标记的BCG接种ILN细胞过继OVA攻击组(BCG-ILN/OVA), CFSE标记的saline对照ILN细胞过继OVA攻击组(saline-ILN/OVA)以及CFSE标记的BCG接种ILN细胞过继saline攻击对照组(BCG-ILN/OVA).细胞体外CFSE标记,行尾静脉过继,诱发哮喘模型。流式检测CFSE阳性的淋巴细胞以及CD4+T细胞数。③分别取8W时BCG接种以及正常对照组的ILN组织,定量PCR检测趋化因子受体CXCR3,CCR5,CXCR6, CCR6,CCR4和CCR8的mRNA水平;另外,分别检测OVA致敏攻击组和生理盐水对照组的肺组织,定量PCR检测CXCR3相匹配的趋化因子CXCL9,CXCL10和CXCL11的mRNA水平。
     结果:①过继BCG接种后的ILN细胞,表现为气道反应性的降低,BALF中Eos数的下调,以及肺组织炎症和黏液分泌的减轻,值得注意的是,这些小鼠同时伴随着肺组织增高的IFN-γmRNA水平以及BALF中IFN-γ的表达的增加;②无论过继BCG接种或者对照组的脾脏细胞悬液,均不能降低哮喘小鼠的病理生理改变;③与saline-ILN/OVA相比,CFSE阳性的淋巴细胞(p=0.022)以及CD4+T细胞(p=0.045)在BCG-ILN/OVA组肺组织中显著增高。④BCG接种后ILN组织选择性的高表达Thl细胞表面趋化因子受体CXCR3,而不增高其他T细胞相关的趋化因子受体。与之相对应的是,OVA致敏攻击后的肺组织高表达与CXCR3匹配的趋化因子CXCL9、CXCL10和CXCL11。
     结论:BCG接种引起的增生引流淋巴结(ILN)具有直接保护哮喘气道炎症和气道高反应性的作用,而脾脏细胞不具有这样的保护作用,这种保护作用与ILNCD4+T细胞优先向肺部炎症组织迁移相关。
Allergic asthma has been defined as a disease of immunodysregulation, which associated with pulmonary eosinophilic inflammation and increased mucus production in the airways. An attractive explanation is offered by the "hygiene hypothesis", which suggests a decrease of or an altered exposure to microbes in the environment results in alteration of immune-regulation. BCG is considered as a strong inducer of T-helper type 1 immune response and modulates the development of asthma both in animal models and human beings. Importantly, our previous study has shown that neonatal BCG vaccination elicited long-term protection on allergic airway inflammation in young and aged mice, which provides a new insight for the prevention of asthma.
     BCG vaccination/infection stimulates the production of Th1 cytokines and decreases Th2 cytokine secretion in both BALF and the splenetic supernatants. However, the exact mechanism underlying the BCG vaccination preventing the development of asthma remains obscure. With the discovery and functional analysis of Th17 and Treg, we want to know whether and how these new subsets of T cells involve in the process of protective effects of BCG on asthma. It has been reported that IL-17 is required to induce optimum Th1 in some condition, while inhibits the Th1 immune response at other condition. Given the mutual effects of Th17 and Thl, we proposed that Th17 may be play a role in the prevention of BCG on asthma.BCG has been reported to induce immune-regulatory responses. However, the role of Treg in the effects of BCG on allergic inflammation has been little studied. M. vaccae regulates the allergic host immune responses through the induction of Treg (IL-10 and TGF-β), rather than affecting the Th1/Th2 balance. Indeed, BCG vaccinations ameliorate de novo local eosinophilic inflammation induced by allergen and increase the numbers of CD4+CD25+ Treg cells and Foxp3 expression. Collectively, these data suggest Treg may involve in the protection against allergic asthma. Based on the aforementioned studies, whether Th17 and Treg involve in the protective effect of BCG vaccination on asthma needs to further confirm.
     The most acceptable view is the enhanced Th1 immune response by BCG vaccination play a central role in the inhibition of asthma. Previous studies focused on the increased IFN-γlevel of BALF and/or cultured supernatant of spleen, yet the local enhanced IFN-γ+ CD4 T has been considered to play a critical role against allergic airway inflammation. The migration of FN-y-positive CD4+T and CD8+T cells from circulation and/or the rapid expansion of the resting memory CD4+ T and CD8+ T cells in the local lung contribute to the accumulation. It is more acceptable for the former, as effector T cell can migrate into non-lymph tissue in a low-frequency pattern in the stable condition, while they can rapidly influx into inflamed tissues. In fact, it is hard to establish a real memory immune in BCG vaccination or M.tb choronical infection as the substantial antigen. However, an unresolved issue in these studies is where the IFN-y-positive Thl cells induced by BCG vaccination stem and how these cells recruit into the flamed site of pulmonary after OVA challenge. Thus, we put forward to the hypothesis that "the increased Thl in the draining lymph node for the site of BCG vaccination contribute to enhanced Thl cells in lung after OVA challenge and yield to a protective effect on asthma".
     To confirm this hypothesis, we first detect the changes of Thl, Th17 and Treg in the lung after BCG vaccination both in stable-state and in OVA-challenged condition, we found BCG vaccination significantly increased Thl cells after OVA challenge, while other T subset have no differences. Furthermore, we found the increased Thl in the lung resulted from the ILN (not from spleen), and the ILN serves as a pool of Thl cells and migrated into the lung directly to alleviate the OVA-induced airway inflammation and AHR. These data support further that neonatal BCG vaccination elicits a protection of asthma, and provide a new insight of immune vaccination.
     Part 1:Neonatal BCG vaccination elicits a protection of airway inflammation and airway hyperresponsiveness via the recruitment of IFN-γ-expression CD4+T cells in the lung.
     Objective:To investigate whether neonatal BCG vaccination at the base of tail elicits the protective effects from the development of asthma and to examine the changes of Thl, Th17 and Treg in the lung in both resting and OVA challenge condition.
     Methods:①C57BL/6 neonates were vaccinated with BCG At age of 6-8 weeks, these mice were invided into three groups:negative control mice (saline/saline), asthma model mice (saline/OVA) and BCG-treated mice (BCG/OVA). The protocol for asthma model described as previous. After the last OVA challenge, AHR, total cell counts and cell differentiation were detected and the airway inflammation and mucus secretion were examined. Then mRNA level of IFN-γ, Foxp3 and IL-17A in the lung and IFN-γconcentration in BALF were determined by real-time PCR and ELISA respectively.②In a reparatory experiment, mice were divided into 4 groups:saline/saline for negative control, saline/OVA for asthma model control, BCG/saline and BCG/OVA. Within 24 h after the last OVA challenge, cell suspensions of lung were obtained and decteced the frequency of Th1, Th17 and Treg via FCM. Finally, cell suspensions were isolated from MLN, spleen and ILN and decteced the percentage of IFN-γ-expession CD4+ T and CD8+T via FCM.
     Results:①Neonatal BCG vaccination at the base of tail decreased AHR, inhibited eosinophils infiltration and mucus overproduction (P< 0.05).②In resting state, the IFN-y-positive CD4+T cells were significantly increased in the lung compared with that in saline/saline mice, while no differences were observed about IFN-γ-positive CD8+T, Th17, IL-17-positive CD8+T and Treg in the lung. Interestingly, the frequency of Thl cells was significantly increased in BCG/OVA mice in compared to that in BCG/saline(p< 0.001). Although IFN-y-positive CD8+T was also significantly enhanced in the lung of BCG/OVA mice (p=0.026), the major of IFN-γ-positive T cells was CD4+T cells. However, these changes were not observed for Th17, IL-17-expression CD8+T and Treg.③In resting condition, BCG vaccination have no effects on the changes of IFN-y-expression CD4+T and CD8+T in the MLN and spleen. In contrast, the frequency of Thl was significantly increased in ILN compared to that in saline/saline mice (p=0.002). To our surprise, OVA challenge enhanced significantly the frequency of Th1 in the spleen from BCG/OVA mice compared to BCG/saline mice, which was accompanied with the reduced frequency of IFN-γ-expression CD4+T in the ILN in BCG/OVA mice compared to BCG/saline mice (p=0.035). Although the differences were not significant, the frequency of IFN-γ-expression CD4+T and CD8+T in MLN were indeed reduced in BCG/OVA mice compared with those in BCG/saline mice.
     Conclusion:①Neonatal BCG vaccination elicits the protective effects on the airway inflammation and AHR in an experimental asthma model, which were corrected with the recruitment of large IFN-γ-expression CD4+T cells but not the Th17 and Treg cells into the lung.②The enhanced Thl cells in the lung after OVA challenge in mice vaccinated with BCG were result from ILN via spleen pathway.
     Part 2:phenotype and functional analysis of CD4+T cells in ILN
     Objective:To investigate whether BCG vaccination influences the phenotype and function of CD4+T cells in ILN for the site of BCG vaccination.
     Methods:C57BL/6 neonates were vaccinated with BCG as described in Part 1. We dynastically observed the cell counts of spleen and ILN at the age of 4W,12W and 30W. To confirm further IFN-γ-expression CD4+ T was indeed increased in ILN of mice vaccinated with BCG, we also dectected the frequency of IFN-γ-expression CD4+ T and CD8+T cells in ILN at the age of 18W and 30W. At the age of 12W, cell counts of MLN, MLN and thymus were also counted, and mRNA level of IFN-γ, IL-17A and Foxp3 in ILN were evaluated by real-time PCR. In addition, the frequencies of Th17, IL-17A-expression CD8+ T and Treg were dectected via FCM in spleen and ILN. Subsequently, cell cycle of ILN, activation and cell phenotype of CD4+T cells in ILN were also illusiated by FCM. The prolification capacity of lymphocytes and CD4+T cells were determined by MTT and CFSE dilution analysis. Finally, the secretary capacity of cytokine was examined by ELISA.
     Results:①Cell counts of ILN from BCG mice increased early at 4 W, and peaked at 12 W, then formed a plat until 30 W. In contrast, cell counts of spleen, thymus and non-draining Lymph node (LN) such as MLN and MLN were no difference between in BCG and saline mice.②Besides at the age of 12 W(as described in part 1), the enhanced Th1 cells were also observed in ILN in BCG mice compared to that in saline mice whether at age of 18W or at 30W(p=0.027 at age of 18W; p=0.04 at age of 30 W, respectively).However, the similar changes were not obseaved for IFN-γ-expression CD8+T cells.In contrast, the frequency of Thl and IFN-γ-expression CD8+T cells in spleen were similar whether BCG vaccination or not. The percentage of Th17, IL-17A-expression CD8+T and Foxp3+CD4+T in spleen and ILN were not changed between in BCG and saline mice. The mRNA level of IFN-γand the transcriptor T-bet were significanted increased in lung of BCG mice compared with that in saline mice, while the mRNA level of IL-17A and the transcriptor Foxp3 were similar regardless of BCG vaccination.③Cell prolification index of ILN, the CD69 and CD25 molecular expression on CD4+T cells in ILN in BCG mice were similar to that in saline mice in steady-state condition. In contrast, CD25 expression on CD4+T cells in ILN of BCG mice was significantly increased in the stimulator compared to that in saline mice. The percentage of Tef/em in ILN in BCG mice was significantly but slighter than that in saline mice. The proliferation of CD4+T cells in ILN of BCG mice measured by MTT and CFSE-dilution was enhanced significantly in contrast to that in saline mice, which was accompanied with the increased IFN-y concentration in cultured supenarant of lymphocyte from ILN of BCG mice.
     Conclusion:①BCG vaccination promotes the prolification of ILN but not spleen, and much Thl but IFN-γ-expression CD8+T, Th17, IL-17-expression CD8+T and Treg was enriched in ILN of mice vaccinated with BCG.②CD4+ T cells in ILN of mice vaccinated with BCG was in a resting state in steady-state condition, which have a potential capacity of activation, prolification and secretion.
     Part 3:Lymphocyte isolated from ILN of BCG mice elicits directly protective effects on airway inflammation and AHR via a protential of migration into lung after OVA challeng.
     Objiective:To investigate directly the lymphocyte enriched with Thl cells in ILN of BCG mice elicits protective effects on airway inflammation and AHR in a mouse model of asthma.
     Methods:For adoptive transfer test of ILN cell suspensions, mice were divided into three groups:BCG-ILN/OVA, saline-ILN/OVA and PBS/OVA. Single-cell suspensions were obtained from ILN, and transferred into recipient mice. After the consequent 3 days challenge, AHR were assayed and samples were collected for inflammation measurement.In addition, the IFN-γmRNA expression in the lung and IFN-γconcentration in BAL fluid were analyzed by real-time PCR and ELISA respectively. Together, we also performed the adoptive transfer test of spleen cell suspensions. In other experiment for directly detect the migration capacity of CD4+T cells of ILN, single-cell suspensions of ILN were stained with CFSE in vitro, and injected into recipient mice. The percentage of CFSE-positive cells and CD4 T cells were assayed using FACS analysis. Furthermore, we detected the mRNA expression of associated chemokine receptors of T cells in ILN and matched chemokine in Lung.
     Results:①Adoptive transfer of ILN cells from BCG mice inhibited AHR, attenuated total numbers of eosinophils in BALF, and decreased pulmonary inflammation and mucus secretion. The IFN-γmRNA expression in the lung was enhanced from BCG-ILN/OVA mice compared with that from saline-ILN/OVA mice, which accompanied with the enhanced IFN-γselection in BALF. However, adoptive transferring of spleen cells from BCG mice has no benefit.In support, CFSE-positive CD4+T cells in BCG-ILN/OVA were enhanced in lung compared to those in saline-ILN/OVA (p=0.045). As expected, the mRNA level of CXCR3 in ILN of BCG mice was higher significantly than that in saline mice. Intriguingly, the matched chemokine CXCL9,10 and 11 for CXCR3 in Lung challenged with OVA were also significantly increased compared to saline mice.
     Conclusion:Lymphocyte enriched with Thl cells in ILN of BCG mice elicits protective effects on airway inflammation and AHR in a mouse model of asthma. Moreover, the protective effect was associated with the potential migration of CD4+T into inflamed lung. Moreover, the high expression of CXCR3 in ILN contributes to the potential migration of CD4+T cells.
引文
1. Umetsu, D.T., et al., Asthma:an epidemic of dysregulated immunity. Nat Immunol,2002.3(8):p.715-20.
    2. Fine, P.E., Variation in protection by BCG:implications of and for heterologous immunity. Lancet,1995.346(8986):p.1339-45.
    3. Yokoi, T., et al., Mycobacterium bovis Bacillus Calmette-Guerin suppresses inflammatory Th2 responses by inducing functional alteration of TSLP-activated dendritic cells. Int Immunol,2008.20(10):p.1321-9.
    4. Erb, K.J., et al., Infection of mice with Mycobacterium bovis-Bacillus Calmette-Guerin (BCG) suppresses allergen-induced airway eosinophilia. J Exp Med,1998.187(4):p.561-9.
    5. Oliveira, F.H., et al., Production of interferon gamma in asthmatic patients with small bacille Calmette-Guerin scars:a pilot study. Allergy Asthma Proc,2006. 27(6):p.516-22.
    6. Herz, U., et al., BCG infection suppresses allergic sensitization and development of increased airway reactivity in an animal model. J Allergy Clin Immunol, 1998.102(5):p.867-74.
    7. Nahori, M.A., et al., Effects of Mycobacterium bovis BCG on the development of allergic inflammation and bronchial hyperresponsiveness in hyper-IgE BP2 mice vaccinated as newborns. Vaccine,2001.19(11-12):p.1484-95.
    8. El-Zein, M., et al., Does BCG vaccination protect against the development of . childhood asthma? A systematic review and meta-analysis of epidemiological studies. Int J Epidemiol,2009.
    9. Shen, H., et al., Neonatal vaccination with Bacillus Calmette-Guerin elicits long-term protection in mouse-allergic responses. Allergy,2008.63(5):p. 555-63.
    10. Zhang, G.S., et al., New insights into the effects of Mycobacterium bovis Bacillus Calmette-Guerin on asthma. Chin Med J (Engl),2009.122(5):p. 577-83.
    11. Zhou, L., et al., IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol,2007. 8(9):p.967-74.
    12. Korn, T., et al., IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature,2007.448(7152):p.484-7.
    13. Nurieva, R., et al., Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature,2007.448(7152):p.480-3.
    14. Linden, A., A role for the cytoplasmic adaptor protein Actl in mediating IL-17 signaling. Sci STKE,2007.2007(398):p. re4.
    15. Annunziato, F., et al., Phenotypic and functional features of human Thl7 cells. J Exp Med,2007.204(8):p.1849-61.
    16. Kawaguchi, M., et al., Identification of a novel cytokine, ML-1, and its expression in subjects with asthma. J Immunol,2001.167(8):p.4430-5.
    17. Hellings, P.W., et al., Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. Am J Respir Cell Mol Biol,2003.28(1):p.42-50.
    18. Molet, S., et al., IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol,2001. 108(3):p.430-8.
    19. Chakir, J., et al., Airway remodeling-associated mediators in moderate to severe asthma:effect of steroids on TGF-beta, IL-11, IL-17, and type I and type Ⅲ collagen expression. J Allergy Clin Immunol,2003.111(6):p.1293-8.
    20. Sun, Y.C., Q.T. Zhou, and W.Z. Yao, Sputum interleukin-17 is increased and associated with airway neutrophilia in patients with severe asthma. Chin Med J (Engl),2005.118(11):p.953-6.
    21. Sharkhuu, T., et al., Mechanism of interleukin-25 (IL-17E)-induced pulmonary inflammation and airways hyper-reactivity. Clin Exp Allergy,2006.36(12):p. 1575-83.
    22. Umemura, M., et al., IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection. J Immunol,2007.178(6):p.3786-96.
    23. Lin, Y., et al., Interleukin-17 is required for T helper 1 cell immunity and host resistance to the intracellular pathogen Francisella tularensis. Immunity,2009. 31(5):p.799-810.
    24. Khader, S.A., et al., IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol,2007.8(4):p.369-77.
    25. Cua, D.J., et al., Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature,2003.421(6924):p.744-8.
    26. Zhang, G.X., et al., Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-beta 2-deficient mice:IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system. J Immunol,2003.170(4):p.2153-60.
    27. O'Connor, W., Jr., et al., A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat Immunol,2009.10(6):p.603-9.
    28. Vignali, D., How many mechanisms do regulatory T cells need? Eur J Immunol, 2008.38(4):p.908-11.
    29. Khattri, R., et al., An essential role for Scurfin in CD4+ CD25+ T regulatory cells. Nat Immunol,2003.4(4):p.337-42.
    30. Hori, S., T. Nomura, and S. Sakaguchi, Control of regulatory T cell development by the transcription factor Foxp3:Science,2003.299(5609):p.1057-61.
    31. Fontenot, J.D., M.A. Gavin, and A.Y. Rudensky, Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol, 2003.4(4):p.330-6.
    32. Fontenot, J.D., et al., Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity,2005.22(3):p.329-41.
    33. Lloyd, C.M. and C.M. Hawrylowicz, Regulatory T cells in asthma. Immunity, 2009.31(3):p.438-49.
    34. Strickland, D.H., et al., Reversal of airway hyperresponsiveness by induction of airway mucosal CD4+CD25+ regulatory T cells. J Exp Med,2006; 203(12):p. 2649-60.
    35. Lee, J.H., et al., The levels of CD4+CD25+ regulatory T cells in paediatric patients with allergic rhinitis and bronchial asthma. Clin Exp Immunol,2007. 148(1):p.53-63.
    36. Gogishvili, T., et al., Inhibition of IL-4/IL-13 does not enhance the efficacy of allergen immunotherapy in murine allergic airway inflammation. Int Arch Allergy Immunol,2007.142(2):p.165-74.
    37. Matsumoto, K., et al., Different profiles of IL-10+IFN-gamma-IL-4-CD4+ T cells in the peripheral blood in atopic and non-atopic asthmatics. Respiration, 2008.75(3):p.281-7.
    38. Curotto de Lafaille, M.A., et al., Hyper immunoglobulin E response in mice with monoclonal populations of B and T lymphocytes. J Exp Med,2001.194(9):p. 1349-59.
    39. Hadeiba, H. and R.M. Locksley, Lung CD25 CD4 regulatory T cells suppress type 2 immune responses but not bronchial hyperreactivity. J Immunol,2003. 170(11):p.5502-10.
    40. Lewkowich, I.P., et al., CD4+CD25+ T cells protect against experimentally induced asthma and alter pulmonary dendritic cell phenotype and function.J Exp Med,2005.202(11):p.1549-61.
    41. Kearley, J., et al:, Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4+CD25+ regulatory T cells is interleukin 10 dependent.J Exp Med,2005.202(11):p.1539-47.
    42. Burchell, J.T., et al., Attenuation of allergen-induced airway hyperresponsiveness is mediated by airway regulatory T cells. Am J Physiol Lung Cell Mol Physiol,2009.296(3):p. L307-19.
    43. Zuany-Amorim, C., et al., Suppression of airway eosinophilia by killed Mycobacterium vaccae-induced allergen-specific regulatory T-cells. Nat Med, 2002.8(6):p.625-9.
    44. Lagranderie, M., et al., Mycobacterium bovis bacillus Calmette-Guerin killed by extended freeze-drying targets plasmacytoid dendritic cells to regulate lung inflammation.J Immunol.184(2):p.1062-70.
    45. Li, Q. and H.H. Shen, Neonatal bacillus Calmette-Guerin vaccination inhibits de novo allergic inflammatory response in mice via alteration of CD4+CD25+ T-regulatory cells. Acta Pharmacol Sin,2009.30(1):p.125-33.
    46. Christ, A.P., et al., Enhancement of Thl Lung Immunity Induced by Recombinant Mycobacterium bovis BCG Attenuates Airway Allergic Disease. Am J Respir Cell Mol Biol,2009.
    47. Wolf, A.J., et al., Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med,2008.205(1):p.105-15.
    48. Hopfenspirger, M.T. and D.K. Agrawal, Airway hyperresponsiveness, late allergic response, and eosinophilia are reversed with mycobacterial antigens in ovalbumin-presensitized mice. J Immunol,2002.168(5):p.2516-22.
    49. Shirtcliffe, P.M., et al.; The effect of delipidated deglycolipidated (DDMV) and heat-killed Mycobacterium vaccae in asthma. Am J Respir Crit Care Med,2001. 163(6):p.1410-4.
    50. Cross, M.L., M.R. Lambeth, and F.E. Aldwell, Murine immune responses to oral BCG immunization in the presence or absence of prior BCG sensitization. Immunol Cell Biol.88(2):p.224-7.
    51. Henao-Tamayo, M.I., et al., Phenotypic definition of effector and memory T-lymphocyte subsets in mice chronically infected with Mycobacterium tuberculosis. Clin Vaccine Immunol.:17(4):p.618-25.
    52. Junqueira-Kipnis, A.P., et al., Stable T-cell population expressing an effector cell surface phenotype in the lungs of mice chronically infected with Mycobacterium tuberculosis. Infect Immun,2004.72(1):p.570-5.
    53. Kamath, A., J.S. Woodworth, and S.M. Behar, Antigen-specific CD8+ T cells and the development of central memory during Mycobacterium tuberculosis infection. J Immunol,2006.177(9):p.6361-9.
    54. Forbes, E.K., et al., Multifunctional, high-level cytokine-producing Th1 cells in the lung, but not spleen, correlate with protection against Mycobacterium tuberculosis aerosol challenge in mice.J Immunol,2008.181(7):p.4955-64.
    55. Kipnis, A., et al., Memory T lymphocytes generated by Mycobacterium bovis BCG vaccination reside within a CD4 CD44lo CD62 Ligandhi population. Infect Immun,2005.73(11):p.7759-64.
    56. Jung, Y.J., et al., Properties and protective value of the secondary versus primary T helper type 1 response to airborne Mycobacterium tuberculosis infection in mice. J Exp Med,2005.201(12):p.1915-24.
    57. Mora, J.R. and U.H. von Andrian, T-cell homing specificity and plasticity:new concepts and future challenges. Trends Immunol,2006.27(5):p.235-43.
    58. Westermann, J., et al., Migration of naive, effector and memory T cells: implications for the regulation of immune responses. Immunol Rev,2001.184: p.20-37.
    59. Shen, H.H., et al., A causative relationship exists between eosinophils and the development of allergic pulmonary pathologies in the mouse. J Immunol,2003. 170(6):p.3296-305.
    60. Hamelmann, E., et al., Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am J Respir Crit Care Med, 1997.156(3 Pt 1):p.766-75.
    61. Bandukwala, H.S., et al., Signaling through Fc gamma RIII is required for optimal T helper type (Th)2 responses and Th2-mediated airway inflammation. J Exp Med,2007.204(8):p.1875-89.
    62. Mikhak, Z., et al., Contribution of CCR4 and CCR8 to antigen-specific T(H)2 cell trafficking in allergic pulmonary inflammation. J Allergy Clin Immunol, 2009.123(1):p.67-73 e3.
    63. Zhang, G.S. and H.H. Shen, [The preventive effect of bacillus Calmette-Guerin vaccination in early life on airway inflammation and mucus production in a murine model of asthma].Zhonghua Jie He He Hu Xi Za Zhi,2005.28(1):p. 17-21.
    64. Quinn, K.M., et al., Accelerating the secondary immune response by inactivating CD4(+)CD25(+) T regulatory cells prior to BCG vaccination does not enhance protection against tuberculosis. Eur J Immunol,2008.38(3):p. 695-705.
    65. Jaron, B., et al., Effect of attenuation of Treg during BCG immunization on anti-mycobacterial Th1 responses and protection against Mycobacterium tuberculosis. PLoS One,2008.3(7):p. e2833.
    66. Cruz, A., et al., Cutting edge:IFN-gamma regulates the induction and expansion of IL-17-producing CD4 T cells during mycobacterial infection. J Immunol,2006.177(3):p.1416-20.
    67. Chen, L., et al., Single intranasal mucosal Mycobacterium bovis BCG vaccination confers improved protection compared to subcutaneous vaccination against pulmonary tuberculosis. Infect Immuri,2004.72(1):p.238-46.
    68. Wang, J., et al., Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J Immunol,2004.173(10):p.6357-65.
    69. Nakae, S., et al., Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity,2002.17(3):p.375-87.
    70. Durrant, D.M., et al., Development of allergen-induced airway inflammation in the absence of T-bet regulation is dependent on L-17. J Immunol,2009.183(8): p.5293-300.
    71. Togbe, D., et al., T cell-derived TNF down-regulates acute airway response to endotoxin. Eur J Immunol,2007.37(3):p.768-79.
    72. Wang, J., et al., Activation of CD8 T cells by mycobacterial vaccination protects against pulmonary tuberculosis in the absence of CD4 T cells. J Immunol,2004. 173(7):p.4590-7.
    73. Hogan, L.H., et al., Virally activated CD8 T cells home to Mycobacterium bovis BCG-induced granulomas but enhance antimycobacterial protection only in immunodeficient mice. Infect Immun,2007.75(3):p.1154-66.
    74. Ou-Yang, H.F., et al., Suppression of allergic airway inflammation in a mouse model by Der p2 recombined BCG. Immunology,2009.128(1 Suppl):p. e343-52.
    75. Curotto de Lafaille, M.A., et al., Adaptive Foxp3+ regulatory T cell-dependent and-independent control of allergic inflammation. Immunity,2008.29(1):p. 114-26.
    76. Quinn, K.M., et al., Inactivation of CD4+ CD25+ regulatory T cells during early mycobacterial infection increases cytokine production but does not affect pathogen load. Immunol Cell Biol,2006.84(5):p.467-74.
    77. Henao-Tamayo, M.I.,et al., Phenotypic definition of effector and memory T lymphocyte subsets in mice chronically infected with Mycobacterium tuberculosis. Clin Vaccine Immunol.
    78. Ngai, P., et al., Gamma interferon responses of CD4 and CD8 T-cell subsets are quantitatively different and independent of each other during pulmonary Mycobacterium bovis BCG infection. Infect Immun,2007.75(5):p.2244-52.
    79. Flynn, J.L. and J. Chan, Immunology of tuberculosis. Annu Rev Immunol,2001. 19:p.93-129.
    80. Woodland, D.L. and J.E. Kohlmeier, Migration, maintenance and recall of memory T cells in peripheral tissues. Nat Rev Immunol,2009.9.(3):p.153-61.
    81. Gebhardt, T., et al., Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol,2009.10(5):p.524-30.
    82. Orme, I.M., P. Andersen, and W.H. Boom, T cell response to Mycobacterium tuberculosis. J Infect Dis,1993.167(6):p.1481-97.
    83. Bevan, M.J., Immunology:remembrance of things past. Nature,2002. 420(6917):p.748-9.
    84. Ordway, D., et al., Influence of Mycobacterium bovis BCG vaccination on cellular immune response of guinea pigs challenged with Mycobacterium tuberculosis. Clin Vaccine Immunol,2008.15(8):p.1248-58.
    85. Mittrucker, H.W., et al., Poor correlation between BCG vaccination-induced T cell responses and protection against tuberculosis. Proc Natl Acad Sci U S A, 2007.104(30):p.12434-9.
    86. Irwin, S.M., et al., Tracking antigen-specific CD8 T lymphocytes in the lungs of mice vaccinated with the Mtb72F polyprotein. Infect Immun,2005; 73(9):p. 5809-16.
    87. Begum, D., et al., Accelerated induction of mycobacterial antigen-specific CD8+ T cells in the Mycobacterium tuberculosis-infected lung by subcutaneous vaccination with Mycobacterium bovis bacille Calmette-Guerin. Immunology, 2009.128(4):p.556-63.
    88. Idzko, M., et al, Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function. J Clin Invest,2006. 116(11):p.2935-44.
    89. Cai, Y., J. Zhou, and D.C.Webb, Treatment of mice with fenbendazole attenuates allergic airways inflammation and Th2 cytokine production in a model of asthma. Immunol Cell Biol,2009.87(8):p.623-9.
    90. van Rijt, L.S., et al., Airway eosinophils accumulate in the mediastinal lymph nodes but lack antigen-presenting potential for naive T cells. J Immunol,2003. 171(7):p.3372-8.
    91. Orme, I.M., Evidence for a biphasic memory T-cell response to high dose BCG vaccination in mice. Tubercle,1988.69(2):p.125-31.
    92. Orme, I.M. and F.M. Collins, Aerogenic vaccination of mice with Mycobacterium bovis BCG. Tubercle; 1986.67(2):p.133-40.
    93. Barker, L.F., et al., Tuberculosis vaccine research:the impact of immunology. Curr Opin Immunol,2009.21(3):p.331-8.
    94. Winslow, G.M., et al., Early T-cell responses in tuberculosis immunity. Immunol Rev,2008.225:p.284-99.
    95. Ryan, A.A., et al., Antigen load governs the differential priming of CD8 T cells in response to the bacille Calmette Guerin vaccine or Mycobacterium tuberculosis infection. J Immunol,2009.182(11):p.7172-7.
    96. Gonzalez-Juarrero, M. and I.M. Orme, Characterization of murine lungs dendritic cells infected with Mycobacterium tuberculosis. Infect Immun,2001. 69(2):p.1127-33.
    97. Marino, S., et al., Dendritic cell trafficking and antigen presentation in the human immune response to Mycobacterium tuberculosis. J Immunol,2004. 1.73(1):p.494-506.
    98. Tokoyoda, K., et al., Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity,2009.30(5):p.721-30.
    99. Mathurin, K.S., et al., CD4 T-cell-mediated heterologous immunity between mycobacteria and poxviruses. J Virol,2009.83(8):p.3528-39.
    100. Peng, M.Y., et al., Interleukin 17-producing gamma delta T cells increased in patients with active pulmonary tuberculosis. Cell Mol Immunol,2008.5(3):p. 203-8.
    101. Kaufman, D.R., et al., Trafficking of antigen-specific CD8+ T lymphocytes to mucosal surfaces following intramuscular vaccination. J Immunol,2008.181(6): p.4188-98.
    102. Tatsis, N., et al., Multiple immunizations with adenovirus and MVA vectors improve CD8+ T cell functionality and mucosal homing. Virology,2007.367(1): p:156-67.
    103. Choi, I.S. and Y.I. Koh, Effects of BCG revaccination on asthma. Allergy,2003. 58(11):p.1114-6.
    104. Schreiber, T., et al., Autocrine IL-10 induces hallmarks of alternative activation in macrophages and suppresses antituberculosis effector mechanisms without compromising T cell immunity. J Immunol,2009.183(2):p.1301-12.
    105. Flynn, J.L. and J. Chan, Tuberculosis:latency and reactivation. Infect Immun, 2001.69(7):p.4195-201.
    106. Kunkel, E.J. and E.C. Butcher, Chemokines and the tissue-specific migration of lymphocytes. Immunity,2002.16(1):p.1-4.
    107. Campbell, D.J., C.H. Kim, and E.C. Butcher, Chemokines in the systemic organization of immunity, Immunol Rev,2003.195:p.58-71.
    108. Palma, C., et al., The Ag85B protein of Mycobacterium tuberculosis may turn a protective immune response induced by Ag85B-DNA vaccine into a potent but non-protective Thl immune response in mice. Cell Microbiol,2007.9(6):p. 1455-65.
    109. Romano, M., et al., Priming but not boosting with plasmid DNA encoding mycolyl-transferase Ag85A from Mycobacterium tuberculosis increases the survival time of Mycobacterium bovis BCG vaccinated mice against low dose intravenous challenge with M. tuberculosis H37Rv. Vaccine,2006.24(16):p. 3353-64.
    110. Johnson, L., et al., Immunohistochemical markers augment evaluation of vaccine efficacy and disease severity in bacillus Calmette-Guerin (BCG) vaccinated cattle challenged with Mycobacterium bovis. Vet Immunol Immunopathol,2006.111(3-4):p.219-29.
    111. Xie, J.H., et al., Antibody-mediated blockade of the CXCR3 chemokine receptor results in diminished recruitment of T helper 1 cells into sites of inflammation. J Leukoc Biol,2003.73(6):p.771-80.
    112. Hancock, W.W., et al., Requirement of the chemokine receptor CXCR3 for acute allograft rejection. J Exp Med,2000. 92(10):p.1515-20.
    113. Kohlmeier, J.E., et al., CXGR3 directs antigen-specific effector CD4+ T cell migration to the lung during parainfluenza virus infection. J Immunol,2009. 183(7):p.4378-84.
    114. Thomas, S.Y., et al., Multiple chemokine receptors, including CCR6 and CXCR3, regulate antigen-induced T cell homing to the human asthmatic airway. J Immunol,2007.179(3):p.1901-12.
    115. Serbina, N.V. and J.L. Flynn,CD8(+) T cells participate in the memory immune response to Mycobacterium tuberculosis. Infect Immun,2001.69(7):p.4320-8.
    116. Sung, S., C.E. Rose, and S.M. Fu, Intratracheal priming with ovalbumin- and ovalbumin 323-339 peptide-pulsed dendritic cells induces airway hyperresponsiveness, lung eosinophilia, goblet cell hyperplasia, and inflammation.J Immunol,2001.166(2):p.1261-71.
    117. Masopust, D., et al., Activated primary and memory CD8 T cells migrate to nonlymphoid tissues regardless of site of activation or tissue of origin. J Immunol,2004.172(8):p.4875-82.
    1 Castellino F, Germain RN. Cooperation between CD4+ and CD8+ T cells:when, where, and how. Annu Rev Immunol,2006,24 (1):519-540.
    2 Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol,2005,6 (11):1133-1141.
    3 Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol,2005,6 (11):1123-1132.
    4 Wraith DC, Nicolson KS, Whitley NT.Regulatory CD4+ T cells and the control of autoimmune disease. Curr Opin Immunol,2004,16 (6):695-701.
    5 Harrington LE, Mangan PR, Weaver CT. Expanding the effector CD4 T-cell repertoire:the Th17 lineage.Curr Opin Immunol,2006,18 (3):349-356.
    6 Coffman RL. Origins of the T(H)1-T(H)2 model:a personal perspective. Nat Immunol,2006,7(6):539-541.
    7 Nakajima H., Takamori H., Hiyama Y, et al. The effect of treatment with recombinant gamma-interferon on adjuvant-induced arthritis in rats. Agents Actions,1991,34(1-2):63-65.
    8 Ferber IA, Brocke S, Taylor-Edwards C, et al. Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol,1996,156(1):5-7.
    9 Cua DJ, Sherlock J, Chen Y, et al.Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003, 421(6924):744-748.
    10 Zhang GX, Gran B, Yu S, et al. Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-beta 2-deficient mice:IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system. J Immunol,2003,170(4):2153-2160.
    11 Nakae S, Nambu A, Sudo K, et al. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol,2003,171(11): 6173-6177.
    12 Koenders MI, Lubberts E, Oppers-Walgreen B, et al. Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1. Am J Pathol,2005,167(1) 141-149.
    13 Koenders MI, Lubberts E, Oppers-Walgreen B, et al. Induction of cartilage damage by overexpression of T cell interleukin-17A in experimental arthritis in mice deficient in interleukin-1. Arthritis Rheum,2005,52(3):975-983.
    14 Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med,2005, 201(2):233-40.
    15 Weaver CT, Harrington LE, Mangan PR, et al. Th17:an effector CD4 T cell lineage with regulatory T cell ties. Immunity,2006,24(6):677-688.
    16 Wright JF, Guo Y, Quazi A, et al. Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells. J Biol Chem,2007, 282(18):13447-1355.
    17 McAllister F, Henry A, Kreindler JL, et al. Role of IL-17 A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-alpha and granulocyte colony-stimulating factor in bronchial epithelium:implications for airway inflammation in cystic fibrosis. J Immunol,2005,175(1):404-412.
    18 Komiyama YS, Nakae S, Matsuki T, et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol,2006, 177(1):566-573.
    19 Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature,2006, 441(7090):235-238.
    20 Mangan PR, Harrington LE, O'Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature,2006,441 (7090):231-234.
    21 Veldhoen M, Hocking RJ, Atkins CJ,et al. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells.Immunity,2006,24(2):179-189.
    22 Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem, 2003,278(3):1910-1914.
    23 Kubo T, Hatton RD, Oliver J, et al. Regulatory T cell suppression and anergy are differentially regulated by proinflammatory cytokines produced by TLR-activated dendritic cells. J Immunol,2004, 173(12):7249-7258.
    24 Ivanov II, McKenzie BS, Zhou L,et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+T helper cells. Cell, 2006,126(6):1121-1133.
    25 Fantini MC, Rizzo A, Fina D,et al. IL-21 regulates experimental colitis by modulating the balance between Treg and Th17 cells. Eur J Immunol,2007, 37(11):3155-3163.
    26 Hirota K, Hashimoto M, Yoshitomi H,et al. T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17+ Th cells that cause autoimmune arthritis. J Exp Med,2007,204(1):41-47.
    27 Wong CK, Ho CY, Li EK, et al. Elevation of proinflammatory cytokine(IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus, 2000,9(8):589-593.
    28 Yoshida S, Haque A, Mizobuchi T,et al. Anti-type V collagen lymphocytes that express IL-17 and IL-23 induce rejection pathology in fresh and well-healed lung transplants. Am J Transplant,2006; 6(4):724-735.
    29 Ferretti S, Bonneau O, Dubois GR, et al. IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharideinduced airway neutrophilia:IL-15 as a possible trigger. J Immunol,2003, 170:(4):2106-2112.
    30 Chen Y, Thai P, Zhao YH, et al. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J Biol Chem,2003,278 (19):17036-1743.
    31 Duerr RH, Taylor KD, Brant SR, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science,2006,314(5804): 1461-1463.
    32 Fossiez F, Banchereau J, Murray R, et al. Interleukin-17. Int Rev Immunol,1998, 16(5-6):541-551.
    33 McKenzie BS, Kastelein RA, Cua DJ. Understanding the IL-23-IL-17 immune pathway. Trends Immunol,2006,27(1):17-23.
    34 Happel KI, Dubin PJ, Zheng M, et al. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J Exp Med,2005,202(6):761-769.
    35 Chung DR, Kasper DL, Panzo RJ, et al. CD4+ T cells mediate abscess formation in intra-abdominal sepsis by an IL-17-dependent mechanism. J Immunol,2003, 170(8):1958-1963.
    36 Infante-Duarte C, Horton HF, Byrne MC, et al. Microbial lipopeptides induce the production of IL-17 in Th cells. J Immunol,2000,165(11):6107-6115.
    37 Veldhoen M, Hocking RJ, Flavell RA, et al. Signals mediated by transforming growth factor-b initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat Immunol,2006,7(11):1151-1156.
    38 Wahl SM. Transforming growth factor beta:the good, the bad, and the ugly. J Exp Med,1994,180(5):1587-1590.
    1 Vignali D. How many mechanisms do regulatory T cells need? Eur J Immunol. 2008 Apr;38(4):908-911
    2 Khattri R, Cox T, Yasayko SA, et al. An essential role for Scurfin in CD4+ CD25+ T regulatory cells. Nat Immunol 2003; 4(4):337-342.
    3 Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299(5609):1057-1061.
    4 Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4(4):330-336.
    5 Fontenot JD, Rasmussen JP, Williams LM, et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005; 22(3):329-341.
    6 Sojka DK, Huang YH, Fowell DJ. Mechanisms of regulatory T-cell suppression-a diverse arsenal for a moving target. Immunology.2008 May; 124(1):13-22.
    7 Bopp T, Becker C, Klein M, et al. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J Exp Med.2007; 204(6):1303-1310.
    8 Zhao DM, Thornton AM, DiPaolo RJ, et al. Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood.2006; 107(10):3925-3932.
    9 Pandiyan P, Zheng L, Ishihara S, et al. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol.2007; 8(12):1353-1362.
    10 Bresson D, Togher L, Rodrigo E, et al. Anti-CD3 and nasal proinsulin combination therapy enhances remission from recent-onset autoimmune diabetes by inducing Tregs. J Clin Invest.2006; 116(5):1371-1381.
    11 Tarbell KV, Petit L, Zuo X, et al. Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J Exp Med.2007; 204(1):191-201.
    12 Zheng SG, Wang J, Wang P, et al. IL-2 is essential for TGF-beta to convert naive CD4+CD25- cells to CD25+Foxp3+ regulatory T cells and for expansion of these
    cells. J Immunol.2007; 178(4):2018-2027.
    13 Tang Q, Adams JY, Tooley AJ, et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol.2006; 7(1):83-92.
    14 Hubert P, Jacobs N, Caberg JH, et al. The cross-talk between dendritic and regulatory T cells:good or evil? J Leukoc Biol.2007; 82(4):781-794.
    15 Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med.2000; 192(2):295-302.
    16 Huang CT, Workman CJ, Flies D, et al. Role of LAG-3 in regulatory T cells. Immunity.2004; 21(4):503-513.
    17 Tang Q, Bluestone JA. The Foxp3+ regulatory T cell:a jack of all trades, master of regulation. Nat Immunol.2008; 9(3):239-244.
    18 Deaglio S, Dwyer KM, Gao W, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 2007; 204(6):1257-1265.
    19 Collison LW, Workman CJ, Kuo TT, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature.2007; 450(7169):566-569.
    20 Scheffold A, Murphy KM, Hofer T. Competition for cytokines:T(reg) cells take all. Nat Immunol.2007;8(12):1285-1287
    21 Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med.2001; 194(5):629-644.
    22 Li MO, Sanjabi S, Flavell RA. Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and-independent mechanisms. Immunity.2006; 25(3):455-471.
    23 Nocentini G, Giunchi L, Ronchetti S, et al. A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis. Proc Natl Acad Sci U S A.1997; 94(12):6216-6221.
    24 Fallarino F, Grohmann U, Hwang KW, et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol.2003; 4(12):1206-1212.
    25 Minguet S, Huber M, Rosenkranz L, et al. Adenosine and cAMP are potent
    inhibitors of the NF-kappa B pathway downstream of immunoreceptors. Eur J Immunol.2005;35(1):31-41
    26 Hershfield MS. New insights into adenosine-receptor-mediated immunosuppression and the role of adenosine in causing the immunodeficiency associated with adenosine deaminase deficiency. Eur J Immunol.2005; 35(1):25-30.
    27 Liang B, Workman C, Lee J, et al. Regulatory T Cells Inhibit Dendritic Cells by Lymphocyte Activation Gene-3 Engagement of MHC Class II. J Immunol. 2008; 180(9):5916-5926.
    28 Ronchetti S, Nocentini G, Bianchini R,et al. Glucocorticoid-induced TNFR-related protein lowers the threshold of CD28 costimulation in CD8+ T cells. J Immunol. 2007 Nov 1;179(9):5916-26.
    29 Hawrylowicz CM, O'Garra A. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol.2005; 5(4):271-283.
    30 Kearley J, Barker JE, Robinson DS, et al. Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4+CD25+ regulatory T cells is interleukin 10 dependent. J Exp Med.2005; 202(11):1539-1547.
    31 Horwitz DA. Transforming growth factor-beta:taking control of T cells' life and death. Immunity.2006;25(3):399-401.
    32 Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med.2007; 204(8):1757-1764.
    33 de la Rosa M, Rutz S, Dorninger H, et al. Interleukin-2 is essential for CD4+CD25+ regulatory T cell function.Eur J Immunol.2004; 34(9):2480-2488.
    34 Selvaraj RK, Geiger TL. Mitigation of Experimental Allergic Encephalomyelitis by TGF-[9] Induced Foxp3+ Regulatory T Lymphocytes through the Induction of Anergy and Infectious Tolerance. J Immunol.2008; 180(5):2830-2838.
    35 Izcue A, Coombes JL, Powrie F. Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol Rev.2006; 212:256-271.
    36 Tang Q, Boden EK, Henriksen KJ, et al. Distinct roles of CTLA-4 and TGF-beta in
    CD4+CD25+ regulatory T cell function. Eur J Immunol.2004; 34(11):2996-3005.
    37 Read S, Greenwald R, Izcue A,et al. Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J Immunol.2006; 177(7):4376-483.
    38 Belkaid Y, Blank RB, Suffia I. Natural regulatory T cells and parasites:a common quest for host homeostasis. Immunol Rev.2006; 212:287-300.
    39 Cohen IR. Real and artificial immune systems:computing the state of the body. Nat Rev Immunol.2007;7(7):569-574.