抗三唑磷基因工程抗体的研制及同源建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研制基因工程抗体,本文首先通过杂交瘤技术筛选能够稳定分泌高亲和力、高特异性抗体的杂交瘤细胞,以从中克隆编码抗体可变区的基因。利用杂交瘤细胞制备的单克隆抗体建立了三唑磷残留ELISA检测方法,并对方法进行了系统优化。优化后的ELISA应用于食品和环境样品中三唑磷残留检测,其良好的回收率和较小的变异系数一方面证明了ELISA在三唑磷等农药的残留检测中具有良好的应用前景,另一方面也说明筛选的杂交瘤细胞是成功的,可以用于基因工程抗体的研制。
     然后从杂交瘤细胞株出发,通过RT-PCR技术,利用小鼠重链和轻链可变区通用引物扩增得到了抗三唑磷单克隆抗体轻、重链可变区基因序列。再通过重叠延伸PCR(SOE-PCR)方法,将两个可变区基因连接起来,构建了单链抗体(ScFv)核苷酸序列。然后将ScFv序列插入到pET-29a(+)载体,得到了重组表达质粒,转化大肠杆菌BL21(DE3)后,阳性菌株经IPTG诱导培养后,表达得到了ScFv蛋白。蛋白经过变性、纯化和复性处理后,通过竟争抑制ELISA进行了初步鉴定,结果表明,ScFv具有免疫亲和活性。
     在此基础上,利用Accelrys公司的Discovery Studio~(TM)(DS)软件系统通过同源建模法模拟了抗三唑磷单链抗体的三级结构及ScFv与三唑磷农药小分子间的对接构象。首先通过模板分子搜索、序列比对、构建模型及模型合理性评价等过程分别构建了轻、重链可变区三维结构;然后再通过模板分子搜索、序列比对及叠合等过程,初步构建了ScFv的三维结构模型。模型经过动力学和能量最小化优化后,最终得到了评价合理的ScFv的三维结构。分子对接模拟结果显示,单链抗体与三唑磷主要以范德华力和氢键发生相互作用,抗体有13个氨基酸残基可以与农药分子发生作用。这些氨基酸作用位点和作用方式的确定为进一步进行抗体分子的改造和研究抗体与农药小分子间的作用机理打下了坚实的基础。
     最后在二硫键稳定抗体(dsFv)的研制、dsFv同源建模及分子对接方面开展了部分工作。利用PCR定点突变法,通过设计突变引物,成功地将半胱氨酸突变位点引入了轻、重链可变区的相应位点,从而为dsFv小分子抗体的研制打下了基础。DS软件系统对dsFv三级结构及dsFv与三唑磷的对接构象的模拟结果表明,dsFv与ScFv具有相似的活性口袋,在与三唑磷发生对接过程中,也是以氢键和范德华力作为主要作用方式,参与作用的氨基酸残基大部分相同,但dsFv可参与反应的氨基酸数目更多,这意味着dsFv和ScFv对三唑磷的亲和力可能会有差异。
To prepare the engineering antibody,hybridoma cells secreting antibody with high affinity and specificity were screened by hybridoma technology,from which variation region genes of the antibody would be cloned.Based on the anti-triazophos antibody produced by the selected cells,a direct competitive enzyme-linked immunosorbent assay(ELISA) for triazophos was developed.The influence of several physicochemical factors on the immunoassay was studied.The optimized ELISA has been used to quantify triazophos in foods and environmental samples spiked at different amounts.The excellent recoveries achieved not only confirmed the potential of the immunoassay for monitoring of triazophos in food and environmental samples, but also proved the hybridoma cell was good enough to prepare the engineering antibodies.
     From the hybidoma cell lines,which can secrete anti-triazophos McAb with high affinity and specificity,the variable region genes of the McAb were amplified with universal primers by RT-PCR.To construct single-chain Fv antibody(ScFv) gene, methods splicing by overlap extension(SOE) was used for stringing variable region genes of heavy chain and light chain with a(G_4S)_3 linker.After sequencing identification,the ScFv gene was cloned into the expression vector PET-29a(+) with the direction of V_H-linker-V_L,which was constructed by endonuclease digestion and ligation.Then the recombinant vector was transformed into E.coli BL21(DE3) strain. The identified positive strain can express the anti-pesticide ScFv protein under the induction of IPTG.The collected ScFv protein was denaturalized with urea,purified with immunoaffinity column and renaturalized by dialysis with renaturalizing solution.The ScFv' immuno-activities were confirmed by competitive inhibition ELISA.
     On the basis of the variable region genes of the McAb above,the amino acid sequences of the variable region were obtained.Then the three dimensional structure of the ScFv was constructed through homologous modeling by series of software of Discovery Studio~(TM)(Accelrys).The heavy variable region(V_H) and light variable region(V_L) domains were respectively modeled through recognition of target model, alignment between query sequence and target sequence,modeling,evaluation of structure rationality.Then the V_H and V_L model were superimposed upon the target model of antibody variable region by sequence alignment and the linker was added between V_H and V_L,thus the three-dimensional structure of ScFv was constructed.It was proved the modeling structure was reasonable after structure optimization by the methods of dynamics and energy minimization.Also the molecular modeling study of the interaction between ScFv and triazophos was performed by software.The docking showed that triazophos was deeply located within the binding pocket of ScFv.The result of the docking analysis indicated that triazophos mainly bear hydrogen-bond and Van(?)er Waals interaction with ScFv whose 13 residues can involve in the stable binding interactions.The results from the binding mode analysis may be useful in rational lapten design,developing engineering antibody with high affinity and specificitr,and studying the theory of interaction between antibody and pesticide.
     Finally,we carried out the initial research for construction the dsFv(disulfide stabilized Fv fragments).Site-specific mutagenesis in the light and heavy chain DNA fragment had been created by PCR using mutagenic primers.Thus a pair of inter-chain disulfide bond would be introduced between the light and heavy chain variable region at the 44~(th) site of the heavy chain and the 100~(th) site of the light chain. The binding mode between dsFv and triazophos was virtually the same as that of ScFv and triazophos.Hydrogen-bond and Van der Waals were the main interactive force.Residues involved in the binding interaction were at similar position.However, dsFv had more residues involved in the docking.There seemed to be affinity differencr between dsFv and ScFv.
引文
1.陈学文.关于农药现状的客观评价[J].宁夏农林科技,2005,2:43-44.
    2.龚瑞忠,蔡道基.拟除虫菊酯类农药对水生生物的毒性评价研究[J].环境科学研究,1988,1(4):392.
    3.Bradbury S P,Coats J R,Mckim J M.Toxicokinetics of fenvale rate in rainbow trout(Salmo grirdneri)[J].Environ.Toxicol.Chem.,1986,5:567-570.
    4.王朝晖,尹伊伟.常见拟除虫菊酯(原药、商品)及助溶剂对水生生物毒性的比较[J].暨南大学学报(自然科学版),1997,18(1):98-103.
    5.魏渲辉,汝少国,姜明等.有机磷农药对鱼类的毒性效应及内分泌扰乱作用[J].海洋科学,2002,26(9):27-31.
    6.Kalsui Hava.Toxicity of pyrethroid insecticides to fish[J].Environ Toxiciology and Chemistry,1989,8:381-385.
    7.Feng K.,Yu B.Y.,Gea D.M.Organo-chlorine pesticide(DDT and HCH) residues in the Taihu Lake Region and its movement in soil-water system[J].Chemoshphere,2003,50:683-687.
    8.康跃惠,刘培斌,王子健.北京官厅水库.永定河水系水体持久性有机氯农药污染[J].湖泊科学,2003,15(2):126-132.
    9.听风.包子事件:中日限农残的差异[J].质量与科技,2008,2:75.
    10.Sunita Rani V.K.,Madan,Kathpal T.S.Persistence and dissipation behavior of triazophos in canal water under Indian climatic conditions[J].Ecotoxicol.&Environ.Saf 2001,50:82-84.
    11.Gong D.X.,Zheng L.Y.,Yang R.B.,Guo Z.Y.,Zhou Z.M.Analytical method of residue of triazophos insecticide in citrus,water and soil with gas chromatography[J].J.Agro-Environ.Sci.2004,23:1034-1036.
    12.Ji Y.L.,Lin G.Q.,Zhou D.B.,Huang Z.Y.,Li L.,Liu L.Residual determination of triazophos in vegetable by gas chromatography[J].Pesticides.1997,36:30-31.
    13.Zhang S.B.,Yi J.,Ye J.L.,Zheng W.H.,Cai X.Q.,Gong Z.B.Determination of buprofezin,methamidophos,acephate and triazophos residues in Chinese tea samples by gas chromatography[J].Chin J.Chromatogr.2004,22:154-157.
    14.Zhang Z.X.,Shan G.X.,Wang L.H.,Xue W.J.Analysis of triazophos by HPLC [J].Pestici.Sci.& Admini.2003,24:11-12.
    15.Zhang G.L.Study on the HPLC method for triazophos[J].J.Anhui Agric.Sci.2003,31:663,673.
    16.Saito Y.,Kodama S.,Matsunaga A.Multiresidue determination of pesticides in agricultural products by gas chromatography/mass spectrometry with large volume injection[J].The J.l of AOAC Intern.2004,87:1356-1367.
    17.Stan H.J.Pesticide residue analysis in foodstuffs applying capillary gas chromatography with mass spectrometric detection[J].J.of Chromatogr.Anal.,2000,892:347-377.
    18.Kusakable T.,Saito T.,Takeichi S.Solid-phase microextraction and gas chromatography-mass spectrometry analysis of P,P-DDE in biological samples [J].Journal of Chromatography B:Biomedical Sciences and Application,2001,1:93-98.
    19.Linkerhagner M.,Stan H.J.Screening analysis of pesticide residues in plant foodstuffs by capillary gas chromatography using the DFG multiresidue method S19:a comparison of customary detection by ECD/NPD with the novel atomic emission detector(AED)[J].Z Lebensm Unters Forsch,1994,198:473-479.
    20.Eisert R.,Levsen K.Determination of organophosphorus,triazine,and 2,6-dinitroanalyine Pesticides in aqueous samples via SPME and GC with NPD detection[J].Fresenius Journal of Analytical Chemistry,1995,351(6):555-562.
    21.Obana H.,Okihashi M.,Akutsu K.Determination of neonicotinoid pesticide residues in vegetables and fruits with solid phase extraction and liquid chromatography mass spectrometry[J].Journal of Agricultural and Food Chemistry,2003,51:2501-2505.
    22.赵燕燕,孙启时.中药重金属与农药残留的研究[J].药学实践杂志,2000,18(5):272-274.
    23.Sherma J.Current status of pesticide-residue analysis[J].J.AOAC Int.,1997,80:283-287.
    24.Sherry J.P.Environmental chemistry:the immunoassay option[J].Crit.Rev.Anal Chem.,1992,23:217-300.
    25.Meulenberg E.P.,Mulder W.H.,Stoks P.G.Immunoassays for pesticides[J].Environ.Sci.Technol.,1995,29:553-561.
    26.Baciochi R,Attina M,Lombardi G,Boni M.R.Fast determination of phenols in contaminated soils[J].Journal of Chromatography Analysis,2001,1:135-141.
    27.Alcocer M.J.C.,Dillon P.P.,Manning B.M.,Doyen C.,Lee H.A.,Daly S.J.,O'Kennedy R.,Morgan M.R.A.Use of phosphonic acid as a generic hapten in the production of broad specificity anti-organophosphate pesticide antibody[J].Journal of Agriculture and food Chemistry,2000,48:2228-2233.
    28.Conaway J.E.New trends in analytical technology and methods for pesticide residue analysis[J].J.Assoc.Off Anal Chem.,1991,74:715-717.
    29.Goodrow M.H.,Harrison R.O.,Hammock B.D.Hapten synthesis,antibody development,and competitive inhibition enzyme immunoassay for s-triazine herbicide[J].J.Agric.Food Chem.,1990,38:990-996.
    30.Centeno E.R.,Johnson W.J.Antibodies to 2 common pesticides-DDT and malathion[J].Fed.Proc.1967,26:704
    31.Engvall E.,Jonsson K.,Perlmann P.Enzyme-linked immunosorbent ssay Ⅱ.quantitative assay of protein antigen,immunoglobulin-G,by means of enzyme labelled antigen and antibody-coated tubes[J].Biochem.Biophys.Acta.1971,25:427-434.
    32.Langone J.J.,Van Vanukis H.Radioimmunoassay for dieldrin and aldrin[J].Res.Commun.Chem.PathoL Pharmacol.1975,10:163-171.
    33.Schneider P.,Hammock B.D.Influence of the ELISA format and the hapten-enzyme conjugate on the sensitivity of an immunoassay for s-triazine herbicides using monoclonal antibodies[J].J.Agric.Food Chem.1992,40:525-530.
    34.桂文君.农药残留ELISA速测试剂盒产业化技术研究-三唑磷、克百威ELISA试剂盒研制,浙江大学博士学位论文,2007.6.
    35.刘长武,王一茹,李治祥等.对硫磷人工抗原的合成与鉴定[J].环境科学学报,,1992,12(2):377-381.
    36.刘长武,张俊亭,王一茹等.应用酶联免疫技术分析水果中的对硫磷[J].环境科学学报.1993,13(1):87-92.
    37.王勇,李治祥.食品中三唑酮的酶联免疫吸附分析[J].分析化学,1993,21(9):1055-1057.
    38.王明林,胡庆永.应用酶联免疫吸附测定进行禾大壮残留动态的研究[J].山 东农业大学学报,1994,25(2):223-226.
    39.邓安平,Franek Milan.酶联免疫吸附分析测定水样中的阿特拉津[J].分析化学,1998,26(1):29-33.
    40.王刚垛,马兆扬.甲基对硫磷人工抗原的合成与鉴定[J].卫生研究,2000,29(2):69-70.
    41.王刚垛,鱼涛等.甲基对硫磷单克隆抗体的研制及鉴定[J].中华劳动卫生职业病杂志,2001,19(4):265-267.
    42.张卫国,马兆扬.甲基对氧磷人工抗原的合成与鉴定[J].免疫学杂志.2001,17(2):144-145.
    43.孙远明,赵肃清,张春艳,黄晓钰,雷红涛.甲胺磷人工抗原的合成与鉴定[J].免疫学杂志,2002,18(3):163-166.
    44.刘曙照,王莲,韦林洪.三唑磷的免疫分析技术研究[J].分析化学,2005,33(12):1697-1700.
    45.朱国念,杨挺,吴银良.抗克百威多克隆抗体的研制[J].中国农业科学,2002,35(8):1025-1029.
    46.施海燕,吴慧明,程敬丽等.2甲4氯人工抗原的合成与鉴定[J].农药学学报,2004,6(2):20-24.
    47.吴刚,黄雅丽,朱国念等.有机磷杀虫剂毒死蜱的免疫化学分析方法研究[J].中国农业科学,2004,37(3):382-386.
    48.金仁耀,桂文君,吴建祥,王春梅,朱国念.抗毒死蜱单克隆抗体的研制[J].浙江大学学报(农业与生命科学版),2006,32(6):591-597.
    49.桂文君,金仁耀,黄雅丽,朱国念.毒死蜱多克隆抗体的制备[J].农药学学报,2006,8(2):109-114.
    50.Gui W.J.,Jin R.Y.,Chen Z.L.,Cheng J.L.Zhu G.N.Hapten synthesis for enzyme linked immunoassay of the insecticide triazophos[J].Analytical Biochemistry,2006,357(1):9-14.
    51.Wang S.T.,Gui W.J.,Guo Y.R.,Zhu G.N.Preparation of a multi-hapten antigen and broad specificity polyclonal antibodies for a multiple pesticide immunoassay [J].Analytica Chimica Acta,2007,587(2):287-292.
    52.Liu Y.H.,Jin M.J.,Gui W.J.,Zhu G.N.Hapten design and indirect competitive immunoassay for parathion determination.Correlation with molecular modeling and principal component analysis [J]. Analytica Chimica Acta, 2007,591:173-182.
    
    53. Liang C.Z., Jin R.Y., Gui W.J., Zhu G.N. Enzyme-Linked Immunosorbent Assay Based on a Monoclonal Antibody for the Detection of the Insecticide Triazophos:Assay Optimization and Application to Environmental Samples [J]. Environ. Sci.Technol., 2007,41, 6783-6788.
    
    54. Zhu G.N., Jin M.J., Gui W.J., Guo Y.R., Jin R.Y., Wang C.M., Liang C.Z., Liu Y.H., Wang S.T. Development of a direct competitive enzyme-linked immunoassay for carbofuran in vegetables [J]. Food Chemistry, 2008,107(4): 1737-1742.
    
    55. Gui W.J., Wang S.T., Guo Y.R., Zhu G.N. Development of a one-step strip for the detection of triazophos residues in environmental samples [J]. Analytical Biochemistry, 2008, 377(2):202-208.
    
    56. Liang C.Z., Gui W.J., Zhao L., Qi Q., Zhu G.N. Optimization of a Direct Competitive Enzyme-Linked Immunoassay for Carbofuran and Application to Water Samples [J]. Analytical Letters, 2008,41(8):1304-1317.
    
    57. Jin R.Y., Gui W.J., Guo Y.R., Wang C.M., Wu J.X., Zhu G.N. Comparison of monoclonal antibody-based ELISA for triazophos between the indirect and direct formats [J]. Food and Agricultural Immunology, 2008,19(1):49-60.
    
    58. K(?)hler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity [J]. Nature, 1975,256: 495-497.
    
    59. Morrison S.L., Johnson M.J., Herzenberg L.A. and Oi V.T. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains [J]. Proc. Natl. Acad. Sci. USA, 1984, 81: 6851-6855.
    
    60. Huse W.D., Sastry L., Iverson S.A., Kang A.S., Alting-Mees M., Burton D.R.,Benkovic S.J., and Lerner R.A. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lamda [J]. Science, 1989, 246: 1275-1281.
    
    61. Karousos N.G., Aouabdi S., Way A.S., Reddy S.M. Quartzcrystal microbalance determination of organoposphorus and carbamate pesticides[J]. Analytica Chemica Acta, 2002,469(2): 189-196.
    
    62. Hee S.H., Pastan I., Lee B. Design of interchain disulfide bonds in the framework region of the Fv fragment of the monoclonal antibody B3[J]. PROTEINS:Structure, Function, and Genetics, 1994, 19:35-47.
    63.Pluckthun A.,Pack P.New protein engineering approaches to multivalent and bispecific antibody fragments[J].Immunotechnol.,1997,3:83-105.
    64.van Spriel A.B.,van Ojik H.H.,van de Winkel J.G.J.Immunotherapy perspective for bispecific antibodies[J].Immunol.Today,2000,21:391-397.
    65.Segal D.M.,Weiner G.J.,Weiner L.M.Biespecific antibodies in cancer thrapy[J].Curr.Opin.Immunol.,1999,11:558-562.
    66.Hoogenboom H.R.,Chames P.,Natural and designer binding sites made by phage display technology[J].Immunol.Today,2000,21:371-378.
    67.董志伟,王琰.抗体工程(第二版)[M].北京:北京医科大学出版社,2002,p109.
    68.Stenroos K.,West A.,Raivio E.,Lindqvist C.Expression of the mouse interleukin-2 receptor gamma chain in insect cells using a baculovirus expression vector-comparison with the human common gamma chain of N-linked glycosylation sites[J].Scandinavian Journal of Immunology,1997,45:140-144.
    69.Fischer R.,Drossard J.,Commandeur U.,Schillberg S.,Emans N.Toward molecular farming in the future:moving from diagnostic protein and antibody production in microbes to plants Biotechno[J].Appl.Biochem.,1999,30:101-108.
    70.Ostermann J.,Horowich A.L.,Neupert W.,et al.Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis[J].Nature,1992,341:125-132.
    71.Bachkareva E.S.,Lissin N.M.,Girshovich A.S.Transient association of newly synthesized unfolded proteins with the heat-shock GroEL protein[J].Nature,1988,336:254-257.
    72.Caspers P.,Stiger M.,Burn P.Overproduction of bacterial chaperones improves the solubility of recombinant protein tyrosine kinases in Escherichia coli.[J].Cell Mol.Biol.,1994,40:635-644.
    73.Grombie T.,Swaffield J.C.,Brown A.T.P.Protein folding within the cells is influenced by controlled rates of polypeptide elongation[J].J.Mol.Biol.,1992,228:7-12.
    74.Stader J.A.,Silhavy T.J.Engineering Escherichia coli.to secret heterologous gene products[J].Methods in Enzymol.,1990,185:166-187.
    75.Khan R.H.,Appa Rao K.B.C.,Eshwari A.N.S.,Totey S.M.,Panda A.K. Solubilization of recombinant ovine growth hormone with retention of native-like secondary structure and its refolding from the inclusion bodies of Escherichia coli.[J]. Biotechnol. Prog., 1998,14: 722-728.
    
    76. Samuel D., Kumar T.K., Ganesh G., et al. Proline inhibits aggregation during protein refolding [J]. Protein Sci., 2000, 9: 344-352.
    
    77. Clark E.D.B. Refolding of recombinant proteins [J]. Curr. Opin. Biotechnol,1998,9: 157-163.
    
    78. West S.M., Chaudhui J.B., Howell J.A. Improved protein refolding using hollow-fibre membrane dialysis [J]. Biotechnol. Bioeng., 1998, 57: 590-599.
    
    79. Cho T.H., Ann S.J., Lee E.K. Refolding of protein inclusion bodies directly from E. coli homogenate using expanded bed adsorption chromatography [J].Bioseparation, 2001,10: 189-196.
    
    80. Xie Y., Wetlaufer D.B. Control of aggregation in protein refolding: The temperature-leap tactic [J]. Protein Sci., 1996, 5: 517-523.
    
    81. Forciniti D. Protein refolding using aqueous two-phase systems [J].Chromatography A, 1994, 668: 95-100.
    
    82. Hagen A.J., Hatton T.A., Wang D.I.C. Protein refolding in reverse micelles [J].Biotechnol. Bioeng., 1989, 35: 955-965.
    
    83. Ward V.K., Sehneider P.G., Kreissig S.B., et al. Cloning, sequencing and expression of the Fab fragment of a monoclonal antibody to the herbicide atrazine [J]. Protein Engineering, 1993, 6: 981-988.
    
    84. Garrett S.D., Appleford D.J.A., Wyatt G.M., Lee H.A., Morgan M.R. Production of a recombinant anti-parathion antibody (scFv); stability in methanolic food extracts and comparison to an anti-parathion monoclonal antibody[J]. J. Agric.Food Chem., 1997,45: 4183-4189.
    
    85. Li Y., Cockburn W., Kilpatrick J., Whitelam G.C. Selection of rabbit single-chain Fv fragments against the herbicide atrazine using a new phage display system [J].Food & Agric. Immunol., 1999, 11:5-17.
    
    86. Alcocer M.J.C., Doyen C., Lee H.A., Morgan M.R.A. Properties of polyclonal,monoclonal, and recombinant antibodies recognizing the organophosphorus pesticide chlorpyrifos-ethyl[J]. J. Agric. Food Chem., 2000, 48: 4053-4059.
    
    87. Tout N.L., Yau K.Y.F., Trevors J.T., Lee H., Hall J.C. Synthesis of ligand-specific phage-display ScFv against the herbicide picloram by direct cloning from hyperimmunized mouse [J]. J. Agric. Food Chem., 2001, 49: 3628-3637.
    
    88. Rau D., Kramer K., Hock B. Cloning, functional expression and kinetic characterization of pesticide-selective Fab fragment variants derived by molecular evolution of variable antibody genes [J]. Anal. Bioanal. Chem., 2002, 372:261-267.
    
    89. Karmer K. Evolutionary affinity and selectivity optimization of a pesticide-selective antibody utilizing a hapten-selective immunoglobulin repertoire [J]. Environ. Sci. Technol., 2002, 36: 4892-4898.
    
    90. Strachan G., McElhiney J., Drever M.R., et al. Rapid selection of anti-hapten antibodies isolated from synthetic and semi-synthetic antibody phage display libraries expressed in Escherichia coli[J]. FEMS Microbiology Letters, 2002, 210:257-261.
    
    91. Nishi K., Imajuku Y., Nakata M., et al. Preparation and characterization of monoclonal and recombinant antibody specific to the insecticide malathion[J]. J.Pestic. Sci., 2003,28: 301-309.
    
    92. Nishi K., Ishiuchi M., Morimune K., Ohkawa H. Molecular and immunochemical characteristics of monoclonal and recombinant antibodies selective for the triazine herbicide simetryn and application to environmental analysis[J]. J. Agric.Food Chem., 2005, 53: 5096-5104.
    
    93. Li T., Zhang Q., Liu Y., et al. Production of recombinant ScFv antibodies against methamidophos from a phage-display library of a hyperimmunized mouse [J]. J.Agric. Food Chem., 2006, 54: 9085-9091.
    
    94. Li T., Cheng J., Hu B., et al. Construction, production, and characterization of recombinant scFv antibodies against methamidophos expressed in Pichia pastoris [J]. World J. Microbiol. Biotechnol., 2008,24:867-874.
    
    95. Lilley D.M. Molecular recognition of DNA structure by proteins that mediate genetic recombination [J]. J. Mol. Recognit., 1994, 7(2): 71-78.
    
    96. Iqbal S.S., Mayo M.W., Bruno J.G., Bronk B.V., Bart C.A., Chambers J.P.A.Review of molecular recognition technologies for detection of biological threat agents [J]. Biosens Bioelectron, 2000,15: 549-578.
    
    97. Vogel V. Thomas W.E., Craig D.W., Andre Krammer, Baneyx G. Structural insights into the mechanical regulation of molecular recognition sites trends [J].Biotechnol, 2001, 19: 416-423.
    98.徐筱杰,陈丽蓉.化学及生物体系中的分子识别[J].化学进展,1996,8:189-201.
    99.李春华.蛋白质-蛋白质对接方法的研究.北京工业大学博士学位论文.2003.4.
    100.于永辉.配体-受体相互作用与识别的研究.北京工业大学硕士学位论文.2003.5
    101.陈凯先,罗小民,蒋华良.药物分子设计的发展[J].中国科学院院刊,2000,15:265-269.
    102.Hwang J.K.,Liao W.F.Side-chain prediction by neural networks and simulated annealing optimization[J].Protein Engng.,1995,8:363-370.
    103.刘志杰,李维忠.基于微扰突变的蛋白质侧链安装的遗传算法[J].计算机与应用化学,1999,16(5):349-350.
    104.Sternberge M.J.E.,Bates P.A.,Kelley L.A,MacCallum R.M.Progress in protein structure prediction:assessment of CASP3[J].Current Opinion in Structural Biology,1999,9:368-373.
    105.Shorth D.,Simous K.T.,Baker D.Clustering of low-energy conformations near the native structure[J].Proc.Natl.Acad Sci.USA,1998,95:11158-11162.
    106.Wodak S.J.,Janin J.Computer analysis of protein-protein interaction[J].J.Mol.Biol.,1978,124:323-342.
    107.KuntZ I.D.,Blaney J.M.,Oatley S.J.,Langridge R.,Ferrin T.E.A geometric approach to macromolecule-ligand interaetions[J].J.Mol.Biol.,1982,161:269-288.
    108.Goodsell D.S.,Olson A.J.Automated docking of substrates to proteins by simulated annealing[J].Proteins,1990,8:195-202.
    109.Morris G.M.,Goodsell D.S.,Halliday R.S.,Huey R.,Hart W.E.,Belew R.K.,Olson A.J.Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function[J].J.Comp.Chem.,1998,19:1639-1662.
    110.Affinity user guide[M].MSI Inc.San Diego,U.S.A.,2002.
    111.Holland J.Adaptation in nature and artificial systems[M].University of Michigan Press,1975,p120-142.
    112.Chambers S.J.,Wyatt G.M.,Garrett S.D.,Morgan M.R.A.Alteration of the binding characteristics of a recombinant scFv anti-parathion antibody-2.Computer modeling of hapten docking and correlation with ELISA binding[J]. Food & Agric.Immunol.,1999,11:219-228.
    113.Wyatt G.M.,Garrett S.D.,Lee H.A.,Morgan M.R.A.Alteration of the binding characteristics of a recombinant scFv anti-parathion antibody-1.Mutagenesis targeted at the V H CDR 3 domain[J].Food & Agric.Immunol.,1999,11:207-218.
    114.金仁耀.抗克百威-三唑磷双特异性单克隆抗体研究,浙江大学博士学位论文,2008.6
    115.Wie S.I.,Hammock B.D.Comparison of coating and immunizing antigen structure on the sensitivity and specificity of immunoassays for benzoylphenylurea insecticides[J].J.Agric.Food Chem.,1984,32:1294-1301.
    116.KimY.J.,Cho Y.A.,Hammock B.D.,et al.Synthesis of haptens for immunoassay of organophosphorus pesticides and effect of heterology in hapten spacer arm length on immunoassay sensitivity[J].Analytica Chimica Acta,2003,475:85-96.
    117.Gerdes M.,Meusel M.,Spener F.Development of a displacement immunoassay by exploiting cross-reactivity of a monoclonal antibody[J].Anal Biochem.,1997,252:198-204.
    118.Casino P.,Morais S.,Puchades R.,Maquieira A.Evaluation of enzyme-linked immunoassays for the determination of chloroacetanilides in water and soils[J].Environ.Sci.Technol.,2001,35:4111-4119.
    119.Manclus J.J.,Montoya A.Development of enzyme-linked immunosorbent assays for 3,5,6-trichloro-2-pyridinol.2.Assay optimization and application to environmental water samples[J].J.Agric.Food Chem.,1996,44:3710-3716.
    120.Manclus J.J.,Montoya A.Development of enzyme-linked immunosorbent assays for the insecticide chlorpyrifos.2.Assay optimization and application to environmental waters[J].J.Agric.Food Chem.,1996,44:4063-4070.
    121.Abad A.,Moreno M.J.,Montoya A.Development of monoclonal antibody-based immunoassays to the N-methylcarbarnate pesticide carbofuran[J].J.Agric.Food Chem.,1999,47:2475-2485.
    122.Abad,A.;Montoya,A.Development of an enzyme-linked immunosorbent assay to carbaryl.2.Assay optimization and application to the analysis of water samples [J].J.Agric.Food Chem.,1997,45:1495-1501.
    123.Harrison R.O.,Brimfield A.A.,Nelson J.O.Development of a monoclonal antibody based enzyme immunoassay method for analysis of maleic hydrazide[J]. J. Agric. Food Chem., 1989, 37: 958-964.
    
    124.Li Q.X., Zhao M.S., Gee S.J., Kurth M.J., Seiber J.N., Hammock B.D.Development of enzyme-linked immimosorbent assays for 4-nitrophenol and substituted 4-nitrophenols [J]. J. Agric. Food Chem., 1991, 39: 1685-1692.
    
    125. Lee J.K., Ahn K.C., Park O.S., Kang S.Y., Hammock B.D. Development of an ELISA for the detection of the residues of the insecticide imidacloprid in agricultural and environmental[J]. J. Agric. Food Chem., 2001,49: 2159-2167.
    
    126. Lin K.D, Yuan D.X, Deng Y.Z, Chen M. Hydrolytic products and kinetics of triazophos in buffered and alkaline solutions with different values of Ph [J]. J.Agric. Food Chem., 2004, 52: 5404-5411.
    
    127. Vanderlaan M., Stanker L.H., Watkins B.E. Improvement and application of an immunoassay for screening environmental samples for dioxin contamination [J].Environ. Toxicol. Chem., 1998,7: 859-870.
    
    128. Lee N., Skerritt J.J., McAdam D.P. Hapten synthesis and development of ELISAs for detection of endosulfan in water and soil [J]. J. Agric. Food Chem., 1995, 43:1730-1739.
    
    129. Sugawara Y, Gee S.J., Sanborn J.R., Gilman S.D., Hammock B.D. Development of highly sensitive enzyme-linked immunosorbent assay base on polyclonal antibodies for the detection of poly chlorinated dibenzo-p-dioxins [J]. Anal. Chem.,1998,70:1092-1099.
    
    130. Voogd C.E., van der Stel J.J., Jacobs J.J.J.A.A. On the mutagenic action of some enzyme immunoassay substrates [J]. J. Immunol. Methods, 1980, 36:55.
    
    131. Garner R.C., Walpole A.L., Rose F.L. Testing of some benzidine analogues for microsomal activation to bacterial mutagens [J]. Cancer Lett., 1975, 1:39.
    
    132. Holland V.R., Saunders B.C., Rose F.L., Walpole A.L. A safer substitute for benzidine in the detection of blood [J]. Tetrahedron, 1974, 30: 3299.
    
    133. Hosoda H., Takasaki W., Oe T., Tsukamoto R., Nambara T. A comparison of chromogenic substrates for horseradish peroxidase as a label in steroid enzyme immunoassay [J]. Chem. Pharm. Bull, 1986,34: 4177.
    
    134. Thomson C.A., Sporns P. Variation in enzyme-linked immunosorbent assay (ELISA) components to lower sulfathiazole detection limits [J], J. food Sci., 1995,60: 872.
    
    135. Liem H.H., Cardenas F., Tavassoli M., Poh-Fitzpatrick M.B., Muller-Eberhard U.Quantitative determination of hemoglobin and cytochemical staining for peroxidase using 3,3',5,5'-tetramethylbenzidine dihydrochloride,a safe substitute for benzidine[J].Anal.Biochem.,1979,98:388.
    136.谢光东.8%三唑磷微乳剂的研制及田间药效试验[J].农药,2002,41:19-20.
    137.王振荣,李步清.农药食品大全(第2版)[M].北京:中国商业出版社,1998:P72-73.
    138.Singh M.,Rishi S.488 Age and gender related diference in neurotoxicity of an organophosphate pesticide-triazophos in young and adult rats[J].Toxicol.Letters,2003,144:131.
    139.Singh M.,Rishi S.Plasma acetylchofinesterase as a biomarker of triazophos neurotoxicity in young and adult rats[J].Environmental Toxicology and Pharmacology,2005,19:471-476.
    140.Frenieh G.,Vidal J.L.M.,Parfilla P.,et al.Resolution of folpet,procymidone and triazophos in high-performance liquid chromatography-diode array detection by using partial least squares calibration to cross-sections of spectrochromatograms [J].Journal of Chromatography A,1997,778:183-192.
    141.钟志,刘琴,顾蓓乔,等.气相色谱法测定水产品中三唑磷农药残留量[J].浙江海洋学院学报,2006,25(2):196-199.
    142.季玉玲,林国庆,周达彪,等.蔬菜中三唑磷残留测试方法研究[J].农药,1997,36(7):30-31.
    143.黎其万,潘灿平.农药残留免疫分析方法及其应用研究进展[J].西南农业学报,2004,17(2):248-252.
    144.Orlandi R.,G(u|¨)ssow D.G.,Jones P.T.,Winter G.Cloning immunoglobulin bariable domains for expression by the polymerase chain reaction[J].Proc.Natl.Acad Sci.USA,1989,86:3833-3837.
    145.Wang Z.D.,Raifu M.,Howard M.,Smith L.,Hansen D.,Goldsby R.,Ratner D.Universal PCR amplification of mouse immunoglobulin gene variable regions:the design of degenerate primers and an assessment of the effect of DNA polymerase 3' to 5' exonuclease activity[J].Recombinant Techmology,2000,233:167-177.
    146.董志伟,王琰.抗体工程(第二版)[M].北京:北京医科大学出版社,2002,p309-314.
    147.Luo D.,Mah N.,Krantz M.,et al.VL-linker-VH orientation-dependent expression of single chain Fv containing an engineered disulfide-stabilized bond in the framework regions[J].J.Bioehem.,1995,118:825-831.
    148.Kurucz I.,Titus J.A.,Jost C.R.,et al.Correct disulfide pairing and efficient refolding of detergent-solubilized single-chain Fv protein from bacterial inclusion bodies[J].Mol.Immunol.,1995,32:1443-1452.
    149.Reiter Y.,Brinkmann U.,Kreitman R.T.,et al.Stabilization of the Fv fragments in recombinant immunotoxins by disulfide bonds engineered into conserved framework regions[J].Biochemistry,1994,33:5451-5459.
    150.Reiter Y.,Brinkmann U.,Lee B.,et al.Engineering antibody Fv Fragments for cancer detection and therapy:disulfide-stabilized Fv fragments[J].Nature Biotechnol.,1996,14:1239-1245.
    151.Anfinsen C.B.Principles that govern the folding of protein chain[J].Science,1973,181:223-230.
    152.Greer J.Comparative modeling of homologous proteins[J].J.Method.Enzym.,1991,202:239-252.
    153.Johnson M.S.,Srinivasan N.,Sowdhamini R.,Blundell T.L.Knowledge-based protein modeling[J].Crit.Rev.Bioehem.Mol.Biol.,1994,29:1-68.
    154.Spellmeyer D.C.,Swope W.C.,The effect of workstation technology on methods in drug design and discovery[J].Perspect.Drug Discov.Des.,1993,1:359-370.
    155.Boyd D.B.,Milosevich S.A.F,Supercomputing and drug discovery[J].Perspect.Drug Discov.Des.,1993,1:345-358.
    156.Quintero-Hernandez V.,Juarez-Gonzalez V.R.,Ortiz-Leon M.,et al.The change of the scFv into the Fab format improves the stability and in vivo toxin neutralization capacity of recombinant antibodies[J].Molec.Immunol.,2007,44:307-1315.
    157.Ulrich B.,Reiter Y.,Jung S.H.,et al.A recombinant immunotoxin containing a disulfide-stabilized Fv fragment[J].Proc.Natl.Acad Sci.USA,1993,90:7538-7542.
    158.Young N.M.,MacKenzie C.R.,Narang S.A.,et al.Thermal stabilization of a single-chain Fv antibody fragment by introduction of a disulphide bond[J].FEBS Letters,1995,377:135-139.
    159.孙志伟,俞炜源,吕国华等.二硫键稳定的抗肝癌人源化单链抗体-突变体人TNFα融合基因在CHO(dhfr~-)细胞中的表达[J].军事医学科学院院刊,2005, 25:280-284.
    160.王建丽,郑玉玲,王保莉等.B3(ScFv)靶向超抗原的制备及活性鉴定[J].中国生物化学和分子生物学报.2005,21:565-570.
    161.吴乃虎.基因工程原理(第二版)[M].北京:科学出版社,1998,P89-99.
    162.Barik S.,Galinski M.S.Megaprimer method of PCR:.increased template concentration improves yield[J].Bio.Techniques,1991,44:489-490.
    163.Angelaccio S.,Carmela M.,Patti B.Site-directed mutagenesis by the megaprimer PCR method:variations on a theme for simultaneous introduction of multiple mutations.Analytical biochemistry,2002,306:346-349.