CD4~+CD25~+调节性T细胞表面α7烟碱型乙酰胆碱受体下游信号通路JAK3-STAT5的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:淋巴细胞具有独立的胆碱能系统,包括乙酰胆碱(Ach)、胆碱乙酰基转移酶(ChAT)、乙酰胆碱酯酶(AChE)、M型乙酰胆碱受体(mAChR)和N型乙酰胆碱受体(nAChR).小鼠胸腺中未成熟的T淋巴细胞、大鼠脾脏CD3+T淋巴细胞和多种T细胞株均表达α7烟碱型乙酰胆碱受体(a7nAChR),且此受体在胆碱能抗炎通路中也发挥重要作用。前期研究证实小鼠CD4+CD25+调节性T细胞(Treg)表面表达a7nAChR,且激活该受体可以增强CD4+CD25+Treg的免疫抑制功能。本实验对CD4+CD25+Treg中a7nAChR与JAK3-STAT5信号通路之间的关系进行了进一步的研究。
     方法:1.采用免疫磁珠法分选正常C57BL/6J小鼠脾脏CD4+CD25+Treg,流式细胞术鉴定CD4+CD25+Treg的纯度,台盼蓝染色鉴定其活性;2.a7nAChR激动剂烟碱、受体特异性拮抗剂α-银环蛇毒预处理Treg后,与CD4+CD25-T细胞共培养,使用MTT法检测CD4+CD25-T细胞的增殖变化情况;3.通过激光共聚焦、Western blot技术检测CD4+CD25+Treg细胞表面a7nAChR下游相关信号通路蛋白JAK3及STAT5的表达情况;4.同样方法采用烟碱及α-银环蛇毒预处理CD4+CD25+Treg后,通过Western blot法检测细胞中JAK3及STAT5蛋白的表达变化情况。
     结果:1.免疫磁珠法分选得到的CD4+CD25+Treg细胞纯度在90%以上,台盼蓝染色显示细胞活性大于97%。2.MTT检测显示10μmol/L烟碱刺激可增强Treg细胞对CD4+CD25-T细胞的抑制效应,1μmol/Lα-银环蛇毒单独作用、烟碱与α-银环蛇毒联合作用Treg细胞后,与对照组(未处理Treg细胞)相比Treg细胞的免疫抑制功能无明显变化。3.激光共聚焦荧光检测分析显示,CD4+CD25+Treg胞浆中存在JAK3、STAT5蛋白及其磷酸化形式p-JAK3、p-STAT5。同一视野下,CD4+CD25+Treg在495nm激光激发下,细胞表面的CD25-PE发出橙色荧光,胞浆中FITC二抗间接标记的JAK3、p- JAK3、STAT5和p-STAT5发出绿色荧光,软件叠加后图片显示为橘黄色荧光。Western blot技术进一步在蛋白水平检测CD4+CD25+Treg内存在JAK3、p- JAK3、STAT5和p-STAT5表达,其分子量分别为106kD、106kD、92kD和94kD。4.烟碱处理后,CD4+CD25+Treg上a7nAChR下游信号通路p-JAK3及p-STAT5蛋白表达增高,α-银环蛇毒单独作用、烟碱与α-银环蛇毒联合作用Treg细胞后,上述两蛋白水平无显著改变。
     结论:1.激活a7nAChR,可以增强CD4+CD25+Treg细胞对CD4+CD25-T细胞的免疫抑制效应。2.CD4+CD25+Treg细胞存在JAK3. p- JAK3. STAT5和P-STAT5表达。3.烟碱可以增强p- JAK3和P-STAT5表达,a7nAChR特异性拮抗剂可以逆转该效应。
Objectives:Lymphocytes have their own independent cholinergic system, which includes acetylcholine (ACh), choline acetylase (ChAT), acetylcholinesterase (AChE), muscarinic ACh receptor (mAChR) and nicotinic ACh receptor (nAChR). The a7 nicotinic acetylcholine receptor (a7nAChR) that plays an important role in the cholinergic anti-inflammtory pathway is expressed by the immature T lymphocytes in mouse thymus gland, CD3 positive T cell in rat spleen and multiple T cell strains. Former study has confirmed that mouse CD4+CD25+ regulatory T cell (Treg) expressed a7nAChR on its surface, and activation of this receptor could enhance the suppressive function of Treg on other kinds of immune cells. The present study investigated the association between a7nAChR and the JAK3-STAT5 signaling pathway in mouse CD4+CD25+ Treg.
     Methods:1. CD4+CD25+ regulatory T cells from the spleen of C57BL/6J mice were separated by means of MACS microbeads and then identified for purity and activity using flow cytometry and trypan blue staining; 2. Pretreating these cells with nicotine (agonist of a7nAChR) and a-bungarotoxin (receptor's specific antagonist), then we co-cultured them with CD4+CD25- T cells whose proliferative situation was then assessed by MTT assay; 3. Treg cells were tested for the expression of signaling pathway protein JAK3 and STAT5 through confocal microscopy and western blotting; 4. Similarly pretreating CD4+CD25+ Treg cells with nicotine and a-bungarotoxin, we evaluated the expression changes of JAK3 and STAT5 protein with western blot test.
     Results:1. The purity of the separated CD4+CD25+ Treg cells was above 90% and more than 97% of which were alive; 2. MTT assay showed that Treg cells which were treated with 10μmol/L nicotine had higher suppressive effect on CD4+CD25- T cells' proliferation compared with control group (untreated Treg cells), and Tregs which were treated with 1μmol/L a-bungarotoxin alone or with nicotine and a-bungarotoxin co-administration had no such effect; 3. Confocal microscopy assay showed that there were JAK3, STAT5, p-JAK3 and p-STAT5 proteins expressed in the cytoplasm of CD4+CD25+ Treg. Furthermore, Western blot test got protein strips of JAK3, STAT5, p-JAK3 and p-STAT5 whose molecular weight were 106kD,106kD,92kD and 94kD respectively in Treg cell's gross protein extracts; 4. Pretreated with nicotine, CD4+CD25+ Treg cells expressed more p-JAK3 and p-STAT5 proteins than untreated ones, but a-bungarotoxin alone or nicotine and a-bungarotoxin co-administration treatment had no such effect mentioned above.
     Conclusions:1. The results suggest that activation of a7nAChR may enhance the immunosuppressive function of CD4+CD25+ Treg cells; 2. It is found that JAK3, p-JAK3, STAT5 and p-STAT5 proteins be expressed in CD4+CD25+ Treg cells.3. Nicotine may enhance the expression of p- JAK3 and p-STAT5 in Treg cells, however, such effect can be reversed by the specific antagonist of a7nAChR a-bungarotoxin.
引文
[1] Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity, 2009,30(5): 636-645.
    [2] Jiang S, Lechler RI. CD4+CD25+ regulatory T-cell therapy for allergy, autoimmune disease and transplant rejection. Inflamm Allergy Drug Targets, 2006, 5(4): 239-342.
    [3] Venet F, Chung CS, Monneret G, et al. Regulatory T cell populations in sepsis and trauma. J Leukoc Biol, 2008,83(3): 523-535.
    [4] Nizar S, Copier J, Meyer B, et al. T-regulatory cell modulation: the future of cancer immunotherapy. Br J Cancer, 2009,100(11): 1697-1703.
    [5] de Rezende LC, Silva IV, Rangel LB, Guimaraes MC. Regulatory T cell as a target for cancer therapy. Arch Immunol Ther Exp (Warsz), 2010, 58(3): 179-190.
    [6] Jager A, Kuchroo VK. Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation. Scand J Immunol, 2010,72(3): 173-184.
    [7] William R Parrish,Mauricio Rosas-Ballina, Margot Gallowitsch-Puerta, et al. Modulation of TNF Release by Choline Requires α7 Subunit Nicotinic
    
    Acetylcholine Receptor-Mediated Signaling. M O LM E D,2008,l4(9-10) 567-54.
    [8] Mauricio Rosas-Ballina, Mahendar Ochani, William R. Parrish, et al.Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci USA. 2008,5,105(31):11008-13.
    [1]Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol,1995,155(3):1151-1164.
    [2]Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity,2009,30(5):636-645.
    [3]Jiang S, Lechler RI. CD4+CD25+ regulatory T-cell therapy for allergy, autoimmune disease and transplant rejection. Inflamm Allergy Drug Targets, 2006,5(4):239-342.
    [4]Venet F, Chung CS, Monneret G, et al. Regulatory T cell populations in sepsis and trauma. J Leukoc Biol,2008,83(3):523-535.
    [5]Nizar S, Copier J, Meyer B, et al. T-regulatory cell modulation:the future of cancer immunotherapy. Br J Cancer,2009,100(11):1697-1703.
    [6]de Rezende LC, Silva IV, Rangel LB, Guimaraes MC. Regulatory T cell as a target for cancer therapy. Arch Immunol Ther Exp (Warsz),2010,58(3): 179-190.
    [7]Jager A, Kuchroo VK. Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation. Scand J Immunol,2010,72(3):173-184.
    [8]Mallat Z, Ait-Oufella H, Tedgui A. Regulatory T cell responses:potential role in the control of atherosclerosis. Curr Opin Lipidol,2005,16(5):518-524.
    [9]Tang Q, Bluestone JA. Regulatory T-cell physiology and application to treat autoimmunity. Immunol Rev,2006,212:217-237.
    [10]Mallat Z, Ait-Oufella H, Tedgui A. Regulatory T-cell immunity in atherosclerosis. Trends Cardiovasc Med,2007,17(4):113-118.
    [11]Schwartz M, Kipnis J. Therapeutic T cell-based vaccination for neurodegenerative disorders:the role of CD4+CD25+ regulatory T cells. Ann N Y Acad Sci,2005,1051:701-708.
    [12]Imada K, Leonard WJ. The Jak-STAT pathway. Mol Immunol,2000,37(1-2): 1-11.
    [13]Burchill MA, Yang J, Vogtenhuber C, et al. IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol,2007,178(1):280-290.
    [14]Antov A, Yang L, Vig M, Baltimore D, Van Parijs L. Essential role for STAT5 signaling in CD25+CD4+ regulatory T cell homeostasis and the maintenance of self-tolerance. J Immunol,2003,171(7):3435-41.
    [15]Zorn E, Nelson EA, Mohseni M, et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood,2006,108(5): 1571-1579.
    [16]Zhang L, Zhao Y. The regulation of Foxp3 expression in regulatory CD4(+)CD25(+)T cells:multiple pathways on the road. J Cell Physiol,2007, 211(3):590-597.
    [17]Murawski MR, Litherland SA, Clare-Salzler MJ, et al. Upregulation of Foxp3 expression in mouse and human Treg is IL-2/STAT5 dependent:implications for the NOD STAT5B mutation in diabetes pathogenesis. Ann N Y Acad Sci. 2006,1079:198-204.
    [18]Tsuji-Takayama K, Suzuki M, Yamamoto M, et al. IL-2 activation of STAT5 enhances production of IL-10 from human cytotoxic regulatory T cells, HOZOT. Exp Hematol,2008,36(2):181-192.
    [1]Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity.2009.30(5):636-45.
    [2]Jiang S, Lechler RI. CD4+CD25+ regulatory T-cell therapy for allergy, autoimmune disease and transplant rejection. Inflamm Allergy Drug Targets. 2006.5(4):239-42.
    [3]Venet F, Chung CS, Monneret G, et al. Regulatory T cell populations in sepsis and trauma. J Leukoc Biol.2008.83(3):523-35.
    [4]Nizar S, Copier J, Meyer B, et al. T-regulatory cell modulation:the future of cancer immunotherapy. Br J Cancer.2009.100(11):1697-703.
    [5]de Rezende LC, Silva IV, Rangel LB, Guimaraes MC. Regulatory T cell as a target for cancer therapy. Arch Immunol Ther Exp (Warsz).2010.58(3): 179-90.
    [6]Jager A, Kuchroo VK. Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation. Scand J Immunol.2010.72(3):173-84.
    [7]Tang Q, Bluestone JA. Regulatory T-cell physiology and application to treat autoimmunity. Immunol Rev.2006.212:217-37.
    [8]Imada K, Leonard WJ. The Jak-STAT pathway. Mol Immunol.2000.37(1-2): 1-11.
    [9]Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA. IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol.2007.178(1):280-90.
    [10]Antov A, Yang L, Vig M, Baltimore D, Van Parijs L. Essential role for STAT5 signaling in CD25+CD4+ regulatory T cell homeostasis and the maintenance of self-tolerance. J Immunol.2003.171(7):3435-41.
    [11]Zorn E, Nelson EA, Mohseni M, et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood.2006.108(5):1571-9.
    [12]Zhang L, Zhao Y. The regulation of Foxp3 expression in regulatory CD4(+)CD25(+)T cells:multiple pathways on the road. J Cell Physiol.2007. 211(3):590-7.
    [13]Murawski MR, Litherland SA, Clare-Salzler MJ, Davoodi-Semiromi A. Upregulation of Foxp3 expression in mouse and human Treg is IL-2/STAT5 dependent:implications for the NOD STAT5B mutation in diabetes pathogenesis. Ann N Y Acad Sci.2006.1079:198-204.
    [14]Tsuji-Takayama K, Suzuki M, Yamamoto M, et al. IL-2 activation of STAT5 enhances production of IL-10 from human cytotoxic regulatory T cells, HOZOT. Exp Hematol.2008.36(2):181-92.
    [15]de Jonge WJ, der Zanden EP v, The FO, et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol.2005.6(8):844-51.
    [16]De Simone R, Ajmone-Cat MA, Carnevale D, Minghetti L. Activation of alpha7 nicotinic acetylcholine receptor by nicotine selectively up-regulates cyclooxygenase-2 and prostaglandin E2 in rat microglial cultures. J Neuroinflammation.2005.2(1):4.
    [17]Shytle RD, Mori T, Townsend K, et al. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem.2004.89(2):337-43.
    [18]Wang DW, Zhou RB, Yao YM, et al. Stimulation of{alpha}7 nicotinic acetylcholine receptor by nicotine increases suppressive capacity of naturally occurring CD4+CD25+ regulatory T cells in mice in vitro. J Pharmacol Exp Ther. 2010.335(3):553-61.
    [1]Perl M, Chung CS, Gather M, et al. Contribution of anti-inflammatory/immune suppressive processes to the patholocy of sepsis[J]. Front Biosci,2006,11:272-299.
    [2]Ochs HD, Oukka M, Torgerson TR. Th17 cells and regulatory T cells in primary immunodeficiency diseases[J]. J Allergy Clin Immunol,2009,123(5):977-983.
    [3]Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25):breakdowd of a single mechanism of self tolerance causes various autoimmune diseases[J]. J Immunol, 1995,155(3):1151-1164.
    [4]Chatila T. A Role of regulatory T cells in human diseases[J]. J Allergy Clin Immunol,2005,116(5):949-959.
    [5]Wakkach A, Fournier N, Brun V, et al. Regulatory dendritic cells that induce tolerance and T regulatory 1 cells differentiation in vivo[J]. Immunity.2003,18(5): 605-617.
    [6]张莹,姚咏明,常青,等.不同细胞刺激剂对小鼠调节性T细胞功能活化的影 响[J].中国危重病急救医学,2007,19(3):142-145.
    [7]Lai J, Bromberg JS. Epigenetic mechanisms of regulation of FOXP3 expression[J]. Blood,2009,114(18):3727-3735.
    [8]Cohen AC, Nadeau KC, Tu W, et al. Decreased accumulation and regulatory function of CD4+CD25(high) T cells in human STAT5b deficiency J]. J Immunol,2006, 177(5):2110-2114.
    [9]Lanrence A, Tato CM, Davidson TS, et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation[J]. Immunity,2007,26(3):371-381.
    [10]Becker C, Fantini MC, Neurath MF. TGF-beta as a T cell regulator in colitis and colon cancer[J]. Cytokine Growth Factor Rev,2006,17(1-2):97-106.
    [11]张莹,姚咏明,董宁,等.高迁移率族蛋白B1对小鼠调节性T细胞抑制性相关分子表达的影响[J].中华实验外科杂志,2007,24(5):616-618.
    [12]Korn T, Bettelli E, Oukka M., et al. IL-17 and Th17 cells[J]. Annu Rev Immunol, 2009,27:485-517.
    [13]Manel N, Unutmaz D, Littman DR.The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear recepter ROR gammat[J]. Nat Immunol,2008,9(6):641-649.
    [14]Hansen G, Berry G, DeKruyff RH, et al. Allergen-specific Th1 cells fail to counterbalance Th2 cell-induced airway hyperreacitivity but cause severe airway inflammation[J]. J Clin Invest,1999,103(2):175-183.
    [15]胡斯明,罗雅玲,赖文岩,等.调节性T细胞/Th17在支气管哮喘小鼠气道炎症过程中的变化[J].中国现代医学杂志,2009,19(19):2881-2888.
    [16]Murad YM, Clay TM, Lyerly HK, et al. CPG-7909 (PF-3512676, ProMune): Toll-like receptor-9 agonists in cancer therapy[J]. Expert Opin Biol Ther,2007,7(8): 1257-1266.
    [17]Wingender G, Garbi N, Schumark B, et al. Systemic application of CPG-rich DNA suppresses adaptive T cell immunity via induction of IDO[J]. Eur J Immunol, 2006,36(1):12-20.
    [18]Mellor AL, Baban B, Chandler PR, et al. Cutting edge:CpG oligonucleotides induce splenic CD19+ dendritic cells to acquire poment indoleamine 2,3-dioxygenase-dependent T cell regulatory functions via IFN Typel signaling[J]. J Immunol,2005,175(9):5601-5605.
    [19]姚咏明.免疫功能紊乱在脓毒症发病中的作用及意义[J].中国危重病急救医学,2007,19(3):138-141.
    [20]Mosmann TR, Coffman RL. TH1 and TH2 cells:different patterns of lymphokine secretion lead to different functional properties[J]. Annu Rev Immunol,1989,7: 145-173.
    [21]MacConmara MP, Maung AA, Fujimi S, et al. Increased CD4+CD25+ T regulatory cell activity in trauma patients depresses protective Thl immunity[J]. Ann Surg,2006,244(4):514-523.
    [22]姚咏明.关注调节性T细胞在脓毒症中的免疫学意义[J].中华急诊医学杂志,2009,18(2):117-119.
    [23]Bettlli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effctor Th17 and regulatory T cells[J]. Nature,2006, 441(7090):235-238.
    [24]Benjamim CF, Lundy SK, Lukacs NW, et al. Reversal of long trem sepsis-induced immunosuppression by dendritic cells[J]. Blood,2005,105(9):3588-3599.
    [25]艾宇航,姚咏明,戴新贵.脓毒症大鼠调节性T细胞凋亡对效应性T细胞增殖和分泌功能的影响及血必净注射液的干预作用[J].中华外科杂志,2009,47(1):58-61.
    [1]Chmmusos G P, Gold P W. The concepts of stress system disorders[J]. JAMA, 1992,267(9):1244-52.
    [2]Imada K, Leonard WJ. The Jak-STAT pathway. Mol Immunol,2000,37(1-2): 1-11.
    [3]Burchill MA, Yang J, Vogtenhuber C, et al. IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol, 2007,178(1):280-290.
    [4]Antov A, Yang L, Vig M, Baltimore D, Van Parijs L. Essential role for STAT5 signaling in CD25+CD4+ regulatory T cell homeostasis and the maintenance of self-tolerance. J Immunol,2003,171(7):3435-41.
    [5]Zorn E, Nelson EA, Mohseni M, et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood,2006,108(5):1571-1579.
    [6]Zhang L, Zhao Y. The regulation of Foxp3 expression in regulatory CD4(+)CD25(+)T cells:multiple pathways on the road. J Cell Physiol,2007,211(3): 590-597.
    [7]Murawski MR, Litherland SA, Clare-Salzler MJ, et al. Upregulation of Foxp3 expression in mouse and human Treg is IL-2/STAT5 dependent:implications for the NOD STAT5B mutation in diabetes pathogenesis. Ann N Y Acad Sci.2006,1079: 198-204.
    [8]Tsuji-Takayama K, Suzuki M, Yamamoto M, et al. IL-2 activation of STAT5 enhances production of IL-10 from human cytotoxic regulatory T cells, HOZOT. Exp Hematol,2008,36(2):181-192.
    [9]徐建国,刘继勇,胡晋红NF-kB信号通路基本元件调节机制研究进展[J].国际免疫学杂志,2009,32(5):349-54.
    [10]Song Lun, Shen Bei-fen. Molecular mechanism of IL-6 signal transduction[J]. Foreign Med Sci Immunology,1999,22(2):79-83.
    [11]王晶Foxp3调控机制研究进展[J].国际免疫学杂志,2008,31(6):471-73.
    [12]Campbell DJ, Ziegler SF. FOXF3 modifies the phenotypic and functional properties of regulatory T cells. Nat Rev Immunol,2007,7 (4):305-10
    [13]张莹,姚咏明,常青,等.不同细胞刺激剂对小鼠调节性T细胞功能活化的影响[J].中国危重病急救医学,2007,19(3):142-45.
    [14]Lai J, Bromberg JS. Epigenetic mechanisms of regulation of FOXP3 expression[J]. Blood,2009,114(18):3727-35.
    [15]Chatila TA,Blaeser F,Ho N,et al. JM2, encoding a fork head-related protein,is mutated in Xlinked autoimmunity- allergic disregulation syndrome[J]. J Clin invest 2001,107(2):155-7.
    [16]Cao XM, Koski RA,Gashler A,et al. Identification and characterization of the Egr-1 gene product,a DNA-binding zinc finger protein induced by differentiation and growth signals [J].Mol Cell Biol.1900,10(5):1931-9.
    [17]Santiago FS, Lowe HC, Day FL. Early growth response factor-1 induction by injury is triggered by release and paracrine activation by fibroblast growth factor-2[J].Exp Neurol,1999,160(2):348-60.
    [18]Glover JN, Harrison SC. Crystal structure of the heterodimeric bZIP transcription factor c-Fos-C-Jun bound to DNA[J]. Nature,1995,373(6511):257-61.
    [19]Wagner EF. Bone development and inflammatory disease is regulated by AP-1 (Fos/Jun)[J]. Ann Rheum Pis,2010,69 (Suppl 1):i86-88.
    [20]Ojima N, Yamashit M. Cloning and characterization of two distinct isoforms of rainbow trout heat shook factor 1. Evidenee for heterotrimer formation[J]. Eur. J. Bioohem,2004,271(4):703-12
    [21]Chakir H, Wang H, Lefebvre DE. T-bet/GATA-3 ratio as a measure of the Thl /Th2 eytokine profile in mixed cell populations:predominant role of GATA-3 [J]. J lmmunol Methods,2003,278(1-2):157-69.
    [22]Rengarajan J, Szabo SJ, Glimcher LH. Transcriptional regulation of Thl/Th2 polarization[J]. Immunol Today,2000,21(10):479-83.
    [23]Szabo SJ, Kim ST, Costa GL, et al. A novel transcription factor, T-bet, directs Thl lineage commitement[J]. Cell,2000,100(6):655-69.
    [24]Gorbaehev AV, Fairchild RL. CD40 engagement enhances antigen-presenting langerhans cell priming of IFN-gamma-producing CD40+ and CD80+T cells independently Of IL-12[J]. J lmmunol,2004,173(4):2443-52.
    [25]Montdeone I, Monteleone G, Del VBG, et al. Regulation of the T helper cell type 1 transcription factor T-bet in coeliac disease mucosa[J]. Gut,2004,53(8): 1090-95.
    [26]Nemeth ZH, Hadko G, Vizi ES. Pyrrolidine dithiocarbamate augments IL-10 inhibits TNF-,MIP-,IL-12, and nitric oxide propuction and protects from the lethal effect of endotoxin[J]. Shock,1998,10(1):49-53.
    [27]姚咏明,柴家科,林洪远.现代脓毒症论与实践[M].第1版,北京:科学出版社.2005:402-20.
    [28]解婧,王杰军.锌指蛋白A20与恶性肿瘤相关性研究的进展[J].临床肿瘤学杂志,2010,15(1):86-89.
    [29]Rothwarf DM, Zandi E, Natoli G, et al. IKK-gamma is an essential regulatory subunit of the IkappaB kinase cemplex[J]. Nature,1998,395(6699):297-300.
    [30]Roy S,Charboneau R., et al. Deficiency of the transcriptio factor c-fos increases lipopolysaccharide-induced macrophage interleukin 12 production[J]. Suygery,1999, 11(2):77-81.
    [31]姚咏明,盛志勇.脓毒症防治学[M].第一版,北京:科学技术文献出版社.2008:106-107
    [32]国华,梁华平,罗艳.创伤与核转录因子.创伤外科杂志[J].2002,4(2):121-3.
    [33]Eva L, Decker, Nina Nehmann, Eva Kampen. Early growth response proteins (EGR) and nuclear factors of activated T cells (NFAT) form heterodimers and regulate proin ammatory cytokine gene expression[J]. Nucleic Acids Research,2003, 13(3):911-21.
    [34]孙博,赵杰,刘鹏等.转录因子AP-1活性调节研究进展[J].中国综合临床,2008,24(13)116-117.
    [35]Kang JS, Yoon YD, Cho IJ, et al. Glabridin, an isoflavan from licorice root, inhibits inducible nitric—oxide synthase expression and improves survival of mice in experimental model of septic shock[J]. J Pharmacol Exp Ther,2005,312(3): 1187-94.
    [36]Lin L, Spoor MS, Gerth AJ, et al.Modulation of Thl aetivatian and inflammation by the NF-kappa B repressor Foxj1[J]. Science,2004,303(5660):1017-20.
    [37]Altavilla D. Saitta A, Guarini, et al. Nuclear factor kappaB as a target of cyckosporine acute hypovole hemorrhagic shock.[J] Cardiovasc Res,2001,52(2): 143-52.
    [38]Gadjeva M, Tomczak MF, Zhang M, Wang YY, Dull K, Rogers AB, et al. A role for NF-{kappa}B Subunits p50 and p65 in the inhibition of lipopolysaccharide-induced shock[J]. J Immunol 2004;173(9):5786-93.
    [39]Zafarullah M, Li WQ, Sylvester J, et al. Molecular mechanisms of N-acetylcysteine actions[J]. Cell Mol Life Sci,2003,60(1):6-20.
    [40]雷鹏,张卫民,贺建勋.N-乙酰半胱氨酸对大鼠颅脑损伤后ICAM-1和NF-KB表达的影响[J].创伤外科杂志,2008,10(6):537-40
    [41]Chen G, Shi J, Qi M, et al.Glutamine decreases intestinal nuclear factor kappa B activity and pro-inflammatory cytokine expression after traumaatic brain injury in rats[J]. Infomm Res,2008,57(2):57-64.