人系膜细胞中TNFα促进IP_3R1的表达及相关信号传导通路的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     肝肾综合征(HRS)的主要发病机制是肾小球滤过率(GFR)明显下降。已知肾小球系膜细胞(GMCs)收缩可引起肾小球滤过面积减少。HRS患者血中肿瘤坏死因α(TNFα)水平异常升高,TNFα是否参与了GMCs收缩引起的GFR下降尚不清楚。胞浆游离Ca2+浓度([Ca2+]i)升高与GMCs收缩密切相关。1,4,5-三磷酸肌醇受体(IP3Rs)是细胞内重要的Ca2+释放通道。因此GMCs中IP3Rs表达的多少与其对缩血管物质的敏感性有着密切联系。本研究用TNFα处理原代培养的人肾小球系膜细胞(HMCs),实时定量PCR和免疫印迹检测IP3R1mRNA和蛋白的表达;并应用信号转导抑制剂及瞬时转染活性失活的负显性突变体质粒检测对TNFα对IP3R1mRNA和(或)蛋白的影响,明确IP3R1的关键上游信号蛋白并探究肿瘤坏死因受体(TNFR)在此信号通路中的作用。初步明确TNFα促进IP3R1表达的信号通路,以期为肝肾综合征GFR下降的发生机制和防治思路提供理论依据。材料与方法
     1、材料
     人肾小球系膜细胞(HMC)和人肾小球系膜细胞培养液(MCM)购至美国sccience cell公司;TNFα,兔抗人TNFR1抗体、兔抗人TNFR2抗体,R&D公司;兔抗人I型IP3R抗体,Chemicon International公司;兔抗人PKCα抗体,p-PKCα(thr637)抗体,PKC总抗体购至Celll singnaling technology公司;兔抗人β-actin多克隆抗体,Santa Cruz公司;anti-HA抗体购至Sigma公司;辣根过氧化物酶标记山羊抗兔二抗,Santa Cruz; PP1、rottleri、U73122、D609和Safingol购至Calbiochen公司;PepTagRAssay for Non-Radioactive Detection of Protein Kinase C Kit, promega公司;Enhanced chemiluminescence (ECL)试剂盒,pierce公司;Trizol试剂,Invitrogen公司;引物合成,Takara公司;逆转录试剂盒ExScriptTM RT Reagent Kit、PCR试剂盒SYBR(?) premix EX TaqTM(TaKaRa)、Takara公司;人野生型PKCα(pHACE-WT-PKCα),活性失活的PKCα(pHACE-DN-PKCα)质粒及pCDNA3.0质粒由Dr. Jae-Won Soh, Inha University in Korea.惠赠(已经大连宝生物工程有限公司测序分析)。去内毒素质粒小提及中提试剂盒,天能公司;转染试剂盒:Liprofetamin-2000, invitrogen公司。
     2、方法
     (1)分组:
     1) TNFα不同时间点处理细胞分组1:TNFα处理0h、2h、4h、8h、24h组。
     2) TNFα不同时间点处理细胞分组2:TNFα处理0h、4h、8h、24h组。
     3)PMA预处理HMC细胞模型:①TNFα处理Oh组(T0h组)、
     ②TNFα处理24h组(T24h组)、
     ③PMA+TNFα处理组(PMA+T组)
     4)多种抑制剂预处理HMC细胞模型1
     ①TNFα处理0h组(T0h组)、②TNFα处理8h组(T8h组)
     ②safingol处理组(Sa组)、④PP1组(PP1组)、
     ⑤rottlerin组(rot组)、⑥U73122组(U组)、
     ⑦D609组(D组)⑧Sa+T组、⑨PP1+T组、
     ⑩rot+T组、(?)U7+T组、(?)D+T组。
     5)多种抑制剂预处理HMC细胞模型2
     ①TNFα处理0h组(T0h组)、②TNFα处理24h组(T24h组)、
     ③Sa+T组、④PP1+T组、⑤rot+T组、⑥U7+T组、⑦D+T组
     6)阻断PLC, PKCα信号通路细胞模型:
     ①TNFα处理0h组(T0h组)、②TNFα处理8h组(T8h组)、
     ③safingol+TNFα(Sa+T组)、④U73122+TNFα组(U+T组)、
     ⑤D609+TNFα组(D+T组)。
     7)瞬时转染细胞模型:
     ①正常对照组(control组)②TNFα刺激8h组或24h(T8h或T24h)
     ③pCDNA3. 0+TNFα④pHACE-WT-PKCα+TNFα⑤HACE-DN-PKCα+TNFα
     8) TNFR1抗体或TNFR2抗体预处理HMC细胞模型:
     ①正常对照组(T0h组)②TNFα刺激8h组或24h组(T8h或T24h组)
     ③TNFR1抗体+TNFα组(TR1+T组)④TNFR2抗体+TNFα组(TR2+T组)
     (2)应用Western blot、Real-time PCR方法检测TNFα对HMCs中IP3R1mRNA和蛋白表达的影响。
     (3)应用PMA预处理HMCs, Western blot检测对TNFα诱导IP3R1蛋白表达的影响。
     (4)应用多种信号转导抑制剂预处理HMCs, Western blot和Real-time PCR方法检测TNFα对HMCs中IP3R1mRNA和蛋白表达的影响。
     (5)应用Western blot,非放射性PKC测活方法检测TNFα对HMCs中PKCα的活化和(或)PKCα蛋白表达的影响。
     (6)瞬时转染野生型和活性失活PKCα质粒,Western blot和Real-time PCR方法检测TNFα对HMCs中IP3R1mRNA和蛋白表达的影响。
     (7)应用TNFR1抗体或TNFR2抗体预处理HMCs, Western blot检测对TNFα诱导IP3R1蛋白和p-PKCα蛋白表达的影响。
     结果
     1、实时定量PCR检测各组细胞IP3R1mRNA表达
     与TOh比较,TNFα处理组IP3R1mRNA的表达明显增加,2h到8h IP3R1mRNA稳定逐渐增加,于8h达高峰(P<0.001)。
     2、Western Blot检测各组细胞IP3R1蛋白表达
     与TOh比较,TNFα处理组IP3R1的表达明显增加,4h开始升高,至24h IP3R1蛋白升高达高峰,统计学有性显著差异(P<0.001)。
     3、PMA下调内源性蛋白激酶C (PKC)对TNFα诱导IP3R1蛋白表达的影响
     与T24h相比,PMA+T组,IP3R1蛋白表达明显下降(P<0.001)。PMA刺激HMCs24小时后,总PKC的表达与对照组相比明显下降。
     4、多种信号抑制剂对TNFα诱导IP3R1mRNA的影响
     与T8h组比较,Sa+T和D+T组IP3R1 mRNA的表达明显下降,有统计学差异(P<0.05),而U+T, PP1+T, rot+T组IP3R1 mRNA的表达无明显变化(P>0.05)。
     5、多种信号抑制剂对TNFα诱导IP3R1蛋白表达的影响
     与T24h组比较,Sa+T和D+T组,IP3R1蛋白的表达明显下降(P<0.001),有统计学意义,而U+T, PP1+T, rot+T组对TNFα上调IP3R1蛋白的表达无明显影响(P>0.05)。
     6、Western blot分析PKCα和p-PKCα蛋白表达
     PKCα蛋白表达:HMCs中PKCα蛋白呈高水平表达,但PKCα蛋白的表达在TNFα处理各组与对照组间无显著差异(P>0.05)。
     p-PKCα蛋白表达:与T0h比较,TNFα刺激8h组p-PKCα蛋白表达明显增加(P<0.01),有统计学差异。
     7、Western blot分析抑制剂对TNFα活化PKCα的影响
     与T8h比较,Sa+T和D+T组p-PKCα蛋白表达显著减少(P<0.01),且差异具有统计学意义。
     8、PKCα活性检测
     TNFα处理8h PKCα活性最强(P<0.01),统计学有显著性差异。而与T8h比较,Sa+T和D+T组PKCα活性明显减弱。
     9、实时定量PCR和Western blot检测瞬时转染野生型和活性失活PKCα质粒后IP3R1mRNA和蛋白的表达
     与T8h组比较,pHACE-WT-PKCα+TNFα组IP3R1mRNA的表达明显增加,统计学上有显著差异(P<0.01);而pHACE-DN-PKCα+TNFα组IP3R1mRNA的表达明显降低(P<0.01)。与T24h组比较,pHACE-WT-PKCα+TNFα组IP3R1蛋白表达明显增加,统计学上有显著差异(P<0.001);而pHACE-DN-PKCα+TNFα组IP3R1mRNA的表达明显降低,统计学上有显著差异(P<0.001)。
     10、应用TNFR1抗体或TNFR2抗体预处理对p-PKCα和IP3R1蛋白表达的影响
     与T8h组比较,TRl抗体+TNFα组p-PKCα蛋白表达明显下降,统计学分析有显著性差异(P<0.001);而TR2抗体+TNFα组,p-PKCα蛋白表达无明显变化。与T24h组比较,TR1抗体+TNFα组和TR2抗体+TNFα组IP3R1蛋白表达均有不同程度的下降,并且统计学分析均有显著差异(P=0.002;P=0.02)。
     结论
     1、TNFα处理的HMCs中,IP3R1mRNA和蛋白的表达明显增加。
     2、TNFα处理的HMCs中,PKCα存在明显激活现象并与TNFα上调IP3R1蛋白表达密切相关。
     3、TNFα通过TFNR1/PC-PLC途径活化PKCα.
     4、TNFα通过TFNR1/PC-PLC/PKCα和TNFR2独立的两条信号通路上调IP3R1的表达的。
Aim
     The reduction in glomerular filtration rate (GFR) is the key pathogenesis of hepatorenal syndrome (HRS). Glomerular mesangial cells (GMCs) are closely associated with glomerular filtration area. Cell contraction is closely related to changes in the intracellular calcium concentration ([Ca2+]i). The inositol 1,4,5-trisphosphate receptors (IP3Rs) are the main intracellular Ca2+ release channels. Obviously high plasma level of tumor necrosis factor-α(TNFα) is also found in HRS. There is little known about the precise mechanisms of TNFαin decreased GFR. Is there some interaction between the increased TNFαlevels and the contraction of GMCs? Theoretically, the change in IP3R1 expression level has been linked to regulation of [Ca2+] i.
     In order to explore the possible pathogenesis, we evalued the IP3R1 mRNA and proetin levels of HMCs treated by TNFαwith Real time quantitative PCR and Western blot methods. Furthermore, the corresponding singaling mechanisms by which TNFαinfluenced on the IP3R1 expression was also tested with various singnal transduction inhibitors and domain negative constructs transient transfection methods. Identification of TNFα-dependent IP3R1 genes singnal transduction may also help to better elucidate the biological functions of these key enzymes and this pathway may become an important target for future therapies in TNFα-mediated sever hepatitis.
     Materials and methods
     1、Materials
     Primary culturing HMCs and Mesangial cell medium (MCM 4201) were obtained from the Science Cell Research Laboratories (San Diego, CA). HMCs were grown in MCM according to the supplier's instructions. These cells are characterized by the manufacturer using morphological appearances and immunofluorescent method with various antibodies, including anti-Thy-1 and fibronectin.
     2、Methods
     (1) Groups depending on the requirements of experiments
     1) Primarily cultured GMCs were divided into TNFα-treated 0h,2h,4h,8h,24h
     2) Primarily cultured GMCs were divided into TNFα-treated 4h,8h,12h,24h
     3) the HMCs model of Pretreatment with PMA
     ①TNFα-treated Oh group (control group, TO group)
     ②TNFα-treated 24h group (T24h group)
     ③PMA+TNFαgroup (PMA+T group)
     4) the HMCs model 1 of pretreatment with various inhibitors
     ①TNFα-treated 0 h group (T0 group)②TNFα-treated 8 h group (T8h group)
     ③safingol-treated group (Sa group)④PP1-treated group (PP1 group)
     ⑤rottlerin-treated group (rot group)⑥U73122-treated group (U group)
     ⑦D609-treated group (D group)
     ⑧TNFα-safingol cotreated group (S+T group)
     ⑨TNFα-PP1 cotreated group (PP1+T group)
     ⑩TNFα-rottlerin cotreated group (rot+T group)
     (?)TNFα-U73122 cotreated group (U7+T group)
     (?)TNFα-D609 cotreated group (D+T group)
     5) the HMCs model 2 of pretreatment with various inhibitors
     ①TNFα-treated 0 h group (T0 group)②TNFα-treated 24 h group (T24h group)
     ③TNFα-safingol cotreated group (S+T group)④TNFα-PP1 cotreated group
     (PP1+T group)⑤TNFα-rottlerin cotreated group (rot+T group)
     ⑥TNFα-U73122 cotreated group (U7+T group)
     ⑦TNFα-D609 cotreated group (D+T group)
     6) the HMCs model of blocking PLC and PKCasignaling pathway
     ①TNFα-treated 0 h group (T0 group)②TNFα-treated 24 h group (T24h group)
     ③TNFα-safingol cotreated group (S+T group)④TNFα-U73122 cotreated group (U7+T group)⑤TNFα-D609 cotreated group (D+T group)
     7) the HMCs model of transient transfection
     ①the nomal group (control group)
     ②TNFα-treated 8 h or 24 hgroup (T8h or T24h group)③pCDNA3.0+TNFα
     ④pHACE-WT-PKCα+TNFα⑤pHACE-DN-PKCα+TNFα
     8) the HMCs model of Pretreatment with anti-TNFR1 antibody or anti-TNFR1 antibody
     ①the nomal group (control group)
     ②TNFα-treated 8 h or 24 hgroup (T8h or T24h group)
     ③TNFR1-TNFαcotreated group (TR1+T)
     ④TNFR2-TNFαcotreated group (TR2+T)
     (2) The effects of TNFαon the leval of IP3R1 mRNA determined by Quantitative real-time polymerase chain reaction and IP3R1 protein determined by western blot
     (3) Effects of pretreatment with PMA on TNFα-induced IP3R1 protein expression
     (4) Effects of cell signaling inhibitors on TNFα-induced IP3R1 mRNA and protein expression
     (5) Effects of TNFαon intracellular PKCαsignaling pathways determined by western blot and non-radioactive protein kinase c assay.
     (6) Effects of transient transfection of HMCs with a dominant-negative PKCαconstruct on TNFα-induced IP3R1 mRNA and protein expression.
     (7) Effects of anti-TNFR1/2 antibody on TNFα-induced IP3R1 expression and PKCαactivity in HMCs
     Results
     1. Real time PCR analysis of IP3R1 mRNA
     We found an increase of IP3RI mRNA expression in TNFα-treated 2 h-24 h groups compared with control group. The maximal effect was seen at 8 h (P<0.01).
     2. Western blot analysis of IP3R1 protein
     Our results showed low level expression of IP3R1 protein in control group. The expression of the IP3R1 protein obviously increased in TNFα-treated 4 h-24 h groups. The maximal effect was seen at 24 h group (P<0.01)
     3. Effects of PKC downregulation by PMA on TNFα-induced IP3R1 protein expression.
     Expression of the IP3R1 protein was significantly reduced in HMCs that were pretreated by PMA prior to TNFαexposure compared with TNFαstimulation alone (P <0.01).
     4. Effects of cell signaling inhibitors on TNFα-induced IP3R1 mRNA and protein expression.
     IP3R1 protein expression was significantly attenuated in the group that was pretreated with D-609 or safingol prior to TNFαexposure compared with TNFαstimulation alone (P<0.01). wherears the effects of TNFαwas not affected by U73122, rottlerin or PP1 pretreament.
     5. Effects of cell signaling inhibitors on TNFα-induced IP3R1 protein
     IP3R1 protein expression was significantly attenuated in the group that was pretreated with D-609 or safingol prior to TNFαexposure compared with TNFαstimulation alone (P<0.01). wherears the effects of TNFαwas not affected by U73122, rottlerin or PP1 pretreament.
     6. Effects of TNFαon intracellular PKCαsignaling pathways
     TNFαpromoted of PKCαwith maximal phosphorylation that occurred 8 h post-stimulation while the total PKCαprotein expression did not differ between the different groups.
     7. Effects of cell signaling inhibitors on TNFα-induced PKCαactivation
     Expression of the p-PKCαprotein was significantly reduced in HMCs that were pretreated by D609 and safingol prior to TNFαexposure compared with TNFαstimulation alone (P<0.01). wherears the effects of TNFαwas not affected by U73122.
     8. PKCαactivity assays
     There was mild activity of PKCαin control group. TNFαcould strikingly increase the activity of PKCαand the maximal effect was seen at 8 h. PKCαactivation was attenuated by the pretreatment of HMCs with D609 and safingol.
     9. Effects of transient transfection of HMCs with a dominant-negative PKCαconstruct on TNFα-induced IP3R1 mRNA and protein expression.
     Compared with TNFαstimulation alone, IP3R1 mRNA by the use of qRT-PCR and protein expression by western blot were significantly decreased in HMCs transfected with the pHACE-DN-PKCαconstruct (P<0.01), but increased in cells transfected with the pHACE-WT-PKCαconstruct in response to TNFα.
     10. Effects of anti-TNFR1/2 antibody on TNFα-induced IP3R1 expression and PKCαactivity in HMCs
     IP3R1 expression were marked reduced in the groups pretreated with anti-TNFR1 or anti-TNFR2 antibodies to various degrees (P=0.002; P=0.02). while phosphorylated PKCαexpression was significantly blocked only by anti-TNFR1 pretreatment (P<0.01).
     Conclusion
     1、TNFαhas a potent ability to increase the protein expression of IP3R1 in HMCs. The increased protein expression of IP3R1 may be due to increased synthesis of IP3R1 protein as we found an increase in mRNA levels prior to observing an increase in protein levels.
     2、PKCαactivity induced by TNFαwas closely associated with TNFα-induced IP3R1 upregulation in HMCs.
     3. TNFα/TNFR1/PC-PLC dependent but not TNFR2 or PI-PLC might mediate TNFα-enhanced PKCαactivity in HMCs.
     4% TNFαincreased the expression of IP3R1 from HMCs, and this was mediated, at least in part, through the TNFR1/PC-PLC/PKCαand TNFR2 signaling pathways.
引文
1 Biswas KD, Jain AK. Hepatorenal syndrome. Trop Gastroenterol.2002; 23:113-116.
    2 Hartleb M. Circulatory dysfunction syndrome associated with liver cirrhosis. Przegl Epidemiol. 2005; 59:549-558.
    3 Vassalli P. The pathophysiology of tumor necrosis factors. Annu Rev Immunol.2002; 10: 411-452.
    4 金惠铭,刘清行,曹翔.TNFa引起的微血管内皮细胞功能障碍及其细胞分子机制.微循环学杂志.2000;10:5-6.
    5 Diaz LM, Moreno SA. Severe sepsis as a cause of acute renal failure. Nefrologia.2006; 26: 439-444.
    6 Song HL, Lv S, Liu P. The roles of tumor necrosis factor-alpha in colon tight junction protein expression and intestinal mucosa structure in a mouse model of acute liver failure. BMC Gastroenterol.2009; 9:70.
    7 Lu JW, Wang H, Yan-Li J, Zhang C, et al. Differential effects of pyrrolidine dithiocarbamate on TNF-alpha-mediated liver injury in two different models of fulminant hepatitis. J Hepatol. 2008; 48:442-452.
    8 Takakura, M., K. Tokushige, et al. Possible involvement of cytokine gene polymorphisms in fulminant hepatitis. J Gastroenterol Hepatol.2007; 22:1271-1277.
    9 Knotek M, Rogachev B, Wang W, et al. Endotoxemic renal failure in mice:Role of tumor necrosis factor independent of inducible nitric oxide synthase. Kidney Int.2001; 59: 2243-2249.
    10 Whitfield K, Rambaldi A, Wetterslev J, et al. Pentoxifylline for alcoholic hepatitis. Cochrane Database Syst Rev.2009; 7:CD007339.
    11 Taylor CW, da Fonseca PC, Morris EP. IP(3) receptors:the search for structure. Trends Biochem Sci.2004; 29:210-219.
    12 Sahu SK, Gummadi SN, Manoj N, et al. Phospholipid scramblases:an overview. Arch Biochem Biophys.2007; 462:103-114.
    13 Yamada J, Ohkusa T, Nao T, et al. Up-regulation of inositol 1,4,5 trisphosphate receptor expression in atrial tissue in patients with chronic atrial fibrillation. J Am Coll Cardiol.2001; 37:1111-1119.
    14 Krizanova O, Krepsova K, Micutkova L, et al. Inositol 1,4,5-Trisphosphate Receptors in the Heart Compared to Other Tissues Are Differently Modulated by Stress. Ann N Y Acad Sci. 2004:310-314.
    15 Auger-Messier M, Arguin G, Chaloux B, et al. Down-Regulation of Inositol 1,4,5-Trisphosphate Receptor in Cells Stably Expressing the Constitutively Active Angiotensin II N111G-AT1 Receptor. Mol Endocrinol.2004; 18:2967-2980.
    16 Jurkovicova D, Sedlakova B, Lacinova L, et al.Hypoxia differently modulates gene expression of inositol 1,4,5-trisphosphate receptors in mouse kidney and HEK 293 cell line. Ann N Y Acad Sci.2008; 1148:421-427.
    17 Feng Z, Wei C, Chen X, et al. Essential role of Ca2+ release channels in angiotensin Ⅱ-induced Ca2+ oscillations and mesangial cell contraction. Kidney Int.2006; 70:130-138.
    18 Schlondorff D. Roles of the mesangium in glomerular function. Kidney Int.1996; 49: 1583-1585.
    19 Davies, M. The mesangial cell:A tissue culture view. Kidney Int 1994; 45:320-327.
    20 Wang JY, Liu HY, Liu P. Expression of type I inositoll,4,5-triphosphate receptor on rat glomerular and afferent arterioles in a model of liver cirrhosis. Zhonghua Gan Bing Za Zhi 2004; 12:609-611.
    21 Wen Y, Cui W, Liu P. Type I inositol 1,4,5-triphosphate receptors increase in kidney of mice with fulminant hepatic failure. World J Gastroenterol.2007; 13:2344-2348.
    22 Parris JR, Cobban HJ, Littlejohn AF, et al. Tumour necrosis factor-alpha activates a calcium sensitization pathway in guinea-pig bronchial smooth muscle. J Physiol:1999; 15:561-569.
    23 Giardina JB, Green GM, Cockrell KL, et al. TNF-alpha enhances contraction and inhibits endothelial NO-cGMP relaxation in systemic vessels of pregnant rats. Am J Physiol Regul Integr Comp Physiol.2002; 283:R130-143.
    24 Hu SJ, Huang YW, Yang CH, et al. Effects of tumor necrosis factor alpha on expression of phospholamban and intracellular calcium in cardiomyocytes. Zhong guo Yi Xue Ke Xue Yuan Xue Bao.2005; 27:767-771.
    25 Wen Y, Wang JY, Liu P. Tumor necrosis factor-alpha enhances the effect of endothelin on renal vasoconstriction in isolated perfused rat kidney. Zhonghua Gan Zang Bing Za Zhi.2003; 11:583-585.
    26王静艳,孙景春,吕飒等.肿瘤坏死因子-α增强大鼠肾小球前小动脉平滑肌细胞内Ⅰ型1,4,5-三磷酸肌醇受体表达中华内科学杂志.2002;41:86-89.
    27 Park CW, Kim JH, Lee JH, et al. High glucose-induced intercellular adhesion molecule-1 (ICAM-1) expression through an osmotic effect in rat mesangial cells is PKC-NF-kappa B-dependent. Diabetologia.2000; 43:1544-1553.
    28 Kamanna VS, Pai R, Bassa B, et al. Activation of mesangial cells with TNF-alpha stimulates M-CSF gene expression and monocyte proliferation:evidence for involvement of protein kinase C and protein tyrosine kinase. Biochim Biophys Acta 1996; 1313:161-172.
    29 Yang CM, Chien CS, Hsiao LD, et al. Mitogenic effect of oxidized low-density lipoprotein on vascular smooth muscle cells mediated by activation of Ras/Raf/MEK/MAPK pathway. Br J Pharmacol.2001; 132:1531.
    30 Lang D, Terstesse M, Dohle F, et al. Protein kinase C (PKC) dependent induction of tissue factor (TF) by mesangial cells in response to inflammatory mediators and release during apoptosis. Br J Pharmacol.2002; 137:1116-1124..
    31 Min JK, Kim YM, Kim SW, et al. TNF-related activation-induced cytokine enhances leukocyte adhesiveness:induction of ICAM-1 and VCAM-1 via TNF receptor-associated factor and protein kinase C-dependent NF-kappaB activation in endothelial cells. J Immunol.2005; 175: 531-540.
    32 Hayakawa, K., Y. Meng, et al. Spontaneous activation of the NF-kappaB signaling pathway in isolated normal glomeruli. Am J Physiol Renal Physiol.2006; 291:F1169-1176.
    33 Nee L, Tuite N, Ryan MP, et al. TNF-alpha and IL-1 beta-mediated regulation of MMP-9 and TIMP-1 in human glomerular mesangial cells. Nephron Exp Nephrol.2007; 107:e73-86.
    34 Onkawa T, Hayashi M, Miyawaki A, et al. Localization of inositol 1,4,5-trisphosphate receptors in the rat kidney. Kidney Int.1998; 53:296-301.
    35 Miyawaki A, Furuichi T, Maeda N. et al. Expressed cerebellar-type inositol 1,4,5-trisphosphate receptor, P400, has calcium release activity in a fibroblast L cell line. Neuron.1990; 5:11-18.
    36 Yamada J, Ohkusa T, Nao T, et al. Up-regulation of inositol 1,4,5 trisphosphate receptor expression in atrial tissue in patients with chronic atrial fibrillation. J Cardiol.2002; 9:57-58.
    37 Brightling C, Berry M, Amrani Y. Targeting TNF-alpha:a novel therapeutic approach for asthma. J Allergy Clin Immunol.2008; 121:5-10.
    38 Park KM, Yule DI, Bowers WJ. Tumor Necrosis Factor-alpha Potentiates Intraneuronal Ca2+ Signaling via Regulation of the Inositol 1,4,5-Trisphosphate Receptor. J Biol Chem.2008; 283: 33069-33079.
    39 Fellner S, Arendshorst J. Accumalation of the inositol phosphates in thrombin-stimulated,washed rabbit platelets in the presence of lithium Biochem. Kidney Int.2002; 61: 2132-2141.
    40 Sharma K, Wang L, Zhu Y, et al. Renal type I inositol 1,4,5-trisphosphate receptor is reduced in streptozotocin-induced diabetic rats and mice. Am J Physiol Renal Physiol.1999; 276: F54-61.
    41 Takakura M, Tokushige K, Matsushita N, et al. Possible involvement of cytokine gene polymorphisms in fulminant hepatitis. J Gastroenterol Hepatol 2007; 22:1271-1277.
    42 Prasanna G, Dibas A, Brown K, et al. Activation of protein kinase C by tumor necrosis factor-alpha in human non-pigmented ciliary epithelium. J Ocul Pharmacol Ther.1998; 14: 401-412.
    43 Das Evcimen N, King GL. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res.2007; 55:498-510.
    44 Kamanna, V. S., R. Pai, et al. Protein Kinase C-Dependent NF-{kappa}B Activation in Endothelial Cells. J Immunol.1996; 175:531-540.
    45 Chen YM, Lin SL, Chen CW, et al. Tumor necrosis factor-alpha stimulates fractalkine production by mesangial cells and regulates monocyte transmigration:down-regulation by cAMP. Kidney Int 2003; 63:474-486.
    46 Leontieva, OV, Black. JD. Identification of Two Distinct Pathways of Protein Kinase C{alpha} Down-regulation in Intestinal Epithelial Cells. J Biol Chem.2004; 279:5788-5801.
    47 Jin JS, Yao CW, Ka SM, et al. IgA immune complex blunts the contraction of cultured mesangial cells through the inhibition of protein kinase C and intracellular calcium. Chin J Physiol.2004; 47:79-87.
    48 Chen JS, Lee HS, Jin JS, et al. Attenuation of mouse mesangial cell contractility by high glucose and mannitol:involvement of protein kinase C and focal adhesion kinase. J Biomed Sci.2004; 11:142-151.
    49 Ma R, Du J, Sours S, Ding M. Store-operated Ca2+ channel in renal microcirculation and glomeruli. Exp Biol Med.2006; 231:145-153.
    50 Ragheb R, Medhat AM, Shanab GM, et al. Adriamycin impairs the contraction of mesangial cells through the inhibition of protein kinase C and intracellular calcium. Am J Physiol Renal Physiol.2004; 287:F188-194.
    51 Frecker H, Munk S, Wang H, et al. Mesangial cell-reduced Ca2+ signaling in high glucose is due to inactivation of phospholipase C-beta3 by protein kinase C. Am J Physiol Renal Physiol. 2005; 289:F1078-1087.
    52 Ma R, Kudlacek PE, Sansom SC. Protein kinase C alpha participates in activation of store-operated Ca2+ channels in human glomerular mesangial cells. Am J Physiol Cell Physiol. 2002; 283:C1390-1398.
    53 Hryciw DH, Pollock CA, Poronnik P. PKC-alpha-mediated remodeling of the actin cytoskeleton is involved in constitutive albumin uptake by proximal tubule cells.Am J Physiol Renal Physiol.2005; 288:F1227-1235.
    54姚丽君,赵鸿,刘建设等.蛋白激酶C-alpha和beta在血压及肾小球滤过功能中的作用比较.临床和实验医学杂志.2006:5:1475-1476.
    55 Parker PJ, Murray RJ. PKC at a glance. J Cell Sci.2004; 117:131-132.
    56 Balogh G, Boland R, Boland AR. 1,25(OH)(2)-vitamin D(3) affects the subcellular distribution of protein kinase C isoenzymes in rat duodenum:influence of aging. J Cell Biochem.2000; 79: 686-694.
    57 Godson C, Masliah E, Balboa MA, et al. Isoform-specific redistribution of protein kinase C in living cells. Biochim Biophys Acta.2006; 21:63-71.
    58 Martelli AM, Evangelisti C, Nyakern M, et al. Nuclear protein kinase C. Biochim Biophys Acta.2006; 61:542-551.
    59 Hu T, Exton JH. A point mutation at phenylalanine 663 abolishes protein kinase C alpha's ability to translocate to the perinuclear region and activate phospholipase D1. Biochem Biophys Res Commun.2005; 333:750-753.
    60 Ragheb R, Medhat AM, Shanab GM, et al. Links between enhanced fatty acid flux, protein kinase C and NFkappaB activation, and apoB-lipoprotein production in the fructose-fed hamster model of insulin resistance.Biochem Biophys Res Commun 2008; 370:134-139.
    61 Steinberg SF. Distinctive activation mechanisms and functions for protein kinase Cdelta. Biochem J.2004; 384:449-459.
    62 Lopez-Nicolas R, Lopez-Andreo MJ, Marin-Vicente C, et al. Molecular mechanisms of PKCa localization and activation by arachidonic acid. The C 2 domain also plays a role.Journal of molecular biology.2006; 357:1105-1120.
    63 Tsai RK, Chang CH, Hseu CM, et al. Ethambutol induces PKC-dependent cytotoxic and antiproliferative effects on human retinal pigment cells. Exp Eye Res.2008; 87:594-603.
    64 Morita, M., H. Matsuzaki, et al. Epidermal growth factor receptor phosphorylates protein kinase C{delta} at Tyr332 to form a trimeric complex with p66Shc in the H2O2-stimulated cells. J Biochem.2008; 143:31-38.
    65 Abdala-Valencia H, Cook-Mills JM, et al. VCAM-1 Signals Activate Endothelial Cell Protein Kinase C{alpha} via Oxidation. J Immunol.2006; 177:6379-6387.
    66 Maines MD, Miralem T, Lerner-Marmarosh N, et al. Human biliverdin reductase, a previously unknown activator of protein kinase C betaII. J Biol Chem.2007; 282:8110-8122.
    67 Mora A, Komander D, van Aalten DM, et al. PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol.2004; 15:161-170.
    68 Chen YM, Lin SL, Chen CW, et al. Tumor necrosis factor-alpha stimulates fractalkine production by mesangial cells and regulates monocyte transmigration:down-regulation by cAMP. Kidney Int.2003; 63:474-486.
    69 Huang WC, Chen JJ, Inoue H, et al. Tyrosine phosphorylation of I-kappa B kinase alpha/beta by protein kinase C-dependent c-Src activation is involved in TNF-alpha-induced cyclooxygenase-2 expression. J Immunol.2003; 170:4767-4675.
    70 Kilpatrick LE, Sun S, Mackie D et al. Regulation of TNF mediated antiapoptotic signaling in human neutrophils:role of delta-PKC and ERK1/2. J Leukoc Biol.2008; 83:797-797.
    71 Sun DI, Nizamutdinova IT, Kim YM, et al. Bisacurone inhibits adhesion of inflammatory monocytes or cancer cells to endothelial cells through down-regulation of VCAM-1 expression. Int Immunopharmacol.2008; 8:1272-1281.
    72 Zhao Y, Fishelevich R, Petrali JP, et al. Activation of keratinocyte protein kinase C zeta in psoriasis plaques. J Invest Dermatol.2008; 128:2190-2197.
    73 Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. Faseb J. 1995; 9:484-496.
    74 Wei XF, Zhou QG, Hou FF, et al. Advanced oxidation protein products induce mesangial cell perturbation through PKC-dependent activation of NADPH oxidase. Am J Physiol Renal Physiol.2009; 296:F427-437.
    75 Nakashima S. Protein Kinase C{alpha} (PKC{alpha}):Regulation and Biological Function. J Biochem.2002; 132:669-675.
    76 Wynne BM, Chiao CW, Webb RC. Vascular Smooth Muscle Cell Signaling Mechanisms for Contraction to Angiotensin II and Endothelin-1. J Am Soc Hypertens 2009; 3:84-95.
    77 Chianale F, Rainero E, Cianflone C, et al. Diacylglycerol kinase alpha mediates HGF-induced Rac activation and membrane ruffling by regulating atypical PKC and RhoGDI. Proc Natl Acad Sci U S A.2010; 107:4182-41787.
    78 Lee HY, Crawley S, Hokari R, et al. Bile acid regulates MUC2 transcription in colon cancer cells via positive EGFR/PKC/Ras/ERK/CREB, PI3K/Akt/IkappaB/NF-kappaB and p38/MSKl/CREB pathways and negative JNK/c-Jun/AP-1 pathway. Int J Oncol.2010; 36: 941-953.
    79 Ji L, Chauhan A, Chauhan V. Upregulation of cytoplasmic gelsolin, an amyloid-beta-binding protein, under oxidative stress conditions:involvement of protein kinase C. J Alzheimers Dis. 2010; 19:829-838.
    80 Park E, Patel AN. PKC-delta induces cardiomyogenic gene expression in human adipose-derived stem cells. Biochem Biophys Res Commun.2010; 10:582-586.
    81 Zhang H, Zha X, Tan Y, et al. Phosphoprotein analysis using antibodies broadly reactive against phosphorylated motifs. J Biol Chem.2002; 277:39379-39387.
    82 Newton AC. Protein kinase C:structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem Rev.2001; 101:2353-2564.
    83 Gomez-Fernandez JC, Torrecillas A, Corbalan-Garcia S. Diacylglycerols as activators of protein kinase C (Review). Molecular membrane biology.2004; 21:339-349.
    84 McManus EJ, Collins BJ, Ashby PR, et al. The in vivo role of PtdIns (3,4,5)P3 binding to PDK1 PH domain defined by knockin mutation. EMBO J.2004; 23:2071-2082.
    85 Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science.1992; 258:607-614.
    86 Nishizuka Y Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 1995; 9:484-496.
    87 Lin CC, Hsiao LD, Chien CS, et al. Tumor necrosis factor-alpha-induced cyclooxygenase-2 expression in human tracheal smooth muscle cells:involvement of p42/p44 and p38 mitogen-activated protein kinases and nuclear factor-kappaB. Cell Signal.2004; 16:597-607.
    88 Lee JY, Hannun YA, Obeid LM. Functional Dichotomy of Protein Kinase C (PKC) in Tumor Necrosis Factor-a (TNF-a) Signal Transduction in L929 Cells. J Biol Chem.2000; 275:29290.
    89 Chen C, Chou C, Sun Y, et al. Tumor necrosis factor alpha-induced activation of downstream NF-kappaB site of the promoter mediates epithelial ICAM-1 expression and monocyte adhesion. Involvement of PKCalpha, tyrosine kinase, and IKK2, but not MAPKs, pathway. Cell Signal.2001; 13:543-553.
    90 Yanaga, F, Watson, SP. Tumor necrosis factor alpha stimulates sphingomyelinase through the 55 kDa receptor in HL-60 cells. FEBS Leti.1992; 314:97-101.
    91 Koniaris LG, Raben DM, Shin, HS, et al. Tumor necrosis factor-a signal transduction in human neutrophils:a novel pertussis toxin insensitive pathway for 1,2-diacylglycerol production and protein kinase C activation. Gun Res.1990; 38:478.
    92 Adler EM.2009:signaling breakthroughs of the year. Sci Signal.2010; 3:egl.
    93 MacEwan DJ. TNF ligands and receptors-a matter of life and death. Br J Pharmacol.2002; 135:855-875.
    94 Soh JW, Weinstein IB. Roles of Specific Isoforms of Protein Kinase C in the Transcriptional Control of Cyclin D1 and Related Genes. J Biol Chem.2003; 278:34709-34716.
    95 Hua H, Goldberg HJ, Fantus IG, et al. High Glucose-Enhanced Mesangial Cell Extracellular Signal-Regulated Protein Kinase Activation and{alpha} 1 (Ⅳ) Collagen Expression in Response to Endothelin-1:Role of Specific Protein Kinase C Isozymes. Diabetes.2001; 50: 2376-2383.
    96 Rahman A, Anwar KN, Malik AB. Protein kinase C-zeta mediates TNF-alpha-induced ICAM-1 gene transcription in endothelial cells. Am J Physiol Cell Physiol.2000; 279: C906-914.
    97 Xue R, Zhao Y, Chen P. Involvement of PKC alpha in PMA-induced facilitation of exocytosis and vesicle fusion in PC 12 cells. Biochem Biophys Res Commun.2009; 380:371-376.
    98 Xue R, Zhao Y, Chen P. Rottlerin induces pro-apoptotic endoplasmic reticulum stress through the protein kinase C-delta-independent pathway in human colon cancer cells. Apoptosis.2008; 13:1378-1385.
    99 Andera, L. Signaling activated by the death receptors of the TNFR family. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub.2009; 153:173-180.
    100 MacEwan DJ. TNF receptor subtype signalling:Differences and cellular consequences. Cell Signa.2002; 14:477-492.
    101 Song HL, Lv S, Liu P. The roles of tumor necrosis factor-alpha in colon tight junction protein expression and intestinal mucosa structure in a mouse model of acute liver failure. BMC Gastroenterol.2009; 9:70.
    102 Zhou Z, Cornell MC, MacEwan DJ. TNFR1-induced NF-kappaB, but not ERK, p38MAPK or JNK activation, mediates TNF-induced ICAM-1 and VCAM-1 expression on endothelial cells. Cell Signa.2007; 19:1238-1248.
    103 Kelly ML, Wang M, Crisostomo PR, et al. TNF receptor 2, not TNF receptor 1 benefits mesenchymal stem cell-mediated cardiac protection following acute ischemia. Shock.2009; 26. [Epub ahead of print].
    104 Vielhauer V, Stavrakis G, Mayadas TN. Renal cell-expressed TNF receptor 2, not receptor 1, is essential for the development of glomerulonephritis. Journal of Clinical Investigation.2005; 115(5):1199-1209.
    105 O J Jupp, S M McFarlane, H M Anderson, et al. Type II tumour necrosis factor-alpha receptor (TNFR2) activates c-Jun N-terminal kinase (JNK) but not mitogen-activated protein kinase (MAPK) or p38 MAPK pathways. Biochem J.2001; 359:525-535.
    106 Hildt E, Oess S. Identification of Grb2 As a Novel Binding Partner of Tumor Necrosis Factor (TNF) Receptor I. J Exp Med.1999; 189:1707-1714.
    107 Sippy BD, Hofman FM, Wright AD, et al. Induction of intercellular adhesion molecule-1 by tumor necrosis factor-alpha through the 55-kDa receptor is dependent on protein kinase C in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci.1996; 37:597-606.
    108 Abe, J. Role of PKCs and NF-κB activation in myocardial inflammation:Enemy or ally? J Mol Cell Cardiol.2007; 43:404-408.
    109 Kilpatrick LE, Sun S, Korchak HM. Selective regulation by delta-PKC and PI 3-kinase in the assembly of the antiapoptotic TNFR-1 signaling complex in neutrophils. Am J Physiol Cell Physiol.2004; 287:C633-642.
    110 van de Kar NC, Kooistra T, Vermeer M, et al. Tumor necrosis factor alpha induces endothelial galactosyl transferase activity and verocytotoxin receptors. Role of specific tumor necrosis factor receptors and protein kinase C. Blood.1995; 85:734-743.
    111 Murakami-Mori K, Mori S, Bonavida B, et al. Implication of TNF receptor-I-mediated extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation in growth of AIDS-associated Kaposi's sarcoma cells:a possible role of a novel death domain protein MADD in TNF-α-induced ERK1/2 activation in Kaposi's sarcoma cells. J Immunol.1999; 162: 3672-3679.
    112 Amrani Y, Ammit AJ, Panettieri RA Jr. Tumor necrosis factor receptor (TNFR) 1, but not TNFR2, mediates tumor necrosis factor-alpha-induced interleukin-6 and RANTES in human airway smooth muscle cells:role of p38 and p42/44 mitogen-activated protein kinases. Mol Pharmacol.2001; 60:646-655.
    113 Weiss T, Grell M, Siemienski K, et al. TNFR80-dependent enhancement of TNFR60-induced cell death is mediated by TNFR-associated factor 2 and is specific for TNFR60. J Immunol. 1998; 161:3136-3142.
    1 MellorH, Parker PJ. The extended protein kinaseC superfamily. Biochem J 1998; 332 (Pt2): 281-292.
    2 Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. Faseb J 1995; 9(7):484-496.
    3 Newton AC. Regulation of protein kinase C. Curr Opin Cell Biol 1997; 9(2):161-167.
    4 Newton AC. Protein kinase C:structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem Rev 2001; 101(8):2353-2364.
    5 Parekh DB, Ziegler W, Parker PJ. Multiple pathways control protein kinase C phosphorylation. EMBO J 2000; 19(4):496-503.
    6 Le Good JA, Ziegler WH, Parekh DB, et al. Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science.1998; 281(5385): 2042-2045.
    7 Biondi, R.M.. Phosphoinositide-dependent protein kinase 1, a sensor of protein conformation. Trends in Biochemical Sciences 2004; 29(3):136-142.
    8 Bornancin F, Parker PJ. Phosphorylation of protein kinase C-aon serine 657 controls the accumulation of active enzyme and contributes to its phosphatase-resistant state. J Biol Chem 1997; 272(6):3544-3549.
    9 Robles-Flores, M., L. Melendez, et al. Posttranslational modifications on protein kinase c isozymes. Effects of epinephrine and phorbol esters.Biochim Biophys Acta 2008; 1783(5): 695-712.
    10 JoseloV E, Cataisson C, Aamodt H, et al. Src family kinases phosphorylate protein kinase C delta on tyrosine residues and modify the neoplastic phenotype of skin keratinocytes. J Biol Chem 2002; 277(14):12318-12323.
    11 Konishi H, Tanaka M, Takemura Y, et al. Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proc Natl Acad Sci USA 1997; 94(21):11233-11237.
    12 Fukunaga M, Oka M, Ichihashi M, et al. UV-induced tyrosine phosphorylation of PKC delta and promotion of apoptosis in the HaCaT cell line. Biochem Biophys Res Commun 2001; 289 (2):573-579.
    13 Blass M, Kronfeld I, Kazimirski G, et al. Tyrosine phosphorylation of protein kinase Cdelta is essential for its apoptotic in response to etoposide. Mol Cell Biol 2002; 22(1):182-195.
    14 Braiman L, SheY-Friedman L, Bak A, et al. Tyrosine phosphorylation of specific protein kinase C isoenzymes participates in insulin stimulation of glucose transport in primary cultures of rat skeletal muscle. Diabetes 1999; 48(10):1922-1929.
    15 Le Good JA, Brindley DN. Molecular mechanisms regulating protein kinase C-zeta turnover and cellular transformation. Biochem J 2004; 378(Pt 1):83-92.
    16 Braiman L, Alt A, Kuroki T, et al. Insulin induces specific interaction between insulin receptor and protein kinase C delta in primary cultured skeletal muscle. Mol Endocrinol 2001; 15(4): 565-557.
    17 Jaken S, Parker PJ. Protein kinase C binding partners. Bioessays 2000; 22 (3):245-254.
    18 Tapia JA, Garcia-Marin LJ, Jensen RT. Cholecystokinin-stimulated protein kinase C-delta kinase activation, tyrosine phosphorylation, and translocation are mediated by Src tyrosine kinases in pancreatic acinar cells. J Biol Chem 2003; 278(37):35220-35230.
    19 Frosig, C., M. P. Sajan, et al. Exercise improves phosphatidylinositol-3,4,5-trisphosphate responsiveness of atypical protein kinase C and interacts with insulin signalling to peptide elongation in human skeletal muscle. J Physiolb 2007; 582(Pt 3):1289-1301.
    20 Toker, A., M. Meyer, et al. Activation of protein kinase C family members by the novel polyphosphoinositides PtdIns-3,4-P2 and PtdIns-3,4,5-P3. J Biol Chem.1994; 269(51): 32358-32367.
    21 Kanno, T., H. Yamamoto, et al. The linoleic acid derivative DCP-LA selectively activates PKC-{epsilon}, possibly binding to the phosphatidylserine binding site. J Lipid Res 2006; 47(6):1146-1156.
    22 Gomez-Fernandez, J. C., A. Torrecillas, et al. Diacylglycerols as activators of protein kinase C (Review). Molecular Membrane Biology 2004; 21(6):339-349.
    23 李云峰.PKC在细胞凋亡中的作用.中国老年学志2004;24(1):87-88.
    24 Yaguchi, T., S. Yamamoto, et al. Effects of cis-unsaturated free fatty acids on PKC-epsilon activation and nicotinic ACh receptor responses. Brain Res Mol Brain Res 2005; 133(2): 320-324.
    25 Gallegos, L. L. and A. C. Newton. Spatiotemporal dynamics of lipid signaling:protein kinase C as a paradigm. IUBMB Life 2008; 60(12):782-789.
    26 Ragheb, R., A. M. Medhat, et al. Links between enhanced fatty acid flux, protein kinase C and NFkappaB activation, and apoB-lipoprotein production in the fructose-fed hamster model of insulin resistance.Biochem Biophys Res Commun 2008; 370(1):134-139.
    27 Steinberg SF. Distinctive activation mechanisms and functions for protein kinase Cdelta. Biochem J 2004; 384(Pt 3):449-459.
    28 Lopez-Nicolas, R., M. J. Lopez-Andreo, et al. Molecular mechanisms of PKCa localization and activation by arachidonic acid. The C 2 domain also plays a role.Journal of molecular biology 2006; 357(4):1105-1120.
    29 Cerioni L, Palomba L, Brune B, et al. Peroxynitrite-induced mitochondrial translocation of PKCalpha causes U937 cell survival. Biochem Biophys Res Commun 2006; 339(1):126-131.
    30 Kajimoto T, Shirai Y, Sakai N,et al. Ceramide-induced apoptosis by translocation, phosphorylation, and activation of protein kinase Cdelta in the Golgi complex. J Biol Chem 2004; 279(13):12668-12676.
    31 Zatta AJ, Kin H, Lee G, et al. Infarct-sparing effect of myocardial post conditioning is dependent on protein kinase C signaling. Cardiovasc Res 2006; 70(2):315-324.
    32 Osmanagic-Myers, S. and G. Wiche Plectin-RACKl (receptor for activated C kinase 1) scaffolding:a novel mechanism to regulate protein kinase C activity. J Biol Chem 2004; 279(18):18701-18710.
    33 Weiler, F., T. Marbe, et al. Influence of protein kinase C on transcription of the tight junction elements ZO-1 and occludin. J Cell Physiol 2005; 204(1):83-86.
    34 Zhang, H. P., Y. J. Xu, et al. Effect of protein kinase C-nuclear factor-kappa B signal transduction pathway on proliferation and expression of vascular endothelial growth factor in human pulmonary artery smooth muscle cells. Zhonghua Jie He He Hu Xi Za Zhi 2004; 27(4): 218-223.
    35 Ding, X. P. A. Murray. Acetylcholine activates protein kinase C-alpha in pulmonary venous smooth muscle. Anesthesiology 2007; 106(3):507-514.
    36 Michie, A. M. and R. Nakagawa. The link between PKCalpha regulation and cellular transformation. Immunol Lett 2005; 96(2):155-162.
    37 Pascale, A., D. L. Alkon, et al. Translocation of protein kinase C-betaII in astrocytes requires organized actin cytoskeleton and is not accompanied by synchronous RACK1 relocation. Glia 2004; 46(2):169-182.
    38 Kazi, J. U. J. W. Soh. Isoform-specific translocation of PKC isoforms in NIH3T3 cells by TPA. Biochem Biophys Res Commun 2007; 364(2):231-237.
    39 Lim M A, Kikani C K, Wick MJ, et al. Nuclear translocation of 3-phosphoinositidedependent protein kinase 1 (PDK-1):A potential regulatory mechanism for PDK1 function. Proc Natl Acad Sci USA 2003; 100(24):14006-14011.
    40 Miele, C., F. Paturzo, et al. Glucose Regulates Diacylglycerol Intracellular Levels and Protein Kinase C Activity by Modulating Diacylglycerol Kinase Subcellular Localization. J Bio Chem 2007; 282(44):31835-31843.
    41 Lee IH, You JO, Ha KS, et al. AHNAK-mediated activation of phospholipase C-γ through protein kinase C. J Biol Chem 2004; 279(25):26645-26653.
    42 Nguyen, T. A., L. J. Takemoto, et al. Inhibition of gap junction activity through the release of the C1B domain of protein kinase Cgamma (PKCgamma) from 14-3-3:identification of PKCgamma-binding sites. J Biol Chem 2004; 279(50):52714-52725.
    43 Tsai, R. K., C. H. Chang, et al. Ethambutol induces PKC-dependent cytotoxic and antiproliferative effects on human retinal pigment cells. Exp Eye Res 2008; 87(6):594-603.
    44 Morita, M., H. Matsuzaki, et al. Epidermal growth factor receptor phosphorylates protein kinase C{delta} at Tyr332 to form a trimeric complex with p66Shc in the H2O2-stimulated cells. J Biochem 2008; 143(1):31-38.
    45 Abdala-Valencia, H. and J. M. Cook-Mills. VCAM-1 Signals Activate Endothelial Cell Protein Kinase C{alpha} via Oxidation. J Immunol 2006; 177(9):6379-6387.
    46 Maines, M. D., T. Miralem, et al. Human biliverdin reductase, a previously unknown activator of protein kinase C betaII. J Biol Chem 2007; 282(11):8110-8122.
    47 Maines, M. D. Biliverdin Reductase:PKC Interaction at the Cross-Talk of MAPK and PI3K Signaling Pathways. Antioxidants & Redox Signaling 2007; 9(12):2187.
    48 Lerner-Marmarosh, N., T. Miralem, et al. Regulation of TNF-activated PKC-{zeta} signaling by the human biliverdin reductase:identification of activating and inhibitory domains of the reductase. FAS7 2007; 21(14):3949-3962.
    49 Alessi, D. R., S. R. James, C. P. Downes, A. B. et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha. Curr Biol 1997; 7(4):261-269.
    50 Bayascas, J. R. Dissecting the role of the 3-phosphoinositide-dependent protein kinase-1 (PDK1) signalling pathways. Cell Cycle 2008; 7(19):2978-2982.
    51 Cenni, V., Doppler, H., Sonnenburg, E. D., et al. Regulation of novel protein kinase C epsilon by phosphorylation. Biochem J 2002; 363(Pt 3):537-545.
    52 Stephens, L., K. Anderson, D. Stokoe, H. et al. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 1998; 279(5351):710-714.
    53 Mora A, Komander D, van Aalten D M, et al. PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol 2004; 15 (2):161-170.
    54 McManus E J, Collins B J, Ashby P R,et al. The in vivo role of PtdIns (3,4,5)P3 binding to PDK1 PH domain defined by knockin mutation. EMBO J 2004; 23(10):2071-2082.
    55 Sonnenburg, E. D., Gao, T. and Newton, A. C. The phosphoinositide dependent kinase, PDK-1, phosphorylates conventional protein kinase C isozymes by a mechanism that is independent of phosphoinositide-3-kinase. J. Biol. Chem.2001; 276(48):45289-45297.
    56 Standaert, M. L., Bandyopadhyay, G., Kanoh, Y., et al. Insulin and PIP3 activate PKC-zeta by mechanisms that are both dependent and independent of phosphorylation of activation loop (T410) and autophosphorylation (T560) sites. Biochemistry 2001; 40(1):249-255.
    57 Alessi D R, Deak M, Casamayor A, et al.3-Phosphoinositide-dependent protein kinase-1 (PDK1):structural and func-tional homology with the Drosophila DSTPK61 kinase. Curr Biol 1997; 7(10):776-789.
    58 Casamayor A, Morrice N A, Alessi D R. Phosphorylation of Ser-241 is essential for the activity of 3-phosphoinosi tide-dependent protein kinase-1:identification of five sites of phosphorylation in vivo. Biochem J 1999; 342(Pt 2):287-292.
    59 Kurata, A., R. Katayama, et al.TUSC4/NPRL2, a novel PDK1-interacting protein, inhibits PDK1 tyrosine phosphorylation and its downstream signaling.Cancer. Science 2008; 99(9): 1827-1834.
    60 Collins, B. J., M. Deak. In vivo role of the phosphate groove of PDK1 defined by knockin mutation. J Cell Sci 2005; 118(Pt 21):5023-5034.
    61 Biondi, R. M.Phosphoinositide-dependent protein kinase 1, a sensor of protein conformation. Trends Biochem Sci 2004; 29(3):136-142.
    62 Riojas, R. A., C. K. Kikani, et al. Fine Tuning PDK1 Activity by Phosphorylation at Ser163 J Biol Chem 2006; 281(31):21588-21593.
    63 Grillo S, Gremeaux T, Casamayor A, et al. Peroxovanadate induces tyrosine phosphorylation of phosphoinositide-dependent protein kinase 1 Potential involvement of Src kinase. Eur J Biochem 2000; 267(22):6642-6649.
    64 Yang, K.-J., S. Shin, et al. Regulation of 3-Phosphoinositide-dependent Protein Kinase-1 (PDK1) by Src Involves Tyrosine Phosphorylation of PDK1 and Src Homology Domain Binding. J Biol Chem 2008; 283(3):1480-1491.
    65 Taniyama Y, Weber DS, Rocic P, et al. Pyk2 and Src-dependent tyrosine phosphorylation of PDK1 regulates focal adhesions. Mol Cell Biol 2003; 23(22):8019-8022.
    66 Anderson K E, Coadwell J, Stephens L R, et al. Translocation of PDK-1 to the plasma membrane is important in allowing PDK-1 to activate protein kinase B. Curr Biol 1998; 8(12): 684-691.
    67 Lim M A, Kikani C K, Wick MJ, et al. Nuclear translocation of 3-phosphoinositidedependent protein kinase 1 (PDK-1):A potential regulatory mechanism for PDK1 function. Proc Natl Acad Sci USA 2003; 100(24):14006-14011.
    68 Scheid, M. P., M. Parsons, et al. Phosphoinositide-Dependent Phosphorylation of PDK1 Regulates Nuclear Translocation.Mol. Cell. Biol.2005; 25(6):2347-2356.
    69 Wolf, A. M., A. I. Lyuksyutova, et al. Phosphatidylinositol-3-kinase-atypical protein kinase C signaling is required for Wnt attraction and anterior-posterior axon guidance. J Neurosci 2008; 28(13):3456-3467.
    70 Trucy, M., C. Barbat, et al. CD4 ligation induces activation of protein kinase C zeta and phosphoinositide-dependent-protein kinase-1, two kinases required for down-regulation of LFA-1-mediated adhesion. Cell Immunol 2006; 244(1):33-42.
    71 Liu, Y, B. Wang, et al. Down-regulation of PKCzeta expression inhibits chemotaxis signal transduction in human lung cancer cells. Lung Cancer 2009; 63(2):210-218.
    72杨章民.磷酯酰肌醇-3激酶家族研究进展.国外医学分子生物学分册2003;25(5):285-289.
    73 Montiel, M., E. P. de la Blanca, et al. P2Y receptors activate MAPK/ERK through a pathway involving PI3K/PDKl/PKC-zeta in human vein endothelial cells. Cell Physiol Biochem 2006; 18(1-3):123-134.
    74 Rucci, N., C. DiGiacinto, et al. A novel protein kinase C alpha-dependent signal to ERK1/2 activated by alphaVbeta3 integrin in osteoclasts and in Chinese hamster ovary (CHO) cells. J Cell Sci 2005; 118(Pt 15):3263-3275.
    75 Guo, J., A. Sabri, et al.{alpha} 1-Adrenergic Receptors Activate AKT via a Pyk2/PDK-1 Pathway That Is Tonically Inhibited by Novel Protein Kinase C Isoforms in Cardiomyocytes. Circ Res.2006; 99(12):1367-1375.
    76 Frank, G. D., S. Saito, et al. Requirement of Ca(2-) and PKCdelta for Janus kinase 2 activation by angiotensin Ⅱ:involvement of PYK2. Mol Endocrinol 2002; 16(2):367-377.
    77 Kawanabe, Y, N. Hashimoto, et al. Effects of nonselective cation channels and PI3K on endothelin-1-induced PYK2 tyrosine phosphorylation in C6 glioma cells. Am J Physiol Cell Physiol 2003; 285(3):C539-545.
    78 Shi, C.-S. and J. H. Kehrl. PYK2 Links G qalpha and G13alpha Signaling to NF-kappa B Activation. J Biol Chem 2004; 276(34):31845-31850.
    79 Banno, Y., K. Ohguchi, et al. Implication of Phospholipase D2 in Oxidant-induced Phosphoinositide 3-Kinase Signaling via Pyk2 Activation in PC12 Cells. J Biol Chem 2005; 280(16):16319-16324.
    80 Kodama, H., K. Fukuda, et al. Selective Involvement of p130Cas/Crk/Pyk2/c-Src in Endothelin-1-Induced JNK Activation. Hypertension 2003; 41(6):1372-1379.
    81 Martiny-Baron, G. and D. Fabbro. Classical PKC isoforms in cancer. Pharmacol Res 2007; 55(6):477-486.
    82 Serova, M., A. Ghoul, et al. Preclinical and clinical development of novel agents that target the protein kinase C family. Semin Oncol 2006; 33(4):466-478.