高糖诱导血管内皮功能障碍的分子机制及白藜芦醇的干预作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     流行病学资料显示,2型糖尿病患者发生动脉粥样硬化及心血管并发症较正常人增加3~4倍,80%的2型糖尿病患者死于心血管疾病。血管内皮功能障碍(endothelial dysfunction,ED)是动脉粥样硬化形成的早期始动环节,并且贯穿于动脉粥样硬化发生发展的全过程。高血糖可通过降低一氧化氮(nitric oxide,NO)生物利用度、增加活性氧(reactive oxygen species,ROS)积聚和抑制内皮依赖性血管舒张功能,导致严重的血管内皮功能障碍。通过干预措施来保护血管内皮功能,对于减少糖尿病患者动脉粥样硬化发病率和降低其致残致死率无疑具有重要的临床意义。
     白藜芦醇(Resveratrol),化学名为反式-3,5,4'-三羟基二苯乙烯,是一种天然存在于葡萄和红酒、桑椹、花生和虎杖中的多酚类化合物。其独特的抗氧化功效为心血管系统提供了广泛的保护作用。目前越来越多的证据证实白藜芦醇在对抗糖尿病、心血管疾病方面起着积极的作用。从一些细胞和动物层面的研究发现其在血糖控制、血管保护方面的作用可能与激活腺苷酸活化蛋白激酶(AMP-activated protein kinase, AMPK)有关。
     AMPK是近年发现的调控能量代谢的关键分子,作为细胞能量感受器在维持细胞能量稳态和适应性反应中扮演关键角色。不断积累的研究显示,AMPK不但是细胞能量感受器同时也是功能强大的效应器,通过磷酸化作用调控代谢的多个环节。虽然目前的研究对于阐明如何调节AMPK激活还很不完善,但已经明确AMPK可以通过影响细胞信号转导、代谢和基因表达,增加胰岛素敏感性和减少2型糖尿病的危害。越来越多的证据显示AMPK可能是联系代谢系统和循环系统的纽带。现有的研究已经证实AMPK对内皮型一氧化氮合酶(endothelial nitric oxide synthesis,eNOS)有激活效应,而且AMPK激活后对氧化应激有抑制作用。虽然目前已有关于白藜芦醇对糖尿病相关血管病变有保护作用的报道,但其准确的分子机制并未阐明。
     研究目地
     本研究以离体培养的人脐静脉内皮细胞(human umbilical vein endothelial cells ,HUVECs)及小鼠主动脉血管环为研究对象,应用Western blot、血管功能实验等方法,力图证实:
     1、白藜芦醇可促进培养HUVECs中的eNOS磷酸化激活、NO生成,抑制高糖诱导超氧阴离子增加,最终改善高糖诱导的内皮依赖性血管舒张功能障碍。
     2、白藜芦醇改善高糖诱导的血管内皮功能障碍的机制可能是通过激活AMPK。
     研究方法
     1、离体培养HUVECs,用不同浓度梯度及时间梯度的白藜芦醇干预,Western blot检测培养HUVECs中的eNOS蛋白含量以及磷酸化程度的变化,Griess法检测培养HUVECs中NO生成的变化。同时观察应用eNOS抑制剂L-NAME处理后,白藜芦醇对培养HUVECs中NO生成的影响。
     2、不同的蛋白酶抑制剂处理培养HUVECs后,Western blot检测白藜芦醇对eNOS蛋白含量及其磷酸化程度的影响;Griess法检测培养HUVECs中NO生成的变化。
     3、应用Western blot检测白藜芦醇以及高糖对AMPK、乙酰辅酶A羧化酶(acetyl coa carboxylase ,ACC)蛋白含量以及各自磷酸化程度的作用。同时,应用白藜芦醇干预高糖条件下的培养HUVECs,Western blot检测不同时相点AMPK、ACC蛋白含量以及各自磷酸化程度的变化。
     4、应用Griess法检测高糖对培养HUVECs中超氧阴离子产生的影响。并利用白藜芦醇干预高糖诱导的培养HUVECs,观察超氧阴离子产生的变化。再采用AMPK抑制剂复合物C(compound C,CC)处理,观察白藜芦醇对高糖诱导的培养HUVECs中超氧阴离子产生的变化的影响。
     5、以小鼠主动脉血管环为研究对象,应用血管功能实验检测不同浓度的白藜芦醇对苯肾上腺素(phenylephrine,PE)预收缩的血管环的舒张作用,并设立去内皮组、L-NAME组、吲哚美辛组和compound C组,对其作用的机制进行探讨。观察高糖对乙酰胆碱(Acetylcholine,Ach)诱导的血管舒张作用的影响,并用白藜芦醇及白藜芦醇加CC干预,观察白藜芦醇对高糖削弱Ach诱导的血管舒张作用的影响并探讨其机制。
     研究结果
     1、白藜芦醇孵育60min后,显著增加培养HUVECs中p-eNOS含量,并呈白藜芦醇浓度依赖关系;30μmol/L的白藜芦醇呈时间依赖关系地增加培养HUVECs中p-eNOS含量,但总eNOS无明显变化。同时,白藜芦醇明显增加培养HUVECs中NO生成,然而白藜芦醇这一效应却被L-NAME所抑制。提示白藜芦醇呈浓度和时间依赖地磷酸化激活培养HUVECs中的eNOS,增加衍生自eNOS的NO生成。
     2、100μmol/L的白藜芦醇显著增加培养HUVECs中p-eNOS含量和NO生成,但这一效应可被AMPK特异性抑制剂compound C所阻止,而PKA、PI3K特异性抑制剂并未影响培养HUVECs中p-eNOS含量和NO生成。提示白藜芦醇通过激活AMPK/eNOS途径促进NO生成。
     3、白藜芦醇显著增加培养HUVECs中p-AMPK及p-ACC含量,而高糖干预后p-AMPK和p-ACC含量明显下降,同时各组培养HUVECs中AMPKα、ACC含量并无明显变化,提示白藜芦醇可以增加培养HUVECs的AMPK活力,而高糖却抑制AMPK活力。但高糖环境中的培养HUVECs经白藜芦醇30μmol/L处理后,p-AMPK、p-ACC含量明显增加,并且随白藜芦醇处理时间的增加而呈不断增加趋势,AMPKα、ACC含量无明显变化。提示白藜芦醇可恢复被高糖抑制的AMPK活力。
     4、高糖孵育明显增加培养HUVECs中超氧阴离子含量,而渗透性对照组却无此效应。白藜芦醇可显著减少高糖诱导的超氧阴离子产生增加,但compound C可阻止白藜芦醇对超氧阴离子产生的抑制作用。提示白藜芦醇可通过AMPK途径削弱高糖诱导的培养HUVECs中超氧阴离子产生增加。
     5、内皮完整的小鼠主动脉血管环经PE预收缩后,白藜芦醇呈浓度依赖地舒张血管环。但经机械性剥脱内皮,加入L-NAME或compound C,白藜芦醇舒张PE预收缩的血管环的作用均被明显削弱,而吲哚美辛却无此作用。这些结果提示白藜芦醇具有直接舒张血管的作用,其作用机制与激活AMPK/eNOS系统有关。
     6、小鼠主动脉血管环经高糖孵育后可导致Ach诱导的血管舒张反应减弱;加入白藜芦醇后,高糖对Ach诱导的血管舒张反应的损害作用被显著削弱,而compound C则可减弱白藜芦醇这一血管保护效应。提示,白藜芦醇可预防高糖诱导的血管内皮依赖性舒张功能障碍,其机制可能是通过激活AMPK途径。
     结论
     1、白藜芦醇可促进培养HUVECs中的eNOS磷酸化激活、NO生成,抑制高糖诱导超氧阴离子产生增加,最终改善高糖诱导的内皮依赖性血管舒张功能受损。
     2、白藜芦醇改善高糖诱导的血管内皮功能障碍的机制可能是通过激活AMPK。
Background
     Epidemiologic data indicate that the risk of developing atherosclerosis and cardiovascular complications is 3-fold to 4-fold higher for patients with type 2 diabetes compared to the general population, and that 80 percents of diabetic patients dies of cardiovascular diseases. Endothelial dysfunction (ED) plays a key role in the initial stage of atherosclerosis, and is involved in the whole process of atherosclerotic lesions. Hyperglycemic can increase the production of reactive oxygen species (ROS) and decrease the nitric oxide (NO) bioavailability, and subsequently induce the vascular ED. The strategies for the protection of vascular endothelial function may reduce the risk of atherosclerosis and its disability rate and mortality in patients with diabetes.
     Resveratrol, trans-3, 4', 5-trihydroxyestilbene, is a kind of natural polyphenols produced by several plants, such as grape, mulberry, peanut and giant knotweed rhizome. The unique anti-oxidative effect of resveratrol provides a comprehensive protective role in cardiovascular system. Recently, increasing evidences suggest that resveratrol plays a beneficial effect against diabetes and cardiovascular diseases. Some cellular and animal studies suggest that the beneficial effects of resveratrol on plasma glucose control and vascular protection require AMP-activated protein kinase (AMPK) activity.
     AMPK, a recently indentified key molecule regulating energy metabolism, plays a pivotal role in cellular energy homeostasis and adaptation reaction, as a sensor of cellular energy status. Accumulative studies demonstrate that AMPK is not only an energy sensor but also a powerful effecter, which is involved in several metabolic processes via its phosphorylating action. Although the regulatory mechanism of AMPK activation is not completely elucidated, activation of AMPK can enhance the insulin sensitivity and reduce the complications of type 2 diabetes mellitus through regulating cellular signal transduction, metabolism and gene expression. Increasing evidences suggest that AMPK may be a linker between energy metabolism and circulatory diseases. Recent studies have demonstrated that AMPK can activate endothelial nitric oxide synthesis (eNOS), and consequently inhibit oxidative stress. Although it is reported that resveratrol can protect from cardiovascular complications of diabetes, the underlying precise molecular mechanisms have not been clarified.
     Objectives
     The present study was to test the hypotheses: 1) resveratrol can promote the phosphorylation and activation of eNOS, inhibit hyperglycemia-induced overproduction of superoxide anion in cultured human umbilical vein endothelial cells (HUVECs), and finally improve hyperglycemia-induced impairment of endothelium-dependent vasodilatation; 2) the protection effect of resveratrol on the improvement of endothelial dysfunction is mediated by the activation of AMPK.
     Methods
     1. After the cultured HUVECs were treated with varying concentrations of resveratrol for different duration time, the expression and phosphorylation of eNOS were measured by Western blotting and the production of NO was detected by Griess assay. Additionally, L-NAME was used to test the involvement of eNOS enzyme in the effect of resveratrol on the production of NO.
     2. After the cultured HUVECs were incubated with inhibitors of several kinases, the expression and phosphorylation of eNOS were measured by Western blotting and the production of NO was detected by Griess assay.
     3. Test the effect of resveratrol on the expression and phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) using Western blotting assay. In addition, test the effect of resveratrol on hyperglycemia-induced changes in the expression and phosphorylation of AMPK and ACC by Western blotting.
     4. Test the effect of high glucose on the production of superoxide anion by Griess assay and the inhibitory effect of resveratrol on hyperglycemia-induced overproduction of superoxide, and investigate the involvement of AMPK in the protective action of resveratrol using AMPK inhibitor compound C (CC).
     5. Test the vasodilatation action of resveratrol in phenylephrine constricted mouse aortic rings treated with or without endothelium denudation, L-NAME, indomethacin and CC. Test the effect of resveratrol on acetylcholine (Ach)-induced vasodilatation in mouse aortic rings with or with out incubation of high glucose.
     Results
     1. Treatment with resveratrol for 60 min dose-dependently increased the phosphorylation of eNOS in cultured HUVECs. Additionally, resveratrol (30μM) time-dependently increased the phosphorylation of eNOS in cultured HUVECs. Moreover, resveratrol significantly increased the production of NO, which can be attenuated by the incubation of L-NAME, indicating the resveratrol can increase the NO bioavailability through time- and dose-dependently activating eNOS.
     2. Resveratrol (100μM) significantly increased the production of NO in cultured HUVECs, which can be attenuated by CC (a specific inhibitor of AMPK) but not the inhibitors of PKA and PI3K, indicating that resveratrol-induced eNOS activation and NO production were mediated by AMPK activation.
     3. Resveratrol significantly enhanced the phosphorylation of AMPK and ACC but not the total expression of AMPK and ACC, while treatment of high glucose remarkably reduced the phosphorylation of AMPK and ACC, which can by reversed by the treatment of resveratrol (30μM), indicating that resveratrol can protect from hyperglycemia-induced reduction in the activation of AMPK through activating ACC.
     4. Resveratrol significantly inhibited hyperglycemia-induced overproduction of superoxide anion, which can be attenuated by the incubation of CC, indicating that AMPK activation is required in resveratrol-induced reduction in superoxide production.
     5. Resveratrol dose-dependently dilated the phenylephrine-constricted mouse aortic rings with intact endothelium, which can be partially attenuated by endothelium denudation, L-NAME and CC, but unaffected by indomethacin, indicating that resveratrol-induced vasodilatation is required AMPK/eNOS pathway.
     6. High glucose but not isotonic mannitol significantly impaired Ach-induced vasodilatation, which can be patially reversed by resveratrol. However, treatment with CC can significantly block the beneficial effect of resveratrol, indicating that resveratrol can protect the aortae from hyperglycemia-induced endothelial dysfunction through activating AMPK.
     Conclusions
     1. Resveratrol can promote the phosphorylation and activation of eNOS, increase the NO production, inhibit hyperglycemia-induced overproduction of superoxide anion in cultured human umbilical vein endothelial cells (HUVECs), and finally improve hyperglycemia-induced impairment of endothelium-dependent vasodilatation.
     2. The protection effect of resveratrol on the improvement of endothelial dysfunction is mediated by the activation of AMPK.
引文
1. Fox CS, Coady S, Sorlie PD, et al. Increasing cardiovascular disease burden due to diabetes mellitus: the Framingham Heart Study. Circulation, 2007:115:1544-50.
    2. Feletou M, Vanhoutte PM. Endothelial dysfunction: a multifaceted disorder. Am J Physiol Heart Circ Physiol .2006,291:H985–H1002.
    3. Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation, 2006,113:1708–1714.
    4. Huang PL. Endothelial nitric oxide synthase and endothelial dysfunction. Curr Hypertens Rep, 2003,5:473–480.
    5. Rask-Madsen C, King GL. Mechanisms of disease: endothelial dysfunctionin insulin resistance and diabetes. Nat Clin Pract Endocrinol Metab, 2007,3:46–56.
    6. Hung LM, Chen JK, Huang SS, et al. Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes. Cardiovasc Res,2000 ,47 :549-555.
    7. Su HC, Hung LM, Chen JK. Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab, 2006,290: E1339-1346.
    8. Bradamante S, Barenghi L, Villa A. Cardiovascular protective effects of resveratrol. Cardiovasc Drug Rev, 2004,22:169-188.
    9. Breen DM, Sanli T, Giacca A, et al. Stimulation of muscle cell glucose uptake by resveratrol through sirtuins and AMPK. Biochem Biophys Res Commun, 2008,374 :117–122.
    10. Kemp BE, Stapleton D, Campbell DJ, et al. AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans, 2003, 31, 162–168.
    11. Stapleton D, Mitchelhill KI, Gao G, et al. Mammalian AMP-activated protein kinase subfamily. J Biol Chem. 1996, 271: 611–614.
    12. Schulz E, Schuhmacher S, Munzel T. When metabolism rules perfusion: AMPK-mediated endothelial nitric oxide synthase activation. Circ Res, 2009,104:422-4.
    13. Ceolotto G, Gallo A, Papparella I, et al. Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H oxidase via AMPK-dependent mechanism.Arterioscler Thromb Vasc Biol, 2007,27: 2627-2633.
    14. Zhang H, Zhang J, Ungvari Zet al. Resveratrol improves endothelial function: role of TNF{alpha} and vascular oxidative stress. Arterioscler Thromb Vasc Biol, 2009,29 1164-1171.
    15. Wallerath T, Deckert G, Ternes T, et al. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation, 2002,106:1652-1658.
    1. Feletou M, Vanhoutte PM. Endothelial dysfunction: a multifaceted disorder.Am J Physiol Heart Circ Physiol. 2006,291:H985–H1002.
    2. Harrison D, Griendling KK, Landmesser U, et al. Role of oxidative stress in atherosclerosis. Am J Cardiol,2003,91:A7–11.
    3. Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol, 2004,15:1983-1992.
    4. Escandon J Calles, Cipolla M. Diabetes and endothelial dysfunction: a clinical perspective. Endocr Rev, 2001,22:36-52.
    5. Ouedraogo R,Wu X, Xu SQ, et al. Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: evidence for involvement of a cAMP signaling pathway.Diabetes, 2006,55 :1840-1846.
    6. Barua RS, Ambrose JA, Srivastava S, et al. Reactive oxygen species are involved in smoking-induced dysfunction of nitric oxide biosynthesis and upregulation of endothelial nitric oxide synthase: an in vitro demonstration in human coronary artery endothelial cells, Circulation, 2003, 107 : 2342-2347.
    7. Hung LM, Chen JK, Huang SS, et al. Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes. Cardiovasc Res, 2000,47: 549–555.
    8. Su HC, Hung LM, Chen JK. Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab, 2006,290:E1339–E1346.
    9. Bradamante S, Barenghi L, Villa A.Cardiovascular protective effects of resveratrol. Cardiovasc Drug Rev, 2004,22 :169–188.
    10. Hartge MM, Kintscher U, Unger T.Endothelial dysfunction and its role in diabetic vascular disease. Endocrinol Metab Clin North Am, 2006,35 :551–560. viii-i.
    11. Napoli C, de Nigris F, Palinski W. Multiple role of reactive oxygen species in the arterial wall. J Cell Biochem,2001,82: 674–82.
    12. Mattagajasingh I, Kim CS, Naqvi A, et al. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci USA. 2007,104:14855–60.
    13. Wallerath T, Poleo D, Li H, et al. Red wine increases the expression of human endothelial nitric oxide synthase: a mechanism that may contribute to its beneficial cardiovascular effects. J Am Coll Cardiol,2003,41:471–8.
    14. Csiszar A, Labinskyy N, Pinto JT, et al. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am J Physiol Heart Circ Physiol. 2009,297:H13–20.
    15. Wang Yiqun , Huang Yu , Karen SL Lam , et al. Berberine prevents hyperglycemia-induced endothelial injury and enhances vasodilatation via adenosine monophosphate-activated protein kinase and endothelial nitric oxide synthase.Cardiovascular Research,2009, 82:484–492.
    16. Lum H, Roebuck KA. Oxidant stress and endothelial cell dysfunction. Am J. Physiol Cell Physiol, 2001, 280: C719–41.
    17. Kitayama J, Faraci FM, Lentz SR, Heistad DD. Cerebral vascular dysfunction during hypercholesterolemia. Stroke, 2007,38: 2136–41.
    18. Ugochukwu NH, Figgers CL. Attenuation of plasma dyslipidemia and oxidative damage by dietary caloric restriction in streptozotocininduced diabetic rats. Chem Biol Interact,2007,169: 32–41.
    19. Mohazzab KM,Kaminski PM,Wolin MS.NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium.Am J Physiol Heart Circ Physiol,1994,266:H2568–H2572.
    20. Xu J, Xie Z, Reece R, et al. Uncoupling of endothelial nitric oxidase synthase by hypochlorous acid: Role of NAD(P)H oxidase-derived superoxide and peroxynitrite. Arterioscler Thromb Vasc Biol,2006,26: 2688–95.
    21. Chow SE, Hshu YC, Wang JS, et al. Resveratrol attenuates ox LDL-stimulated NADPH oxidase activity and protects endothelial cells from oxidative functional damages. J Appl Physiol,2007,102:1520–7.
    22. Zhang H, Zhang J, Ungvari Z, et al. Resveratrol improves endothelial function: role of TNFαand vascular oxidative stress. Arterioscler Thromb Vasc Biol,2009,29:1164–71.
    23. Spanier G, Xu H, Xia N, et al.Resveratrol reduces endothelial oxidative stress by modulating gene expression of SOD1, GPx1 and Nox4. J Physiol Pharmacol.2009, 60(Suppl 4):111-116.
    24. Paravicini TM, Touyz RM. Nadph oxidases, reactive oxygen species and hypertension: clinical implications and therapeutic possibilities. Diabetes Care,2008,31:S170–80.
    1. Breen DM, Sanl Ti, Giacca A, et al. Stimulation of muscle cell glucose uptake by resveratrol through sirtuins and AMPK. Biochem Biophys Res Commun, 2008, 374 :117–122.
    2. Ceolotto G, Gallo A, Papparella I, et al. Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H oxidase via AMPK-dependent mechanism. Arterioscler Thromb Vasc Biol, 2007,27: 2627-2633.
    3. Kemp BE, Stapleton D, Campbell DJ, et al.AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans, 2003, 31, 162–168.
    4. Schulz E, Schuhmacher S, Munzel T. When metabolism rules perfusion: AMPK-mediated endothelial nitric oxide synthase activation. Circ Res 2009 ,104:422-4.
    5. Mount PF, Kemp BE, Power DA. Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation.J Mol Cell Cardiol, 2007,42:271–279.
    6. Stapleton D, Mitchelhill KI, Gao G, et al. Mammalian AMP-activated protein kinase subfamily. J Biol Chem,1996,271: 611–614.
    7. Dyck JRB, Kudo N, Barr AJ, et al. Phosphorylation control of cardiac acetyl-CoA carboxylase by cAMP dependent protein kinase and 5’-AMP activated protein kinase. Eur J Biochem, 1999, 262:184–190.
    8. Hwang JT, Kwon DY, Park OJ, et al. Resveratrol protects ROS-induced cell death by activating AMPK in H9c2 cardiac muscle cells. Genes Nutr, 2008,2:323–326.
    9. Park CE, Kim MJ, JH Lee, et al. Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase. Exp Mol Med,2007,39:222–229.
    10. Chen Z, Peng IC, Sun W, et al.AMP-activated protein kinase functionally phosphorylates endothelial nitric oxide synthase Ser633. Circ Res. 2009,104:496–505.
    11. Zhang Y, Lee TS,Kolb EM, et al. AMP-activated protein kinase is involved in endothelial NO synthase activation in response to shear stress. Arterioscler Thromb Vasc Biol, 2006,26:1281–1287.
    12. Boyle JG, Logan PJ, Ewart MA, et al. Rosiglitazone stimulates nitric oxide synthesis in human aortic endothelial cells via AMP-activated protein kinase. J Biol Chem, 2008,283:11210–1121.
    13. Wang Yiqun , Huang Yu , Karen SL Lam, et al. Berberine prevents hyperglycemia-induced endothelial injury and enhances vasodilatation via adenosine monophosphate-activated protein kinase and endothelial nitric oxide synthase. Cardiovascular Research , 2009, 82:484–492.
    14. Davis BJ, Xie Z, Viollet B, et al. Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes,2006,55:496–505.
    15. Cheng KKY, Lam KSL, Wang Y, et al. Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes. 2007,56:1387–1394.
    16. Kukidome D, Nishikawa T, Sonoda K,et al. Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes, 2006,55:120–127.
    17. Ceolotto G, Gallo A, Papparella I, et al. Rosiglitazone reduces glucose-inducedoxidative stress mediated by NAD(P)H oxidase via AMPK-dependent mechanism. Arterioscler Thromb Vasc Biol.2007,27:2627–2633.
    18. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly.Am J Physiol Cell Physiol, 1996,271:C1424–C1437.
    19. Salt IP, Morrow VA, Brandie FM, et al. High glucose inhibits insulin-stimulated nitric oxide production without reducing endothelial nitric-oxide synthase Ser1177 phosphorylation in human aortic endothelial cells. J Biol Chem, 2003, 278: 18791–18797.
    20. Cosentino F, Hishikawa K, Katusic ZS, et al. High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation. 1997,96:25–28.
    21. Alba G, El BR, varez-Maqueda M, et al. Stimulators of AMP-activated protein kinase inhibit the respiratory burst in human neutrophils. FEBS Lett, 2004,573:219–225.
    22. Spalding KL, Arner E, Westermark PO, et al. Dynamics of fat cell turnover in humans. Nature ,2008,453:783-7.
    23. Unger RH. Mini review: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology, 2003,144:5159-65.
    24. Schaffer JE. Lipotoxicity: when tissues over eat.Curr Opin Lipidol 2003,14:281-7.
    25. Hardie DG. AMP-activated protein kinase: a master switch in glucose and lipid metabolism. Rev Endocr Metab, Disord,2004,5:119-125.
    26. Claret M, Smith MA, Batterham RL, et al. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest, 2007, 117:2325–2336.
    1. Cosentino F,Luscher TF.Endothelial Dysfunction in Diabetes Mellitus.J Cardiovasc Pharmacol,1998,32:54–61.
    2. Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol, 2004,15:1983-1992.
    3. Escandon J Calles, Cipolla M. Diabetes and endothelial dysfunction: a clinical perspective. Endocr Rev, 2001,22:36-52.
    4. Beate Fisslthaler, Ingrid Fleming .Activation and Signaling by the AMP-Activated Protein Kinase in Endothelial Cells. Circ Res,2009,105:114-127.
    5. Kukidome D, Nishikawa T, Sonoda K, et al.Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes ,2006,55:120–127.
    6. McCarty MF. AMPK activation as a strategy for reversing the endothelial lipotoxicity underlying the increased vascular risk associated with insulin resistance syndrome. Med Hypotheses, 2005,64:1211–1215.
    7. Hattori Y, Suzuki K, Hattori S, et al. Metformin inhibits cytokine-induced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension,2006,47:1183–1188.
    8. Kobayashi H, Ouchi N, Kihara S,et al. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ Res 2004,94:e27–e31.
    9. Ido Y, Carling D, Ruderman N. Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation. Diabetes,2002;51:159–167.
    10. Stein SC, Woods A, Jones NA, et al. The regulation of AMP-activated protein kinase by phosphorylation. J Biol chem, 2000, 345:437–443.
    11. Hawley SA, Davison M, Woods A, et al. Characterization of the AMP-activated protein kinase kinase from rat liver, and identification of threonine-172 as the major site at which it phosphorylates and activates AMP-activated protein kinase. J BiolChem,1996,271:27879–27887.
    12. Corton JM, Gillespie JG, Hawley SA , et al. 5-Aminoimidazole-4-carboxamide ribonucleoside: a specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem. 1995; 229: 558–565.
    13. Hawley SA, Selbert MA, Goldstein EG, et al. 5'-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. 1995, J Biol Chem 270:27186–27191.
    14. Davies SP, Helps NR, Cohen PT, et al. 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2Cαand native bovine protein phosphatase-2Ac。FEBS Lett, 1995, 377:421-425.
    15. Hawley SA, Boudeau J, Reid JL,et al. Complexes between the LKB1 tumor suppressor, STRAD /? and MO25 /? are upstream kinases in the AMP-activated protein kinase cascade. J Biol chem,2003; 2: 28.
    16. Stahmann N, Woods A, Carling D,et al. Thrombin activates AMP-activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin-dependent protein kinase kinase beta. Mol Cell Biol,2006, 26: 5933–45.
    17. Woods A, Johnstone SR, Dickerson K, et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol,2003,13(22):2004-2008.
    18. Shaw RJ, Lamia KA, Vasquez D et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin.Science 2005; 310: 1642–6.
    19. LeBrasseur NK, Kelly M, Tsao TS et al. Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian tissues. Am. J. Physiol. Endocrinol. Metab. 2006,291: E175–81.
    20. Momcilovic M, Hong SP, Carlson M. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem. 2006,281:25336–25343.
    21. Xie M, Zhang D, Dyck JRB, Li Y, Zhang H, Morishima M, Mann DL, Taffet GE, Baldini A, Khoury DS, Schneider MD. A pivotal role for endogenous TGF-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc Natl Acad Sci U S A. 2006,103:17378–17383.
    22. Hofer-Warbinek R, Schmid JA, Stehlik C, Binder BR, Lipp J, de Martin R. Activation of NF-_B by XIAP, the X chromosome-linked inhibitor of apoptosis, in endothelial cells involves TAK1. J Biol Chem, 2000;275:22064–22068.
    23. Xiuyun Hou, Shanqin Xu, Karlene A.SIRT1 Regulates Hepatocyte Lipid Metabolism through Activating AMP-activated Protein Kinase. J Biol Chem, 2008,283: 20015–20026.
    24. Turner N, Li JY, Gosby A, et al. Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes,2008,57:1414–1418.
    25. Yin J, Gao Z, Liu D, et al. Berberine improves glucose metabolism through induction of glycolysis. Am J Physiol Endocrinol Metab 2008;294:E148–E156.
    26. Kahn BB,Alquier T,Carling D,et al.AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab, 2005,1: 15–25
    27. Zang MW, Zuccollo A,Hou XY, et al. AMP-activated Protein Kinase Is Required for the Lipid-lowering Effect of Metformin in Insulin-resistant Human HepG2 Cells. J Biol Chem ,2004,279:47898–47905.
    28. Zhou GC,Myers R,Li Y,et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest,2001,108:1167–1174
    29. Chau-Van C, Gamba M, Salvi R,et al.Metformin Inhibits Adenosine 5'-Monophosphate-Activated Kinase Activation and Prevents Increases in Neuropeptide Y Expression in Cultured Hypothalamic Neurons. Endocrinology,2007, 148:507–511.
    1. Kemp BE,Stapleton D, Campbell, et al. AMP-activated protein kinase: super metabolic regulator. Biochem So Trans. 2003,31:162–168.
    2. Hayashi T, Hirshman, M F, Kurth, EJ,et al. Evidence for 5'-AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes,1998, 47:1369–1373.
    3. Bergeron R, Russell RR., Young LH, et al. AMP kinase activation with AICAR further increases fatty acid oxidation and blunts triacylglycero. Am J Physiol. 1999,276: E938–E944.
    4. Salt IP, Johnson G, Ashcroft SJ,et al. AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing the alpha2 isoform. Biochem J,1998, 335:533–539.
    5. Corton J M., Gillespie, JG, et al. Role of the AMP-activatedprotein kinase in the cellular stress response. Curr Biol. 1994,4: 315–324.
    6. Choi SL,Kim SJ,Lee KT, et al.The regulation of AMP-activated protein kinase by H(2)O(2). Biochem Biophys Res Commun,2001, 287: 92–97.
    7. Peralta C, Bartrons R, Serafin A, et al. Adenosine monophosphate-activated protein kinase mediates the protective effects of ischemic preconditioning on hepatic ischemia-reperfusion injury in the rat.Hepatology,2001,34:1164–1173.
    8. Kahn BB,Alquier T, Carling D,et al. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005,1:15–25.
    9. Hardie DG,Scott JW,Pan, DA,et al. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett, 2003,546:113-120.
    10. Iseli TJ, Walter M, van Denderen BJ, et al.AMP-activated protein kinase beta subunit tethers alpha and gamma subunits via its C-terminal sequence (186–270). J Biol Chem. 2005,280: 13395–13400.
    11. Woods A, Salt I, Scott J, Hardie DG, et al. The 1 and 2 isoforms of the AMP-activated protein kinase have similar activities in rat liver but exhibit differences in substrate specificity in vitro. FEBS Lett, 1996,397: 347–351.
    12. Stapleton D, Mitchelhill KI, Gao G, et al. Mammalian AMP-activated protein kinase subfamily. J Biol Chem, 1996,271: 611–14.
    13. Daval M, Diot-Dupuy F, Bazin R, et al. Anti-lipolytic action of AMPactivated protein kinase in rodent adipocytes. J Biol Chem, 2005,280: 25250–7.
    14. Davis BJ, Xie Z, Viollet B, et al. Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes,2006,55:496–505.
    15. Nagata D, Mogi M, Walsh K. AMP-activated protein kinase (AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress. J Biol Chem, 2003,278: 31000–6.
    16. Salt I, Celler JW, Hawley SA, et al. AMP-activated protein kinase:Greater AMP dependence, and preferential nuclear localization, of complexes containing the alpha2isoform. Biochem J,1998, 334:177–87.
    17. Jiang R, Carlson M. The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol Cell Biol. 1997, 17: 2099–2106.
    18. Hudson ER, Pan DA, James J, et al. A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Current Biol,2003,13: 861–866.
    19. Scott JW, Hawley SA, Green KA, et al. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest,2004,113: 274–284.
    20. Stein SC, Woods A, Jones NA, et al. The regulation of AMP-activated protein kinase by phosphorylation. Biochem J , 2000,345:437–443.
    21. Hawley SA, Davison M, Woods A, et al. Characterization of the AMP-activated protein kinase kinase from rat liver, and identification of threonine-172 as the major site at which it phosphorylates and activates AMP-activated protein kinase. J Biol Chem,1996, 271:27879–27887.
    22. Hawley SA, Selbert MA, Goldstein EG, et al. 5'-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin the calmodulin-dependent protein kinase I cascade, via three independent mechanisms.J Biol Chem, 1995,270:27186–27191.
    23. Davies SP, Helps NR,Cohen PTW,et al. 5'-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C and native bovine protein phosphatase-2AC. FEBS Lett.1995, 377, 421-425.
    24. Shaw RJ,Kosmatka M,Bardeesy N, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci,2004,101 (10):3329-3335.
    25. Woods A, Johnstone SR, Dickerson K, et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol,2003,13(22):2004-2008.
    26. Hawley SA, Boudeau J, Reid JL, et al. Complexes between the LKB1 tumor suppressor, STRAD /? and MO25 /? are upstream kinases in the AMP-activated protein kinase cascade. J Biol,2003, 2: 28.
    27. Xie Z, Dong Y, Zhang M, et al. Activation of protein kinase Cξby peroxynitriteregulates LKB1-dependent AMP-activated protein kinase in cultured endothelial cells. J Biol Chem,2006,281:6366–6375.
    28. Xie Z, Dong Y, Scholz R, et al. Phosphorylation of LKB1 at serine 428 by protein kinase Cξis required for metformin enhanced activation of the AMP-activated protein kinase in endothelial cells. Circulation,2008,117:952–962.
    29. Lan F, Cacicedo JM, Ruderman N, et al. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1: possible role in AMP-activated protein kinase activation. J Biol Chem, 2008,283:27628–27635.
    30. Hou X, Xu S, Maitland-Toolan KA, et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem,2008,283:20015–20026.
    31. Nicholson SK, Tucker GA, Brameld JM. Effects of dietary polyphenols on gene expression in human vascular endothelial cells. Proc Nutr Soc,2008,67:42– 47.
    32. Hurley RL, Anderson KA, Franzone JM, et al. The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem, 2005, 280: 29060–29066.
    33. Woods A, Dickerson K, Heath R, et al. (Ca2+)/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab, 2005,2,21–33.
    34. Hawley SA, Pan DA, Mustard KJ, et al. Calmodulin-dependent protein kinase kinase-βis an alternative upstream kinase for AMP-activated protein kinase. Cell Metab,2005,2:9–19.
    35. Stahmann N, Woods A, Carling D,et al. Thrombin activates AMP activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin-dependent protein kinase kinaseβ. Mol Cell Biol,2006,26:5933–5945.
    36. Momcilovic M, Hong SP, Carlson M. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem, 2006; 281: 25336–25343.
    37. Xie M, Zhang D, Dyck JRB,et al. A pivotal role for endogenous TGFβ-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. ProcNatl Acad Sci USA. 2006,103:17378–17383.
    38. Hofer-Warbinek R, Schmid JA, Stehlik C, et al. Activation of NF-κB by XIAP, the X chromosome-linked inhibitor of apoptosis, in endothelial cells involves TAK1. J Biol Chem. 2000,275:22064–22068.
    39. Steinberg HO, Paradisi G, Hook G, et al.Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes, 2000, 49: 1231–8.
    40. Artwohl M, Roden M, Waldhausl W, et al. Free fatty acids trigger apoptosis and inhibit cell cycle progression in human vascular endothelial cells. FASEB J,2004, 18:146–8.
    41. Harrison D, Griendling KK, Landmesser U,et al. Role of oxidative stress in atherosclerosis. Am. J Cardiol,2003,91:A7–11.
    42. Libby P. Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 2001, 104: 365–72.
    43. Ido Y, Carling D, Ruderman N. Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: Inhibition by the AMP activated protein kinase activation. Diabetes 2002, 51: 159–67.
    44. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 2000,404: 787–90.
    45. Inoguchi T, Li P, Umeda F, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes ,2000,49: 1939–45.
    46. Pieper GM, Riaz Ul H. Activation of nuclear factor-kappa B in cultured endothelial cells by increased glucose concentration: Prevention by calphostin C. J Cardiovasc Pharmacol, 1997 ,30: 528–32.
    47. Dagher Z, Ruderman N, Tornheim K, et al. The effect of AMP activated protein kinase and its activator AICAR on the metabolism of human umbilical vein endothelial cells. Biochem Biophys Res Commun, 1999,265: 112–15.
    48. Nagata D, Mogi M, Walsh K. AMP-activated protein kinase (AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress. J BiolChem, 2003; 278: 31 000–6.
    49. Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: From marvel to menace. Circulation ,2006,113:1708–14.
    50. Kawashima S, Yokoyama M. Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol,2004,24: 998–1005.
    51. Jeremy JY, Rowe D, Emsley AM, et al. Nitric oxide and the proliferation of vascular smooth muscle cells. Cardiovasc Res,1999,43: 580–94.
    52. Boyle JG, Logan PJ, Ewart MA, et al. Rosiglitazone stimulates nitric oxide synthesis in human aortic endothelial cells via AMP-activated protein kinase. J Biol Chem, 2008; 283: 11210–11217.
    53. Morrow VA, Foufelle F, Connell JMC,et al.Direct activation of AMP-activated protein kinase stimulates nitric oxide synthesis in human aortic endothelial cells. J Biol Chem. 2003,278:31629–31639.
    54. Davis BJ, Xie Z, Viollet B, et al. Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes,2006,55:496–505.
    55. Zou MH, Kirkpatrick SS, Davis BJ, et al.Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo: role of mitochondrial reactive nitrogen species.J Biol Chem, 2004, 279: 43940–43951.
    56. Cheng KKY, Lam KSL, Wang Y,et al. Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes,2007,56: 1387–1394.
    57. Xu Q, Hao X, Yang Q, et al. Resveratrol prevents hyperglycemia-induced endothelial dysfunction via activation of adenosine monophosphate-activated protein kinase. Biochem Biophys Res Commun 2009; 388:389-94.
    58. Chen ZP, Mitchelhill KI, Michell BJ, et al. AMP-activated protein kinase phosphorylation of endothelial NO synthase.FEBS Lett. 1999;443:285–289.
    59. Michell BJ, Chen Z, Tiganis T, et al. Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem. 2001; 276:17625–17628.
    60. Napoli C, de Nigris F, Palinski W. Multiple role of reactive oxygen species in the arterial wall. J Cell Biochem, 2001, 82: 674–82.
    61. Lum H, Roebuck KA. Oxidant stress and endothelial cell dysfunction.Am J Physiol Cell Physiol. 2001, 280: C719–41.
    62. Ugochukwu NH, Figgers CL. Attenuation of plasma dyslipidemia and oxidative damage by dietary caloric restriction in streptozotocininduced diabetic rats. Chem Biol Interact,2007, 169: 32–41.
    63. Kitayama J, Faraci FM, Lentz SR,et al. Cerebral vascular dysfunction during hypercholesterolemia. Stroke, 2007,38: 2136–41.
    64. Xu J, Xie Z, Reece R, et al. Uncoupling of endothelial nitric oxidase synthase by hypochlorous acid: Role of NAD(P)H oxidase-derived superoxide and peroxynitrite. Arterioscler. Thromb Vasc Biol, 2006,26: 2688–95.
    65. Zou MH, Kirkpatrick SS, Davis BJ, et al. Activation of the AMP activated protein kinase by the anti-diabetic drug metformin in vivo.Role of mitochondrial reactive nitrogen species. J Biol Chem,2004,279: 43 940–51.
    66. Kukidome D, Nishikawa T, Sonoda K, et al. Activation of AMP activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes, 2006,55: 120–7.
    67. Ruderman NB, Cacicedo JM, Itani S, et al. Malonyl-CoA and AMP activated protein kinase (AMPK): Possible links between insulin resistance in muscle and early endothelial cell damage in diabetes.Biochem Soc Trans,2003,31: 202–6.
    68. Dagher Z, Ruderman N, Tornheim K, et al. Acute regulation of fatty acid oxidation and AMP-activated protein kinase in human umbilical vein endothelial cells. Circ Res,2001,88: 1276–82.
    69. Lee TS, Saltsman KA, Ohashi H,et al. Activation of protein kinase C by elevation of glucose concentration: Proposal for a mechanism in the development of diabetic vascular complications. Proc Natl Acad Sci USA ,1989,86: 5141–5.
    70. Michell BJ, Chen Z, Tiganis T ,et al. Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C andthe cAMP-dependent protein kinase. J Biol Chem, 2001, 276:17 625–8.
    71. Park JY, Kim YM, Song HS, et al. Oleic acid induces endothelin-1 expression through activation of protein kinase C and NF-kappa B. Biochem Biophys Res Commun,2003,303: 891–5.
    72. Lee WJ, Lee IK, Kim HS ,et al. Alpha-lipoic acid prevents endothelial dysfunction in obese rats via activation of AMP-activated protein kinase. Arterioscler. Thromb Vasc Biol, 2005, 25: 2488–94.
    73. Muse ED, Obici S, Bhanot S ,et al. Role of resistin in diet-induced hepatic insulin resistance. J Clin Invest,2004,114: 232–9.
    74. Wilkes JJ, Nguyen MT, Bandyopadhyay GK, et al. Topiramate treatment causes skeletal muscle insulin sensitization and increased Acrp30 secretion in high-fat-fed male Wistar rats. Am. J Physiol Endocrinol Metab,2005,289: E1015–22.
    75. McCarty MF. AMPK activation as a strategy for reversing the endothelial lipotoxicity underlying the increased vascular risk associated with insulin resistance syndrome. Med Hypotheses ,2005, 64:1211–15.
    76. Chen H, Montagnani M, Funahashi T, et al.Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem,2003,278: 45 021–6.
    77. Park H, Kaushik VK, Constant S et al. Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. J Biol Chem,2002, 277:32 571–7.
    78. Hattori Y, Suzuki K, Hattori S, et al. Metformin inhibits cytokineinduced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension ,2006, 47:1183–8.
    79. Libby P,Theroux P.Pathophysiology of coronary artery disease. Circulation, 2005, 111(25):3481-8.
    80. Igata M, et al, Adenosine monophosphate-activated protein kinase suppresses vascular smooth muscle cell proliferation through the inhibition of cell cycle progression. Circ Res, 2005,97(8): 837-44.
    81. Zang M, et al. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes, 2006,55(8):2180-91.
    82. Devaraj S, et al, Adiponectin decreases C-reactive protein synthesis and secretion from endothelial cells: evidence for an adipose tissue-vascular loop. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008,28(7): 1368-74.
    83. Motobayashi Y, et al, Adiponectin inhibits insulin-like growth factor-1-induced cell migration by the suppression of extracellular signal-regulated kinase 1/2 activation, but not Akt in vascular smooth muscle cells. Hypertension Research, 2009,32(3): 188-93.
    84. Ishii N, et al, Activation of AMP-activated protein kinase suppresses oxidized low-density lipoprotein-induced macrophage proliferation. Journal of Biological Chemistry, 2009,284(50): 34561-9.
    85. Hattori Y, et al.Metformin inhibits cytokine-induced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension, 2006,47(6): 1183-8.
    86. Zhou MS, Schulman IH, Raij L.Vascular inflammation, insulin resistance, and endothelial dysfunction in salt-sensitive hypertension: role of nuclear factor kappa B activation. J Hypertens, 2010,28(3): 527-35.
    87. Rodríguez A, et al. Impaired adiponectin-AMPK signalling in insulin-sensitive tissues of hypertensive rats. Life Sciences, 2008,83(15-16): 540-9.
    88. Zhang P, et al.AMP activated protein kinase-alpha2 deficiency exacerbates pressure-overload-induced left ventricular hypertrophy and dysfunction in mice. Hypertension, 2008. 52(5): 918-24.
    89. Hattori Y, et al.Activation of AMP-activated protein kinase enhances angiotensin ii-induced proliferation in cardiac fibroblasts. Hypertension, 2006, 47(2):265-70.
    90. Kuramoto N,et al.Phospho-dependent functional modulation of GABA(B) receptors by the metabolic sensor AMP-dependent protein kinase. Neuron, 2007, 53(2):233-47.
    91. Dasgupta B, Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci U S A, 2007,104(17):7217-22.
    92. McCullough LD, et al.Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke. J Biol Chem, 2005,280(21): 20493-502.
    93. Li J, et al.Neuroprotective effects of adenosine monophosphate-activated protein kinase inhibition and gene deletion in stroke. Stroke, 2007,38(11):2992-9.
    94. Culmsee C, et al.AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation. Journal Of Molecular Neuroscience, 2001,17(1):45-58.
    95. Lloyd SG, et al.Impact of low-flow ischemia on substrate oxidation and glycolysis in the isolated perfused rat heart. Am J Physiol Heart Circ Physiol, 2004. 287(1):H351-62.
    96. R?sen P,et al.Glycolysis and glucose oxidation in the rat heart under nonrecirculating perfusion conditions. Basic Research In Cardiology, 1984,79(3):307-12.
    97. Dyck JR, Lopaschuk GD.AMPK alterations in cardiac physiology and pathology: enemy or ally? J Physiol, 2006,574:95-112.
    98. Hue L, et al.Insulin and ischemia stimulate glycolysis by acting on the same targets through different and opposing signaling pathways. J Mol Cell Cardiol, 2002. 34(9):1091-7.
    99. Young LH, et al.AMP-activated protein kinase: a key stress signaling pathway in the heart. Trends in Cardiovascular Medicine, 2005,15(3):110-8.
    100. Arad M, Seidman CE, Seidman JG. AMP-activated protein kinase in the heart: role during health and disease. Circ Res, 2007,100(4):474-88.
    101. Hawley SA, et al.Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol, 2003, 2(4):28.
    102. Altarejos JY, et al.Myocardial ischemia differentially regulates LKB1 and an alternate 5'-AMP-activated protein kinase kinase. J Biol Chem, 2005,280(1): 183-90.
    103. Nishino Y, et al.Ischemic preconditioning activates AMPK in a PKC-dependent manner and induces GLUT4 up-regulation in the late phase of cardioprotection. Cardiovasc Res, 2004,61(3):610-9.
    104. Sakamoto K, et al.Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKalpha2 but not AMPKalpha1. Am J Physiol Endocrinol Metab, 2006, 290(5): E780-8.
    105. Shibata R, et al.Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med, 2005,11(10): 1096-103.
    106. Kewalramani G, et al.AMP-activated protein kinase confers protection against TNF-{alpha}-induced cardiac cell death. Cardiovasc Res, 2009,84(1):42-53.
    107. Yan L, et al. Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci U S A, 2005,102(39):13807-12.
    108. Rothermel BA, Hill JA. Myocyte autophagy in heart disease: friend or foe? Autophagy, 2007, 3(6): 632-4.
    109. Nakai A, et al.The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med, 2007. 13(5):619-24.
    110. Hamacher-Brady A, et al.Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ, 2007,14:146-57.
    111. Matsui, Y, et al.Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res, 2007,100:914-22.
    112. Calvert JW, et al.Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes, 2008, 57: 696-705.
    113. ViolletB, et al, AMPK: Lessons from transgenic and knockout animals. Front Biosci, 2009,14; 19-44.
    114. Zarrinpashneh, E, et al. Role of the alpha2-isoform of AMP-activated protein kinase in the metabolic response of the heart to no-flow ischemia. Am J Physiol Heart Circ Physiol, 2006, 291:H2875-83.
    115. Carvajal, K, et al.Dual cardiac contractile effects of the alpha2-AMPK deletion in low-flow ischemia and reperfusion. Am J Physiol Heart Circ Physiol, 2007, 292(6):H3136-47.
    116. Russell RR, et al.AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest, 2004,114: 495-503.
    117. Xing Y,et al. Glucose metabolism and energy homeostasis in mouse hearts overexpressing dominant negative alpha2 subunit of AMP-activated protein kinase. J Biol Chem, 2003,278:28372-7.
    118. Ahmad F, et al.Increased alpha2 subunit-associated AMPK activity and PRKAG2cardiomyopathy. Circulation, 2005,112:3140-8.
    119. Nagata, D, Hirata Y.The role of AMP-activated protein kinase in the cardiovascular system. Hypertens Res, 2010. 33: 22-8.
    120. Cool B, et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab, 2006,3: 403-16.