组蛋白乙酰转移酶p300对人p16~(INK4a)基因表达调控的影响及其分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
p16~(INK4a)基因编码细胞周期蛋白依赖激酶的抑制因子,p16~(INK4a)蛋白通过负调控CDK4/6的活性在细胞周期进行及细胞分化过程中发挥作用,因而p16~(INK4a)基因的表达调控一直受到广泛的关注。很多证据表明,p16~(INK4a)的表达受表观遗传修饰的调控并且与多种肿瘤的发生密切相关。尽管近来生化方面的研究表明表观遗传修饰,例如DNA甲基化和组蛋白修饰,参与了p16~(INK4a)基因的表达调控,但是目前还没有关于组蛋白乙酰化修饰对p16~(INK4a)基因表达调控机制的详细报道。在本文中,我们对组蛋白乙酰转移酶p300通过上调p16~(INK4a)的表达而抑制HeLa细胞周期的进程及其可能的机制进行了深入的研究。我们的工作证实过量表达p300能抑制细胞周期的进行,而这一过程可通过small interfering RNA (siRNA)降低p16~(INK4a)蛋白的水平而被逆转。在293T细胞中,p300参与p16~(INK4a)的表达调控,而且p300和Sp1对p16~(INK4a)启动子水平,mRNA水平及蛋白水平的调控作用具有协同效果。针对Sp1和p300设计的siRNA能够通过部分地抑制Sp1和p300的表达而抑制p16~(INK4a)启动子的活性。免疫共沉淀(CoIP)和哺乳动物双杂交实验表明,Sp1和p300通过Sp1的N末端和p300的Q区的相互作用而存在于同一复合物中。p16~(INK4a)启动子截短突变和点突变报告基因荧光素酶活性分析表明在p300和Sp1调控p16~(INK4a)启动子活性过程中p16~(INK4a)启动子近端的Sp1结合位点起重要作用。染色质免疫沉淀(ChIP)实验证实,p300通过Sp1招募到p16~(INK4a)启动子区域;p300固有的乙酰转移酶活性在p300参与p16~(INK4a)的表达调控中是必需的;p300通过增强p16~(INK4a)启动子区域的组蛋白H4的乙酰化水平促进p16~(INK4a)基因的启动子活性。我们的研究工作将有助于更好的阐述p16~(INK4a)基因转录调控的特异机制,并为基于p16~(INK4a)的基因治疗提供重要的理论基础。
The regulation of expression of p16~(INK4a) gene has attracted a great deal of research attention, because this gene encodes a cyclin-dependent kinase inhibitor that plays a key role in cell cycle progression and cellular differentiation by negatively regulating the CDK4/6 activity. There has been increasing evidence that the expression of p16~(INK4a) gene is epigenetically controlled and is closely related with many cancers. Although previous biochemical studies revealed that epigenetic mechanisms such as DNA methylation and histone modifications may be involved in transcription regulation of this gene, a detailed description of the molecular basis for the roles of histone acetylation in p16~(INK4a) regulation has not been reported. In this study, we demonstrate that p300 was able to induce cell cycle arrest, and this process was reversed by p16~(INK4a) silencing by small interference RNA (siRNA) in HeLa cells. We also showed that p300 was involved in activation of p16~(INK4a) expression in 293T cells. Specifically, p300 cooperated with Sp1 to stimulate both the p16~(INK4a) promoter activity and the mRNA expression. The siRNA-induced partial silencing of Sp1 and p300 resulted in a significant inhibition of the p16~(INK4a) promoter activity. Co-immunoprecipitation (CoIP) and mammalian two-hybrid assays revealed that p300 and Sp1 formed a complex through interaction between the Q domain of p300 and the N-terminal domain of Sp1. The results of p16~(INK4a) promoter truncation mutants and point mutations linked to a luciferase reporter gene assays indicated that the proximal Sp1-binding site of p16~(INK4a) promoter played very important roles in its transcription activation by p300 and Sp1. The chromatin immunoprecipitation (ChIP) assays verified that p300 was recruited to p16~(INK4a) promoter, and the intrinsic histone acetyltransferase (HAT) activity of p300 was essential for p16~(INK4a) promoter activation through inducing the hyperacetylation of histone H4 at the p16~(INK4a) gene. These data will contribute to elucidating the unique mechanisms of p16~(INK4a) transcriptional control, which is crucial to the development of new therapeutic strategies for p16~(INK4a) -related gene therapy.
引文
[1] Gao Y, Lin LP, Ding J. cell cycle regulation [J]. Chinese Bulletin of Life Sciences, 2005, 17: 318-322.
    [2] Sherr C J, Roberts J M. Living with or without cyclins and cyclin-dependent kinases[J]. Genes Dev, 2004, 18: 2699-2711.
    [3] Brehm A, Miska E A, McCance D J, et al. Retinoblastoma protein recruits histone deacetylase to repress transcription [J]. Nature, 1998, 391: 597-601.
    [4] Zhao J, Kennedy B K, Lawrence B D, et al. NPAT links cyclin E-Cdk2 to the regulation of replication-dependent histone gene transcription[J]. Genes Dev, 2000, 14: 2283-2297.
    [5] Blangy A, Lane H A, d’Herin P, et al. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo[J]. Cell, 1995, 83: 1159-1169.
    [6] Nigg E A. Mitotic kinases as regulators of cell division and its checkpoints [J]. Nat. Rev. Mol Cell Biol, 2001, 2: 21-32.
    [7] Ando K, Ozaki T, Yamamoto H, et al. Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation [J]. J Biol Chem, 2004, 279: 25549-25561.
    [8] Myer D L, Bahassi el M, Stambrook P J. The Plk3-Cdc25 circuit [J]. Oncogene, 2005, 24: 299-305.
    [9] Walsh S, Margolis S S, Kornbluth S. Phosphorylation of the cyclin b1 cytoplasmic retention sequence by mitogen-activated protein kinase and Plx [J]. Mol Cancer Res, 2003, 1: 280-289.
    [10] Xie S, Xie B, Lee M Y, et al. Regulation of cell cycle checkpoints by polo-like kinases [J]. Oncogene, 2005, 24: 277-286.
    [11] Pan J, Wang Q, Snell W J. An aurora kinase is essential for flagellar disassembly in Chlamydomonas [J]. Dev Cell, 2004, 6: 445-451.
    [12] Ducat D, Zheng Y. Aurora kinases in spindle assembly and chromosome segregation [J]. Exp Cell Res, 2004, 301: 60-67.
    [13] Agarwal M L, Taylor W R, Chernov M V, et al. The p53 network [J]. J Biol Chem, 1998, 273: 1-4.
    [14] Gottlieb T M, Leal J F, Seger R, et al. Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis [J]. Oncogene, 2002, 21: 1299-1303.
    [15] Gottlieb T M, Oren M. p53 and apoptosis [J]. Semin Cancer Biol, 1998, 8: 359-368.
    [16] Siliciano J D, Canman C E, Taya Y, et al. DNA damage induces phosphoryla- tion of the amino terminus of p53 [J]. Genes Dev, 1997, 11: 3471-3481.
    [17] Durocher D, Jackson S P. DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme [J]? Curr Opin Cell Biol, 2001, 13: 225-231.
    [18] Lim D S, Kim S T, Xu B, et al. ATM phosphorylates p95/ nbs1 in an S-phase checkpoint pathway [J]. Nature, 2000, 404: 613-617.
    [19] Stark G R, Taylor W R. Analyzing the G2/M checkpoint [J]. Methods Mol Biol, 2004, 280: 51-82.
    [20] Marston A L, Amon A. Meiosis: cell-cycle controls shuffle and deal [J]. Nat Rev Mol Cell Biol, 2004, 5: 983-997.
    [21] Krapp A, Gulli M P, Simanis V. SIN and the art of splitting the fission yeast cell [J]. Curr Biol, 2004, 14: R722-R730.
    [22] Cao Y, L iu ZX. Research Advances on Tumor Suppressor Gene p16 [J]. Journal of Shanghai University (Natural science), 2003, 9: 55-60.
    [23] Zhai Y,Su L. Research Advances on Tumor Suppressor Gene p16 [J]. Journal of Hebei Medical University, 2000, 21 : 185- 187.
    [24] Serrano M, Hannou G T. Reach D. A new regulatory motify in cell cycle control causing specific inhibition of cyclinD/CDK4 [J]. Nature, 1993, 366: 704-707.
    [25] Kamb A , Cruis A , Feldnaus T W , et al. A cell cycle regulator potentially involved in genesis of many tumor types [J]. Science, 1994, 264: 436- 440.
    [26] Noborl T , Miura K, Dauid J W , et al. Deletions of the cyclin dependent kinase4 inhibitor gene in multiple human cancers [J]. Nature, 1994, 368: 753.
    [27] Huang CH, Deng W, Fu JL. Molecular cloning and sequencing of p16ink4cdna from hela cell. Chinese Journal of Biotechnology 1997, 13: 105- 107.
    [28] Okamoto A , Douglas J D, Elis A S, et al. Mutation and altered exp ression of p16ink4 in human cancer [J]. Proc Natl Acid Sci USA, 1994, 91: 11045- 11053.
    [29] Lew DJ , Dulic V , Reed SI. Isolation of three novel human cyclins by rescue of G1 cyclin function in yeast [J]. Cell, 1991, 165: 11977.
    [30] Marx J. New tumor suppressor may rival p53 [J].Science, 1994, 264: 344.
    [31] Kamb A , Liu QY, Harshman K, et al. Rates of p16 (M TS1) mutations in primary tumors with 9P loss [J]. Science, 1994, 265: 415- 417.
    [32] Bai XY, Meng LY, Zhou Y, et al. Construction of recombinant p16 adenovirus and its suppressive role in the growth of human leukemia cells [J]. Chin J Biochem Mol Biol, 2000, 16(1): 67~ 71
    [33] Hunter T, Pines T. Cyclins and cancer: cyclin D and CDK inhibitors come of age [J]. Cell, 1994, 79: 573 - 580.
    [34] Lukas J, Aagaard L, Strauss M, et al. Oncogenic aberrations of p16ink4/CDKN2 and cyclin D1 cooperate to deregulate G1 control [J]. Cancer Res, 1996, 55: 1355- 1357.
    [35] DuanJM, Liu PH, Zhang ZY, et al. Telomere shortening and cell cycle arrest induced by p16 gene introduction in human breast cancer MCF-7 cells [J]. Chin J Biochem Mol Biol, 2000, 16(1):124~127.
    [36] Oshimura M, Barrett JC. Multiple pathways to cellular senescence: role of telomerase repressors [J]. Eur J Cancer, 1997, 33: 710- 715.
    [37] Li Y, Nichols MA , Shay JW , et al. Transcriptional repression of the D2 type cyclin2 dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb [J].Cancer Res, 1994, 54 : 6078.
    [38] Tam S, Shay J , Pagano M. Differential expression and cell cycle regulat ion of the cyclin2 dependent kinase 4 inhibitor p16ink4a [J]. Cancer Res, 1994, 54 : 5816.
    [39] Li SF,Cao XR ,Chen T ,Ye YK. p16 gene deletions and mutations in human primary cancers [J]. Journal of Nanjing Normal University (Natural Science), 2001, 24: 79- 82.
    [40] James G, Herman J G, Adrian M , et al. Inactivation of the CDKN 2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers [J]. Cancer Res, 1995, 55: 4525.
    [41] Merlo A, Herman J G, Mao L. 5 '-CpG island methylation is associated with transcriptional silencing of the tumor suppressor p16/CDKN2/MTS1 in human cancer [J]. Nat Med, 1995, 1: 686-692.
    [42] Tate PH, Bird AP. Effects of DNA methylation of DNA-banding proteins and gene expression [J]. Curr Opin Genet Dev, 1993, 3: 226.
    [43] Wang QS , Du J , L iu YJ. p16 gene deleton and 5CpG island methylation in endometrial carcinoma [J]. Cancer, 2002, 22: 213-214; 219.
    [44] Lo K, Cheung ST, Leung SF, et al. Hypermethylation of the p16 gene in nasopharyngeal carcinoma [J]. Cancer Res, 1996, 56: 2721.
    [45] Martinez D B, Fernandez P J , Garcia M J , et al. Hypermeth lation of 5 ’-CpG island of p 16 is a frequent event in non-Hodgkin’s lymphoma [J]. Leukemia, 1997, 11: 425.
    [46] Du J, Wang QS , et al. MTS1/ p16 gene deleton and 5’CpG island methylation in Renal cell carcinoma [J]. Cancer prevention res, 2002, 29: 306- 307.
    [47] Quesnel B, Preudhomme C, Lepelley P, et al. Transfer of p16ink4a/CDKN2 gene in leukaemic cell lines inhibits cell proliferation [J]. British J H Aematology, 1996, 95: 291- 298.
    [48] Ohtani N, Yamakoshi K, Takahashi A, et al. The p16INK4a/RB pathway: molecular link between cellular senescence and tumor suppression [J]. J Med Invest, 2004, 51: 146-153.
    [49] Xue LX, Li J, Zhang ZY, et al. Cell senescence and transcriptional regulation of p16ink4a [J]. J Med Mol Biol, 2006, 3: 29-31.
    [50] Benanti JA, Galloway DA. The normal response to RAS: senescence or transformation [J]? Cell Cycle, 2004, 3: 715-717.
    [51] Papp T, Pemsel H, Rollwitz I, et al. Mutational analysis of N-ras, p53, CDKN2A(p16(INK4a)), p14(ARF), CDK4, and MC1R genes in human dysplastic melanocytic naevi [J]. J Med Genet, 2003, 40: E14.
    [52] Mitchell PJ, Perez NE, Malcolm DS, et al. Dissecting the contribution of p16(INK4A) and the Rb family to the Ras transformed phenotype [J]. Mol Cell Biol, 2003, 23: 2530-2542.
    [53] Tootle TL, Rebay I. Post-translational modifications influence transcription factor activity: a view from the ETS superfamily [J]. Bioessays, 2005, 27: 285-298.
    [54] Ohash IY, Sharrocks AD, et al. Opposing effects of Ets and Id proteins on p16INk4a expression during cellular senescence [J]. Nature, 2001, 409: 1067-1070.
    [55] Foulds CE, Nelson ML, Blaszczaka G, et al. Ras/Mitogen-activated protein kinase signaling activates Ets-1 and Ets-2 by CBP/p300 recruitment [J]. Mol Cell Biol, 2004, 24(24): 10954-10964.
    [56] Passegue E, Wangner EF. JunB suppresses cell proliferation by transcrip tional activation of p16INK4a expression [J]. EMBO J, 2000, 19: 2969-2979.
    [57] Myohanen S, Baylin SB. Sequence-specific DNA binding of RNA helicase A to the p16INK4a promoter [J]. J Biol Chem, 2001, 276: 1634-1642.
    [58] Xue L, Wu J, Zhen GW, et al. Sp1 is involved in the transcriptional activation of p16(INK4) by p21(Waf1) in HeLa cells [J]. FEBS Lett, 2004, 564: 199-204.
    [59] Zhen GW, Wang H, Xue L, et al. Regulation of cellular senescence and p16(INK4a) expression byId1 and E47 proteins in human diploid fibroblast [J]. J Biol Chem, 2004, 279: 31524-31532.
    [60] Hara E, Smith R, Parry D, et al. Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence [J]. Mol Cell Biol, 1996, 16: 859-867.
    [61] Kaneko SL, Nishioka J, Tanaka M, et al. Transcriptional regulation of the CDK inhibitor p16INK4a gene by a novel pRb associated repressor, RBAR1 [J]. Biochem Mol Biol Int, 1999, 47: 205-215.
    [62] Mitchell PJ, Perez NE, Malcolm DS, et al. Dissecting the contribution of p16(INK4A) and the Rb family to the Ras transformed phenotype [J]. Mol Cell Biol, 2003, 23: 2530-2542.
    [63] Wang W, Wu JF, Zhang ZY, et al. Characterization of regulatory elements on the promoter region of p16INK4a that contribute to overexp ression of p16 in senescent fibroblasts [J]. J Biol Chem, 2001, 276: 48655-48661.
    [64] Itahana K, Zou Y, Itahana Y, et al. Control of the replicative life span of human fibroblasts by p16 and the polycomb p rotein Bmi21 [J]. Mol Cell Biol, 2003, 23: 389-401.
    [65] Zhang S, Qian X, Redman C, et al. p16INK4a gene promoter variation and differential binding of a rep ressor, the Ras-responsive zinc-finger transcription factor1 RREB [J]. Oncogene, 2003, 22: 2285-2295.
    [66] Ohtan IN, Brennan P, Gaubatz S, et al. Epstein-Barr virus LMP1 blocks p16INK4a-RB pathway by promotiong nuclear export of E2F4/5 [J]. J Cell Biol, 2003, 162: 173-183.
    [67] Hou P, Jim, Liu Z, et al. A microarray to analyze methylation patterns of p16(Ink4a) gene 5 ’2CpG islands [J]. Clin-Biochem, 2003, 36: 197-202.
    [68] Chen P, Tong T, Zhang Z. The role of p16 methylation in the aging of human fetal lung diploid fibroblasts [J]. Chin J Geriatr, 2001, 1: 44-46.
    [69] 郑国锠. 细胞生物学[M]. 高等教育出版社. 1992, 第 2 版, 375-376.
    [70] 沈珝琲, 方福德. 真核基因表达调控[M]. 高等教育出版社·施普林格出版社, 1997, 修订版. 1-14.
    [71] 黄百渠, 曾庆华等. 组蛋白和核小体在基因转录中的作用[J]. 科学通报, 2000, 45:2033-2040.
    [72] Kingston RE, Narlikar GJ. ATP-dependent remodeling and acetylation as regulators of chromatin fluidity [J]. Genes Dev, 1999, 13:2339-2352.
    [73] Imbalzano AN. SWI/SNF complexes and facilitation of TATA- binding protein: nucleosome interactions [J]. Methods, 1998, 15:303-314.
    [74] Moreira JM, Homberg S. Transcriptional repression of the yeast CHA1 gene requires chromatin-remodeling complexes RSC [J]. EMBO J, 1999, 18:2836-2844.
    [75] Tsukiyama T, Daniel C, Tamkun J, et al. ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140Kda subunit of the nucleosome remodeling factor [J]. Cell, 1995, 83:1021-1026.
    [76] Peterson CL. Multiple Switches to turn on chromatin [J]? Curr Opin Genet Dev, 1996, 6:171-175.
    [77] Langst G, Bonte EJ, Corona DF, et al. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer [J]. Cell, 1999, 97:843-852.
    [78] Whitehouse I, Flaus A, Cairns B R., et al. Nucleosome mobilization catalysed by the yeast SWI/SNF complex [J]. Nature, 1999, 400:784-787.
    [79] Kal AJ, Mahmoudi T, Zak NB, et al. The Drosophila brahma complex is an essential coactivator for the trithorax group protein zeste [J]. Genes Dev, 2000, 14:1058-1071.
    [80] Okada M, Hirose S. Chromatin remodeling mediated by Drosophila GAGA factor and ISWIactivates fushi tarazu gene transcription in vitro [J]. Mol Cell Biol, 1998, 18:2455-2461.
    [81] Armstrong JA, Bieker JJ, Emerson BM. A SWI/SNF- related chromatin-remodeling complex, E-RC1, is required for tissue- specific transcriptional regulation by EKLF in vitro [J]. Cell, 1998, 95:93-104.
    [82] Cote J, Peterson CL, Workman JL. Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding [J]. Proc Natl Acad Sci USA, 1998, 95:4947-52.
    [83] Spencer VA, Davie JR. Role of covalent modification of histones in regulating gene expression [J]. Gene, 1999, 240:1-12.
    [84] Strahl BD, Allis CD. The language of covalent histone modifications [J]. Nature, 2000, 403:41-45.
    [85] Hayes JJ, Bashkin J, Tullius TD, et al. The histone core exerts a dominant constraint on the structure of DNA in a nucleosome [J]. Biochemistry, 1991, 30: 8434–8440
    [86] Hayes JJ, Clark DJ, Wolffe AP. Histone contributions to the structure of DNA in the nucleosome [J]. Proc Natl Acad Sci USA, 1991, 88: 6829–6833
    [87] Luger K, Mader AW, Richmond RK, et al. Crystal structure of the nucleosome core particle at 2.8 ? resolution [J]. Nature, 1997, 389: 251–260
    [88] Grunstein M. Histone function in transcription [J]. Annu Rev Cell Biol, 1990, 6: 643–678
    [89] Khorasanizadeh S. The nucleosome: from genomic organization to genomic regulation [J]. Cell, 2004, 116: 259-272
    [90] Workman JL,Kingston RE. Alteration of nucleosome structure as a mechanism of transcriptional regulation [J]. Annu Rev Biochem, 1998, 67: 545-579
    [91] Wolffe AP, Hayes JJ. Chromatin disruption and modification [J]. Nucleic Acids Res, 1999, 27: 711-720
    [92] Hansen JC, Tse C, Wolffe AP. Structure and function of the core histone N-termini: More than meets the eye [J]. Biochemistry, 1998, 37: 17637–17641
    [93] Strahl BD, Allis CD. The language of covalent histone modifications [J]. Nature, 2000, 403: 41-45
    [94] He H, Lehming N. Global effects of histone modifications [J]. Brief Funct Genomic Proteomic, 2003, 2 (3): 234-243
    [95] Allfrey V, Faulkner RM, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis [J]. Proc Natl Acad Sci USA, 1966,51: 786-794
    [96] Kimura A, Horikoshi M. Tip60 acetylates six lysines of a specific class in core histones in vitro [J]. Genes Cells, 1998, 3: 789-800
    [97] Verreault A, Kaufman PD, Kobayashi R, et al. Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase [J]. Curr Biol, 1998, 8: 96-108
    [98] Schiltz RL, Mizzen CA, Vassilev A, et al. Overlapping, but distinct, patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates [J]. J Biol Chem, 1999, 247: 1189-1192
    [99] Mutskov V, Gerber D, Angelov D, et al. Persistent interactions of core histone tails with nucleosomal DNA following acetylation and transcription factor binding [J]. Mol Cell Biol,1998, 18: 6293-6304
    [100] Roth SY, Denu JM, Allis CD. Histone Acetyltransferases [J]. Annu Rev Biochem, 2001, 70:81-120
    [101] Cress WD, Seto E. Histone deacetylases, transcriptional control, and cancer [J]. J Cell Physiol, 2000, 184: 1–16
    [102] Grunstein, M. Histone acetylation in chromatin structure and transcription [J]. Nature, 1997, 389: 349–352
    [103] Brownell JE, Zhou J, Ranalli T, et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation [J].Cell, 1996, 84(6): 843-851
    [104] Kuo MH, Zhou J, Jambeck P, et al. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo [J]. Genes Dev, 1998, 12(5): 627-639
    [105] Allfrey VG, Faulkner RM, Misky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis [J]. Proc Natl Acad Sci USA, 1964, 51:786-793.
    [106] Berger SL. Gene activation by histone and factor acetyltransferases [J]. Curr Opin Cell Biol, 1999, 11:336-341.
    [107] Cress WD, Seto E. Histone Deacetylases, transcriptional control and cancer [J]. J Cell Physiol, 2000, 184:1-16.
    [108] Wu C. Chromatin remodeling and the control of gene expression [J]. J Biol Chem, 1997, 272:28171-4.
    [109] Peterson CL. HDAC's at work: everyone doing their part [J]. Mol Cell, 2002, 9:921-2.
    [110] Turner BM. Histone acetylation and an epigenetic code [J]. Bioessays, 2000, 22:836-45.
    [111] Peterson CL, Logie C. Recruitment of chromatin remodeling machines [J]. J Cell Biochem, 2000, 78:179-85.
    [112] Hebbes TR, Thorne AW, Crane-Robinson C. A direct link between core histone acetylation and transcriptionally active chromatin [J]. EMBO J, 1988, 7:1395-1402.
    [113] Grunstein M. Histone acetylation in chromatin structure and transcription [J]. Nature, 1997, 389:349-352.
    [114] Fletcher TM, Hansen JC. The nucleosomal array: structure /function relationships [J]. Crit Rev Eukaryote Gene Expr, 1996, 6:149-188.
    [115] Brownell JE, Zhou J, Ranalli T, et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation [J]. Cell, 1996, 84: 843-851.
    [116] Smith ER, Allis CD, Lucchesi JC. Linking global histone acetylation to the transcription enhancement of X-chromosomal genes in Drosophila males [J]. J Biol Chem, 2001, 276: 31483- 31466.
    [117] Lusser A, Kolle D, Loidl P. Histone acetylation: lessons from the plant kingdom [J]. Trends Plant Sci, 2001, 6:59-65.
    [118] Allis CD, Chicoine LG, Richman R, et al. Deposition-related histone acetylation in micromuclei of conjugating Tetrahymena [J]. Proc Natl Acad Sci USA, 1985, 82: 8048-8052.
    [119] Howe L, Brown CE, Lechner T, et al. Histone acetyltransferase complexes and their link to transcription [J]. Cri Rev Eukaryot Gene Expr, 1999, 9:231-243.
    [120] Chen HW, Tini M, Evans RM. HATs on and beyond chromatin [J]. Curr Opin Cell Biol, 2001, 13:218-224.
    [121] Struhl K. Histone acetylation and transcriptional regulatory mechanisms [J]. Genes Dev, 1998, 12:599-606.
    [122] Brown CE, Lechner T, Howe L, et al. The many HATs of transcription coactivators [J]. Trends Biochem Sci, 2000, 25:15-19.
    [123] Schiltz RL, Mizzen CA, Vassilev A, et al. Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates [J]. J Biol Chem,1999,274:1189-1192.
    [124] Schiltz RL, Nakatani Y. The PCAF acetylase complex as a potential tumor suppressor [J]. Biochim Biophys Acta, 2000, 1470:37-53.
    [125] Krumm A, Madisen L, Yang XJ, et al. Long-distance transcriptional enhancement by the histone acetyltransferase PCAF [J]. Proc Natl Acad Sci USA, 1998, 95:13501-13506.
    [126] Giles RH, Peters DJ, Breuning MH. Conjunction dysfunction: CBP/p300 in human disease [J]. Trends Genet, 1998, 14:178-183.
    [127] Ogryzko VV, Schiltz RL, Russanova V, et al. The transcriptional coactivators p300 and CBP are histone acetyltransferase [J]. Cell, 1996, 87:953-959.
    [128] Korzus E, Torchia J, Rose DW, et al. Transcription factor-specific requirements for coactivators and their acetyltransferase functions [J]. Science, 1998, 279:703-707.
    [129] Bannister AJ, Miska EA. Regulation of gene expression by transcription factor acetylation [J]. CMLS Cell Mol Life Sci, 2000, 57:1184-1192.
    [130] Otero G, Fellows J, Li Y, et al. Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation [J]. Mol Cell, 1999, 3:109-118.
    [131] Wittschieben BO, Otero G, de Bizemont T, et al. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme [J]. Mol Cell, 1999, 4:123-128.
    [132] Orphanides G., Reinberg D. RNA polymerase II elongation through chromatin [J]. Nature, 2000, 407:471-475.
    [133] Ramanathan B, Smerdon MJ. Enhanced DNA repair synthesis in hyperacetylated nucleosomes [J]. J Biol Chem, 1989, 264:11026 -11034.
    [134] Martinez E, Palhan VB, Tjernberg A, et al. Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo [J]. Mol Cell Biol, 2001, 21:6782-6795.
    [135] Legube G, Linares LK, Lemercier C, et al. Tip60 is targeted to proteasome-mediated degradation by Mdm2 and accumulates after UV irradiation [J]. EMBO J, 2002, 21: 1704-1712.
    [136] Kimura A, Horikoshi M. Tip60 acetylate six lysines of a specific class in core histones in vitro [J]. Genes Cells, 1998, 3:789-800.
    [137] Ikura T, Ogryzko VV, Grigoriev M, et al. Involvement of the Tip60 histone acetyltransferase complex in DNA repair and apoptosis [J]. Cell, 2000, 102:463-473.
    [138] Golding A, Chandler S, Ballestar E, et al. Nucleosome structure completely inhibits in vitro cleavage by the V (D) J recombinase [J]. EMBO J, 1999, 18:3712-3723.
    [139] McMurry MT, Krangel MS. A role for histone acetylation in the developmental regulation of V (D) J recombination [J]. Science, 2000, 287:495-498.
    [140] McBlane F, Boyes J. Stimulation of V (D) J recombination by histone acetylation [J]. Curr Biol, 2000, 10:482-486.
    [141] Iizuka M, Stillman B. Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein [J]. J Biol Chem, 1999, 274:23027-23034.
    [142] Fox CA, Loo S, Dillin, Rine J. The origin recognition complex has essential functions in transcriptional silencing and chromosomal replication [J]. Genes Dev, 1995, 9:911-924.
    [143] Verreault A. De novo nucleosome assembly: new pieces in an old puzzle [J]. Genes Dev, 2000, 14:1430-1438.
    [144] Parthun MR, Widom J, Gottschling DE. The major cytoplasmic histone acetyltransferase in yeast:links to chromatin replication and histone metabolism [J]. Cell, 1996, 87:85-94.
    [145] Sobel RE, Cook RG, Perry CA, et al. Conservation of deposition -related acetylation sites in newly synthesized histone H3 and H4 [J]. Proc Natl Acad Sci USA, 1995, 92: 1237-1241.
    [146] Ruiz-Garcia AB, Sendra R, Galiana M, et al. HAT1 and HAT2 proteins are components of a yeast nuclear histone acetyl- transferase enzyme specific for free histone H4 [J]. J Biol Chem, 1998, 273:12599-12605.
    [147] Ehrenhofer-Murray AE, Rivier DH, Rine J. The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function [J]. Genetics, 1997, 145:923-934.
    [148] Reifsnyder C, Lowell J, Clarke A, et al. Yeast SAS silencing genes and human genes associated with AML and HIV-1Tat interactions are homologous with acetyltransferase [J]. Nat Genet, 1996, 14:42-49.
    [149] Takechi S, Nakayama T. Sas3 is a histone acetyltransferase and requires a zinc finger motif [J]. Biochem Biophys Res Commun, 1999, 266:405-410.
    [150] Burley SK, Roeder RG. Biochemsitry and structural biology of transcription factor IID (TFIID) [J]. Annu Rev Biochem, 1996. 65:769- 799.
    [151] Mizzen CA, Yang XJ, Kokubo T, et al. The TAFII250 subunit of TFIID has histone acetyltransferase activity [J]. Cell, 1996, 87:1261-1270.
    [152] O’Brien T, Tjian R. Funtional analysis of the human TAFII250 N-terminal kinase domain [J]. Mol Cell, 1998, 1:905-911.
    [153] O’Brien T, Tjian R. Different functional domains of TAFII250 modulate expression of distinct subsets of mammalian genes [J]. Proc Natl Acad Sci USA, 2000, 7:2456-2461.
    [154] Sterner DE, Berger SL. Acetylation of histones and transcription-related factors [J]. Microbiol Mol Biol Rev, 2000, 64:435-459.
    [155] Allard S, Utley RT, Savard J, et al. NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p [J]. EMBO J, 1999, 18:5108-5119.
    [156] Smith ER, Eisen A, Gu W, et al. ESA1 is a histone acetyltransferon [J]. Mol Cell Biol, 1999, 19:2515-2526.
    [157] Clarke AS, Lowell JE, Jacobson SJ, et al. Esa1p is an essential histone acetyltransferase required for cell cycle progression [J]. Mol Cell Biol, 1999, 19:2515-26.
    [158] Mahlknecht U, Hoelzer D. Histone acetylation modifies in the pathogenesis of malignant disease [J]. Molecular Medicine, 2000, 6:623-644.
    [159] Champagne N, Pelletier N, Yang XJ. The monocytic leukemia zinc finger protein MOZ is a histone acetyltransferase [J]. Oncogene, 2001, 20:404-9.
    [160] Borrow J, Stanton VP Jr, Andresen JM, et al. The translocation t (8; 16) (p11; 13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein [J]. Nat Genet, 1996, 14:33-41.
    [161] Carapeti M, Aguiar RC, Goldman JM, et al. A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia [J]. Blood, 1998, 91: 3127-3133.
    [162] Kitabayashi I, Aikawa Y, Yokoyama A,et al. Fusion of MOZ and p300 histone acetyltransferases in acute monocytic leukemia with a t (8; 22)(p11; q13) chromosome translocation [J]. Leukemia, 2001, 15:89-94.
    [163] Onate SA, Tsai SY, Tsai MJ, et al. Sequence and characterization of a coactivator for the steroidhormone receptor superfamily [J]. Science, 1995, 270:1354-1357.
    [164] Spencer TE, Jenster G, Burcin MMet al. Steroid receptor coactivator-1 is a histone acetyltransferase [J]. Nature, 1997, 389:194-198.
    [165] Chen H, Lin RJ, Xie W, et al. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of acetylase [J]. Cell, 1999, 98:675-686.
    [166] Vogelauer M, Wu J, Suka N, et al. Global histone acetylation and deacetylation in yeast [J]. Nature, 2000, 408: 495-498.
    [167] Berger S L. Local or Global [J]? Nature, 2000, 408:412-414.
    [168] Eckner R, Ewen ME, Newsome D, et al. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-KD protein (p300) reveals a protein with properties of a transcriptional adaptor [J]. Genes Dev, 1994, 8:869-884.
    [169] Chrivia JC, Kwok RP, Lamb N,et al. Phosphorylated CREB binds specifically to the nuclear protein CBP [J]. Nature, 1993, 365:855-859.
    [170] Chen X, Korenberg JR. Localisation of human CREBBP to 16p13.3 by fluorescence in situ hybridization [J]. Cytogenet Cell Genet, 1995, 71:56-57.
    [171] Petrij F, Giles RH, Dauwerse HG, et al. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP [J]. Nature, 1995, 376:348-351.
    [172] Giles R H, Dauwerse H G, Van Ommen GB, et al. Do human chromosomal bands 16p13 and 22q11-13 share ancestral origins [J]? Am J Hum Genet, 1997, 63:1240-1242.
    [173] Arany Z, Sellers W R, Livingston D M, et al. E1A associated p300 and CREB-associated CBP belong to a conserved family of co-activators [J]. Cell, 1994, 77:799-800.
    [174] Chan HM, Nicholas B, La Thangue. p300/CBP proteins: HATs for transcriptional bridges and scaffolds [J]. J Cell Sci, 2001, 114:2363-2373.
    [175] Li M, Damania B, Alvarez X, et al. Inhibition of p300 histone acetyltransferase by viral interferon regulatory factor [J]. Mol Cell Biol, 2000, 20:8254-8263.
    [176] Arany Z, Newsome D, Oldread E, et al. A family of transcriptional adaptor proteins targeted by the E1A oncoprotein [J]. Nature, 1995, 374:81-84.
    [177] Grana X, Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs) [J]. Oncogene, 1995, 11:211-219.
    [178] Banerjee AC, Recupero AJ, Mal A, et al. The adenovirus E1A 289R and 243R proteins inhibit the phosphorylation of p300 [J]. Oncogene, 1994, 9:1733-1737.
    [179] Perkins ND, Felzien LK, Betts JC, et al. Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator [J]. Science, 1997, 275:523-527.
    [180] Dyson N. The regulation of E2F by pRB-family proteins [J]. Genes Dev, 1998, 12: 2245-2262.
    [181] Roth JF, Shikama N, Henzen C, et al. Differential role of p300 and CBP acetyltransferase during myogenesis: p300 acts upstream of MyoD and Myf5 [J]. EMBO J, 2003, 22: 5186-5196.
    [182] Yao TP, Oh SP, Fuchs M, et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300 [J]. Cell, 1998, 93:361-372.
    [183] Puri PL, Sartorelli V, Yang XJ, et al. Differential roles of p300 and pCAF acetyltransferase in muscle differentiation [J]. Mol Cell, 1997, 1:35-45.
    [184] Bengal E, Ransone L, Scharfmann R, et al. Functional antagonism between c-Jun and MyoD proteins: a direct physical association [J]. Cell, 1992, 68:507-519.
    [185] Yang XJ, Ogryzko VV, Nishikawa J, et al. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A [J]. Nature, 1996, 382:319-324.
    [186] Missero C, Calautti E, Eckner R, et al. Involvement of the cell-cycle inhibitor Cip1/WAF1 and the E1A-associated p300 protein in terminal differentiation [J]. Proc Natl Acad Sci USA, 1995, 92:5451-5455.
    [187] Kung AL, Rebel VI, Bronson RT, et al. Gene dosage-dependent control of hematopoiesis and hematologic tumor suppression by CBP [J]. Genes Dev, 1999, 14:272-277.
    [188] Shi Y, Mello C. A CBP/p300 homolog specifies multiple differentiation pathways in Caenorhabditis elegans [J]. Genes Dev, 1998, 12:943-955.
    [189] Stein R.W, Corrigan M, Yaciul P, et al. Analysis of E1A-mediated growth regulation functions: binding of the p300- kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity [J]. J Virol, 1990, 64: 4421-4427.
    [190] Avantaggiati ML, Ogrykko V, Garner K, et al. Recruitment of p300/CBP in p53-dependent signal pathways [J]. Cell, 1997, 89:1175-1184.
    [191] Kawasaki H, Eckner R, Yao TP, et al. Distinct role of the co-activators p300 and CBP in retinoic-acid-induced F9-cell differentiation [J]. Nature, 1998, 393:284- 289.
    [192] Lill NL, Grossman SR, Ginsberg D, et al. Binding and modulation of p53 by p300/CBP co-activators [J]. Nature, 1997, 387:823-827.
    [193] Lee CW, S?rensen TS, Shikama N, et al. Functional interplay between p53 and E2F through co-activator p300 [J]. Oncogene, 1998, 16:2695-2710.
    [194] Yuan W, Condorelli G, Caruso M, et al. Human p300 protein is a co-activator for the transcription factor MyoD [J]. J Biol Chem, 1996, 271:9009-9013.
    [195] Shikama N, Lee CW, France S, et al. A novel cofactor for p300 that regulates the p53 response [J]. Mol Cell, 1999, 4:365-376.
    [196] Arany Z, Huang LE, Eckner R, et al. An essential role for p300/CBP in the cellular response to hypoxia [J]. Proc Natl Acad Sci USA, 1996, 93:12969-12973.
    [197] Grossman SR, Perez M, Kung AL, et al. p300/MDM2 complexes participate in MDM2-mediated p53 degradation [J]. Mol Cell, 1998, 2:405-415.
    [198] Eid JE, Kung AL, Scully R, et al. p300 interacts with the nuclear proto-oncoprotein SYT as part of the active control of cell adhesion [J]. Cell, 2000, 102:839-848.
    [199] Marzio G, Wagener C, Gutierrez MI, et al. E2F family members are differentially regulated by reversible acetylation [J]. J Biol Chem, 2000, 275:10887-10892.
    [200] Morris L, Allen KE, La Thangue NB. Regulation of E2F transcription by cyclin E-Cdk2 kinase mediated through p300/CBP co-activators [J]. Nat Cell Biol, 2000, 2:232-239.
    [201] Dornan D, Shimizu H, Burch L, et al. The proline repeat domain of p53 binds directly to the transcriptional coactivator p300 and allosterically controls DNA-dependent acetylation of p53 [J]. Mol Cell Biol, 2003, 23:8846-8861.
    [202] Wang YH, Tsay YG, Tan BC, et al. Identification and characterization of a novel p300-mediated p53 acetylation site, lysine 305 [J]. J Biol Chem, 2003, 278:25568-25576.
    [203] Tanaka Y, Naruse I, Maekawa T, et al. Abnormal skeletal patterning in embryos lacking a single Cbp allele: a partial similarity with Rubinstein-Taybi syndrome [J]. Proc Natl Acad Sci USA, 1997, 94:10215-10220.
    [204] Muraoka M, Konishi M, Kikuchi R, et al. p300 gene alterations in colorectal and gastriccarcinomas [J]. Oncogene, 1996, 12:1565-1569.
    [205] Gayther SA, Batley SJ, Linger L, et al. Mutations truncating the EP300 acetylase in human cancers [J]. Nat Genet, 2000, 24:300-303.
    [206] Borrow J, Stanton VP Jr, Andresen JM, et al. The translocation t (8;16) (p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein [J]. Nat Genet, 1996, 14:33-41.
    [207] Sobulo OM, Borrow J, Tomek R, et al. MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t (11; 16) (q23; q13.3) [J]. Proc Natl Acad Sci USA, 1997, 94:8732-8737.
    [208] Ida K, Kitabayashi I, Taki T, et al. Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t (11; 22)(q23; q13) [J]. Blood, 1997, 90:4699-4704.
    [209] Kitabayashi I, Eckner R, Arany Z, et al. Phosphorylation of the adenovirus E1A-associated 300KDa protein in response to retinoic acid and E1A during the differentiation of F9 cells [J]. EMBO J, 1995, 14:33496-33509
    [210] Hamamori Y, Sartorelli V, Ogryzko V. Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A [J]. Cell, 1999, 96:405-413.
    [211] Chakravarti D, Ogryzko V, Kao HY, et al. A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity [J]. Cell, 1999, 96:393-403.
    [212] Wang HG, Rikitake Y, Carter MC, et al. Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth [J]. J Virol, 1993, 67:476-488.
    [213] Cho S, Tian Y, Benjamin TL. Binding of p300/CBP co-activators by polyoma large T antigen [J]. J Biol Chem, 2001, 276:33533-33539.
    [214] Georges SA, Giebler HA, Cole PA, et al. Tax recruitment of CBP/p300, via the KIX domain, reveals a potent requirement for acetyltransferase activity that is chromatin dependent and histone tail independent [J]. Mol Cell Biol, 2003, 23:3392-3404.
    [215] Evert BO, Wullner U, Klockgether T. Cell death in polyglutamine diseases [J]. Cell Tissue Res, 2000, 301:189-204.
    [216] Steffan JS, Kazantsev A, Spasic-Boskovic O, et al. The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription [J]. Proc Natl Acad Sci USA, 2000, 97:6763-6768.
    [217] Nucifora FC Jr, Sasaki M, Peters MF, et al. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity [J]. Science, 2001, 291:2423-2428.
    [218] Steffan JS, Bodai L, Pallos J, et al. Histone deacetylase inhibitors arrest polyglutamine dependent neurodegeneration in Drosophila [J]. Nature, 2001, 413:739-743.
    [219] Boyes J, Byfield P, Nakatani Y, et al. Regulation of activity of the transcription factor GATA-1 by acetylation [J]. Nature, 1998, 396:594-598.
    [220] Dai YS, Markham BE. p300 Functions as a coactivator of transcription factor GATA-4 [J]. J Biol Chem, 2001, 276:37178-37185.
    [221] Erickson RL, Hemati N, Ross SE, et al. p300 coactivates the adipogenic transcription factor CCAAT/enhancer-binding protein alpha [J]. J Biol Chem, 2001, 276:16348-16355.
    [222] Polesskaya A, Duquet A, Naguibneva I, et al. CREB-binding protein/p300 activates MyoD by acetylation [J]. J Biol Chem, 2000, 275:34359-34364.
    [223] Wang C, Fu M, Angeletti RH, et al. Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity [J]. J Biol Chem, 2001, 276:18375-18383.
    [224] Semenza GL. Physiology meets biophysics: visualizing the interaction of hypoxia- inducible factor 1 alpha with p300 and CBP [J]. Proc Natl Acad Sci USA, 2002, 99: 11570-11572.
    [225] Kumar BR, Swaminathan V, Banerjee S, et al. p300-mediated acetylation of human transcriptional coactivator PC4 is inhibited by phosphorylation [J]. J Biol Chem, 2001, 276:16804-16809.
    [226] Lucas W, Mariann B. Drosophila CBP represses the transcription factor TCF to antagonize Wingless signaling [J]. Nature, 1998, 395:521–525.
    [227] Munshi N, Merika M, Yie J, et al. Acetylation of HMG I (Y) by CBP turns off IFN beta expression by disrupting the enhanceosome [J]. Mol Cell, 1998, 2:457–467.
    [228] Chakraborty S, Senyuk V, Sitailo S, et al. Interaction of EVI1 with cAMP-responsive element-binding protein-binding protein (CBP) and p300/CBP-associated factor (P/CAF) results in reversible acetylation of EVI1 and in co-localization in nuclear speckles [J]. J Biol Chem, 2001, 276:44936-44943.
    [229] Hasan S, Hassa PO, Imhof R, et al. Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis [J]. Nature, 2001, 410:387-391.
    [230] Rossow KL, Janknecht R. The Ewing's sarcoma gene product functions as a transcriptional activator [J]. Cancer Res, 2001, 61:2690-2695.
    [231] Yaciuk P, Moran E. Analysis with specific polyclonal antiserum indicates that the E1A-associated 300-kDa products is a stable nuclear phosphoprotein that undergoes cell cycle phase-specific modification [J]. Mol Cell Biol, 1991, 11:5389-5397.
    [232] Gregory DJ, Garcia-Wilson E, Poole JC, et al. Induction of transcription through the p300 CRD1 motif by p21WAF1/CIP1 is core promoter specific and cyclin dependent kinase independent [J]. Cell Cycle, 2002, 1:343-350.
    [233] See RH, Calvo D, Shi Y, et al. Stimulation of p300-mediated transcription by the kinase MEKK1 [J]. J Biol Chem, 2001, 276:16310-16317.
    [234] Xu L, Lavinsky RM, Dasen JS, et al. Signal-specific co-activator domain requirements for Pit-1 activation [J]. Nature, 1998, 395:301-306.
    [235] Ait-Si-Ali S, Carlisi D, Ramirez S, et al. Phosphorylation by p44 MAP Kinase/ERK1 stimulates CBP histone acetyl transferase activity in vitro [J]. Biochem Biophys Res Commun, 1999, 262:157-162.
    [236] Chawla S, Hardingham GE, Quinn DR, et al. CBP: a signal-regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase IV [J]. Science, 1998, 281:1505-1509
    [237] Shikama N, Lyon J, La Thangue NB. The p300/CBP family: integrating signals with transcription factors and chromatin [J]. Trends Cell Biol, 1997, 7:230-236.
    [238] Goodman RH, Smolik S. CBP/p300 in cell growth, transformation, and development [J]. Genes Dev, 2000, 14:1553-1577.
    [239] Kamei Y, Xu L, Heinzel T, et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors [J]. Cell, 1996, 85:403-414.
    [240] Eckner R, Yao TP, Oldread E, et al. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation [J]. Genes Dev, 1996, 10: 2478-2490.
    [241] Kraus VB, Moran E, Nevins JR. Promoter-specific transactivation by the adenovirus E1A12Sproduct involves separate E1A domains [J]. Mol Cell Biol, 1992, 12:4391-4399.
    [242] Polesskaya A, Naguibneva I, Fritsch L, et al. CBP/p300 and muscle differentiation: no HAT, no muscle [J]. EMBO J, 2001, 20:6816-6825.
    [243] Nakajima T, Fukamizu A, Takahashi J, et al. The signal-dependent co-activator CBP is a nuclear target for pp90RSK [J]. Cell, 1996, 86:465-474.
    [244] Vo N, Goodman RH. CREB-binding protein and p300 in transcriptional regulation [J]. J Biol Chem,2001, 276:13505-13508.
    [245] Westin S, Kurokowa R, Nolte RT, et al. Interactions controlling the assembly of nuclear-receptor heterodimers and co-activators [J]. Nature, 1998, 305:199-202.
    [246] Xu L, Glass CK, Rosenfeld MG. Co-activator and corepressor complexes in nuclear receptor function [J]. Curr Opin Genet Dev, 1999, 9:140-147.
    [247] Bevilacqua MA, Faniello MC, Russo T, et al. P/CAF/p300 complex binds the promoter for the heavy subunit of ferritin and contributes to its tissue-specific expression [J]. Biochem J, 1998, 335:521-525.
    [248] Yi M, Tong GX, Murry B, et al. Role of CBP/p300 and SRC-1 in transcriptional regulation of the pulmonary surfactant protein-A (SP-A) gene by thyroid transcription factor-1 (TTF-1) [J]. J Biol Chem, 2002, 277:2997-3005.
    [249] Chen H, Lin RJ, Schiltz RL, et al. Nuclear receptor co-activator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300 [J]. Cell, 1997, 90:569- 580.
    [250] Carey M. The enhanceosome and transcriptional synergy [J]. Cell, 1998, 92:5-8
    [251] Kim TK, Kim TH, Maniatis T. Efficient recruitment of TFIIB and CBP-RNA polymerase II holoenzyme by an interferon-beta enhanceosome in vitro [J]. Proc Natl Acad Sci USA, 1998, 95:12191-12196.
    [252] Brownell JE, Allis CD. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation [J]. Curr Opin Genet Dev, 1996, 6:176-184
    [253] Wade PA, Pruss D, Wolffe AP. Histone acetylation: chromatin in action [J]. Trends Biochem Sci, 1997, 22:128-32.
    [254] Armstrong JA, Emerson BM. Transcription of chromatin: these are complex times [J]. Curr Opin Genet Dev, 1998, 8:165-172.
    [255] Turner BM. Histone acetylation and control of gene expression [J]. J Cell Sci, 1991, 99:13-20.
    [256] Wolffe AP, Pruss D. Targeting chromatin disruption: transcription regulators that acetylate histones [J]. Cell, 1996, 84:817-819.
    [257] Lee DY, Hayes JJ, Pruss D, et al. A positive role for histone acetylation in transcription factor access to nucleosomal DNA [J]. Cell, 1993, 72:73-84.
    [258] Vettese-Dadey M, Grant PA, Hebbes TR, et al. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro [J]. EMBO J, 1996, 15:2508-2518.
    [259] Luger K, Mader AW, Richmond RK, et al. Crystal structure of the nucleosome core particle at 2.8A resolution [J]. Nature, 1997, 389:251-260.
    [260] Garcia-Rameriez M, Rocchini C, Ausio J. Modulation of chromatin folding by histone acetylation [J]. J Biol Chem, 1995, 270:17923-17928.
    [261] Tse C, Fletcher TM, Hansen JC. Enhanced transcription factor access to arrays of histone H3/H4tetramer. DNA complexes in vitro: implications for replication and transcription [J]. Proc Natl Acad Sci USA, 1998, 21:12169-121673.
    [262] Tse C, Sera T, Wolffe AP, et al. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III [J]. Mol Cell Biol, 1998, 18:4629-4638.
    [263] Ura K, Kurumizaka H, Dimitrov S, et al. Histone acetylation: influence on transcription, nucleosome mobility and positioning, and linker histone-dependent transcriptional repression [J]. EMBO J, 1997, 16:2096-2107.
    [264] Nightingale KP, Wellinger RE, Sogo JM, et al. Histone acetylation facilitates RNA polymerase II transcription of the Drosophila hsp26 gene in chromatin [J]. EMBO J, 1998, 17:2865-2875.
    [265] Edmondson DG, Zhang W, Watson A, et al. In vivo functions of histone acetylation/deacetylation in Tup1p repression and Gcn5p activation [J]. Cold Spring Harbor Symp Quant Biol, 1998, 63:459-468.
    [266] Schwarz PM, Felthauser A, Fletcher TM, et al. Reversible oligonucleotide self-association: dependence on divalent cations and core histone tail domains [J]. Biochemistry, 1996, 35:4009-4015.
    [267] Durrin LK, Mann RK, Kayne PS, et al. Yeast histone H4 N-terminal sequence is required for promoter activation in vivo [J]. Cell, 1991, 65:1023-1031.
    [268] Mizzen C, Kuo MH, Smith E, et al. Signaling to chromatin through histone modifications: how clear is the signal [J]? Cold Spring Harbor Symp Quant Biol, 1998, 63:469-481.
    [269] Bannister AJ, Kouzarides T. The CBP co-activator is a histone acetyltransferase [J]. Nature, 1996, 384:641-643.
    [270] Martinez-Balbas MA, Bannister AJ, Martin K, et al. The acetyltransferase activity of CBP stimulates transcription [J]. EMBO J, 1998, 17:2886-2893.
    [271] Li Q, Herrler M, Landsberger N, et al. Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo [J]. EMBO J, 1998, 17:6300-6315.
    [272] Li Q, Imhof A, Collingwood TN, et al. p300 stimulates transcription instigated by ligand-bound thyroid hormone receptor at a step subsequent to chromatin disruption [J]. EMBO J, 1999, 18:5634-5652.
    [273] Ito T, Ikehara T, Nakagawa T, et al. p300-mediated acetylation facilitates the transfer of histone H2AH2B dimers from nucleosomes to a histone chaperone [J]. Genes Dev, 2000, 14:1899-1907
    [274] Shikama N, Chan H, Smith L, et al. Functional interaction between nucleosome assembly proteins and p300/CBP co-activators [J]. Mol Cell Biol, 2000, 20:8933-8943.
    [275] Bulger M, Ito T, Kamakaka RT,et al. Assembly of regularly spaced nucleosome arrays by Drosophila chromatin assembly factor 1 and a 56-kDa histone-binding protein [J]. Proc Natl Acad Sci USA, 1995, 92:11726-11730.
    [276] Hansen JC, Wolffe AP. A role for histones H2A/H2B in chromatin folding and transcriptional repression [J]. Proc Natl Acad Sci USA, 1994, 91:2339-2343.
    [277] Kamb A, Gruis NA, Weaver-Feldhaus J, et al. A cell cycle regulator potentially involved in genesis of many tumor types [J]. Science, 1994, 264: 436-440.
    [278] Nobori T, Miura K, Wu DJ, et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers [J]. Nature, 1994, 368: 753-756.
    [279] Serrano M, Hannon GJ and Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4 [J]. Nature, 1993, 366: 704-707.
    [280] Ruas M and Peters G. The p16INK4a/CDKN2A tumor suppressor and its relatives [J]. Biochim Biophys Acta, 1998, 1378: F115-177.
    [281] Kass SU, Pruss D and Wolffe AP. How does DNA methylation repress transcription [J]? Trends Genet, 1997, 13: 444-449.
    [282] Jones PL, Veenstra GJ, Wade PA, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription [J]. Nat Genet, 1998, 19: 187-191.
    [283] Rocco JW and Sidransky D. p16 (MTS-1/CDKN2/INK4a) in cancer progression [J]. Exp Cell Res, 2001, 264: 42-55.
    [284] Kondo Y, Shen L and Issa JP. Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer [J]. Mol Cell Biol, 2003, 23: 206-215.
    [285] Magdinier F and Wolffe AP. Selective association of the methyl-CpG binding protein MBD2 with the silent p14/p16 locus in human neoplasia [J]. Proc Natl Acad Sci USA, 2001, 98: 4990-4995.
    [286] Wu J, Tong T and Zhang Z. The role of transcription factor Sp1/Sp3 in the regulation of p16INK4a gene in human diploid fibroblast [J]. Chin J Biochem Mol Biol, 2005, 21: 88-93.
    [287] Myohanen S and Baylin SB. Sequence-specific DNA binding activity of RNA helicase A to the p16INK4a promoter [J]. J Biol Chem, 2001, 276: 1634-1642.
    [288] Gizard F, Amant C, Barbier O, et al. PPAR alpha inhibits vascular smooth muscle cell proliferation underlying intimal hyperplasia by inducing the tumor suppressor p16INK4a [J]. J Clin Invest, 2005, 115: 3228-3238.
    [289] Kurihara Y, Egawa K, Kunimoto S, et al. Induction of p16/INK4a gene expression and cellular senescence by toyocamycin [J]. Biol Pharm Bull, 2002, 25: 1272-1276.
    [290] Ohtani N, Zebedee Z, Huot TJ, et al. Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence [J]. Nature, 2001, 409: 1067-1070.
    [291] Passegue E and Wagner EF. JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression [J]. EMBO J, 2000, 19: 2969-2979.
    [292] Bradbury EM. Reversible histone modifications and the chromosome cell cycle [J]. Bioessays, 1992, 14: 9-16.
    [293] Sterner DE and Berger SL. Acetylation of histones and transcription-related factors [J]. Microbiol Mol Biol Rev, 2000, 64: 435-459.
    [294] Chan HM and La Thangue NB. p300/CBP proteins: HATs for transcriptional bridges and scaffolds [J]. J Cell Sci, 2001, 114: 2363-2373.
    [295] Yang XJ, Ogryzko VV, Nishikawa J, et al. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A [J]. Nature, 1996, 382: 319-324.
    [296] Missero C, Calautti E, Eckner R, et al. Involvement of the cell-cycle inhibitor Cip1/WAF1 and the E1A-associated p300 protein in terminal differentiation [J]. Proc Natl Acad Sci USA, 1995, 92: 5451-5455.
    [297] Billon N, Carlisi D, Datto MB, et al. Cooperation of Sp1 and p300 in the induction of the CDK inhibitor p21WAF1/CIP1 during NGF-mediated neuronal differentiation [J]. Oncogene, 1999, 18: 2872-2882.
    [298] Owen GI, Richer JK, Tung L, et al. Progesterone regulates transcription of the p21(WAF1) cyclin- dependent kinase inhibitor gene through Sp1 and CBP/p300 [J]. J Biol Chem, 1998, 273:10696-10701.
    [299] Xiao H, Hasegawa T and Isobe K. p300 collaborates with Sp1 and Sp3 in p21(waf1/cip1) promoter activation induced by histone deacetylase inhibitor [J]. J Biol Chem, 2000, 275: 1371-1376.
    [300] Kivinen L, Tsubari M, Haapajarvi T, et al. Ras induces p21Cip1/Waf1 cyclin kinase inhibitor transcriptionally through Sp1-binding sites [J]. Oncogene, 1999, 18: 6252-6261.
    [301] Bai L and Merchant JL. Transcription factor ZBP-89 cooperates with histone acetyltransferase p300 during butyrate activation of p21waf1 transcription in human cells [J]. J Biol Chem, 2000, 275: 30725-30733.
    [302] Suzuki T, Kimura A, Nagai R, et al. Regulation of interaction of the acetyltransferase region of p300 and the DNA-binding domain of Sp1 on and through DNA binding [J]. Genes Cells, 2000, 5: 29-41.
    [303] Moran E. DNA tumor virus transforming proteins and the cell cycle [J]. Curr Opin Genet Dev, 1993, 3: 63-70.
    [304] Schuringa JJ, Schepers H, Vellenga E, et al. Ser727-dependent transcriptional activation by association of p300 with STAT3 upon IL-6 stimulation [J]. FEBS Lett, 2001, 495: 71-76.
    [305] Zhao Y, Lu S, Wu L, et al. Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1) [J]. Mol Cell Biol, 2006, 26: 2782-2790.
    [306] Bird A: DNA methylation patterns and epigenetic memory [J]. Genes Dev, 2002, 16: 6-21.
    [307] Martinowich K, Hattori D, Wu H, et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation [J]. Science, 2003, 302:890-893.
    [308] Alikhani-Koopaei R, Fouladkou F, Frey FJ, et al. Epigenetic regulation of 11 beta-hydroxysteroid dehydrogenase type 2 expression [J]. J Clin Invest, 2004, 114:1146-1157.
    [309] Aoyama T, Okamoto T, Nagayama S, et al. Methylation in the core-promoter region of the chondromodulin-I gene determines the cell-specific expression by regulating the binding of transcriptional activator Sp3 [J]. J Biol Chem, 2004, 279: 28789-28797.
    [310] Liu C, Xu D, Sjoberg J, et al. Transcriptional regulation of 15-lipoxygenase expression by promoter methylation [J]. Exp Cell Res, 2004, 297: 61-67.
    [311] Kondo Y, Shen LL. Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer [J]. Mol Cell Biol, 2003, 23: 206–215,
    [312] Morris KV, Chan SW. Jacobsen SE, et al. Small interfering RNA-induced transcriptional gene silencing in human cells [J]. Science, 2004, 305: 1289-1292.
    [313] Gonzalez S, Klatt P, Delgado S, et al. Oncogenic activity of Cdc6 through repression of the INK4/ARF locus [J]. Nature, 2006, 440: 702-706.
    [314] Wang W, Wu J, Zhang Z, et al. Characterization of regulatory elements on the promoter region of p16INK4a that contribute to overexpression of p16 in senescent fibroblasts [J]. J Biol Chem, 2001, 276: 48655-48661.
    [315] Bird A. DNA methylation patterns and epigenetic memory [J]. Genes Dev, 2002, 16: 6-21.
    [316] Martinowich K, Hattori D, Wu H, et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation [J]. Science, 2003, 302: 890-893.
    [317] Alikhani-Koopaei R, Fouladkou F, Frey FJ, et al. Epigenetic regulation of 11 beta-hydroxysteroid dehydrogenase type 2 expression [J]. J Clin Invest, 2004, 114: 1146-1157.
    [318] Aoyama T, Okamoto T, Nagayama S, et al. Methylation in the core-promoter region of the chondromodulin-I gene determines the cell-specific expression by regulating the binding oftranscriptional activator Sp3 [J]. J Biol Chem, 2004, 279: 28789-28797.
    [319] Liu C, Xu D, Sjoberg J, et al. Transcriptional regulation of 15-lipoxygenase expression by promoter methylation [J]. Exp Cell Res, 2004, 297: 61-67.
    [320] Kondo Y, Shen LL. Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer [J]. Mol Cell Biol, 2003, 23: 206–215.
    [321] Morris KV, Chan SW, Jacobsen SE, et al. Small interfering RNA-induced transcriptional gene silencing in human cells [J]. Science, 2004, 305: 1289-1292.
    [322] Gonzalez S, Klatt P, Delgado S, et al. Oncogenic activity of Cdc6 through repression of the INK4/ARF locus [J]. Nature, 2006, 440: 702-706.
    [323] Ruas M, Peters G. The p16INK4a/CDKN2A tumor suppressor and its relatives [J]. Biochim Biophys Acta, 1998, 1378: 115-177.
    [324] Nguyen CT, Weisenberger DJ, Velicescu M, et al. Histone H3-Lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-Ada-2-dexycytidine [J]. Cancer Res, 2002, 62: 6456-6461.
    [325] Marks PA, Rifkind RA, Richon VM, et al. Inhibitors of histone deacetylase are potentially effective anticancer agents [J]. Clin Cancer Res, 2001, 7: 759-760.
    [326] Ray S, Sherman CT, Lu M, et al. Angiotensinogen gene expression is dependent on signal transducer and activator of transcription 3-mediated p300/cAMP response element binding protein-binding protein coactivator recruitment and histone acetyltransferase activity [J]. Mol Endocrinol, 2002, 16: 824-836.
    [327] Courey AJ and Tjian R. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif [J]. Cell, 1988, 55: 887-898.
    [328] Gartel AL, Goufman E, Najmabadi F, et al. Sp1 and Sp3 activate p21 (WAF1/CIP1) gene transcription in the Caco-2 colon adenocarcinoma cell line [J]. Oncogene, 2000, 19: 5182-5188.
    [329] Suske G. The Sp-family of transcription factors [J]. Gene, 1999, 238: 291-300.
    [330] Courey AJ, Holtzman DA, Jackson SP, et al. Synergistic activation by the glutamine-rich domains of human transcription factor Sp1 [J]. Cell, 1989, 59: 827-836.