新型螺旋配合物的合成、结构和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文致力于利用不同类型的V-型配体,有机药物和有机含N配体,与多核金属-氧簇和金属离子构筑新型的螺旋配合物,研究这类化合物的合成条件及规律,探讨V-型配体和螯合含N配体对螺旋结构形成的影响,研究分子自组装原理,探索新物质结构和性能间的关系。
     利用水热技术,合成了一系列新型的螺旋配合物,通过元素分析,IR,EPR,XPS,XRPD,TG和单晶X-射线衍射对晶体结构进行了表征,对化合物的热稳定性、磁学特性和荧光性质进行了初步研究。
     1.以多金属钒氧簇为建筑单元,通过引入{MxLy}(M =过渡金属离子,L =含N螯合配体)片段,水热合成和结构表征了6种新型的螺旋多酸配合物: Cu(phen)V_2TeO_8 (1) Ni(phen)V_2TeO_8 (2) [V_4O_7(HAsO_4)_2(phen)_2] (3) [{CoIII(phen)_2}2V_8O_(23)] (4) [Co(2,2’-bpy)_2V_3O_(8.5)] (5) [{Zn(2,2’-bpy)}_2V_8O_(21)] (6)
     化合物1和2含有两种不同类型的螺旋,是第一个由金属-有机配合物亚单元修饰的碲钒酸盐,也代表了第一个具有手性层结构的有机无机杂化碲钒酸盐。化合物3是第一个有机氮配体直接配位在二维{V/As/O}无机物层上的化合物,同时也是第一个具有螺旋特征的有机无机杂化砷钒酸盐。化合物4~6是三个具有新颖层状结构的有机-无机杂化钒酸盐化合物,并且它们的结构中都含有左手和右手的螺旋链。通过考察化合物1-6的结构,我们相信L和{MxLy}片段对于螺旋结构的形成是非常重要的。此外,对化合物1,2和4进行了磁学性质的研究。
     2.利用金属离子或由其构成的多核金属簇为建筑单元,通过引入V型的二苯甲酮四羧酸(bptc)和线性的4,4′-联吡啶(bpy)配体,借助水热合成技术合成并表征了9个柱撑螺旋层配位聚合物: [Cu_2(bptc)(bpy)_2] (7) [Fe_3(Hbptc)_2(bpy)_3(H_2O)4]·2H_2O (8) [Ni_3(Hbptc)_2(bpy)_3(H_2O)4]·2H_2O (9) [Co_2(bptc)(bpy)(H_2O)]·0.5bpy (10) [Cd_2(bptc)(bpy)(H_2O)2]·H_2O (11)[Mn_2(bptc)(bpy)_(1.5)(H_2O)3] (12) [Mn_2(bptc)(bpy)_(0.5)(H_2O)5]·0.5bpy (13) [Mg_2(bptc)(bpy)_(0.5)(H_2O)5]·0.5bpy (14) [Co_2(bptc)(bpy)_(0.5)(H_2O)5]·0.5bpy (15)
     化合物7是一个含有四种不同螺旋的柱撑螺旋层配合物。化合物8和9是由具有螺旋特征的二维手臂式层,通过4,4′-联吡啶柱撑的三维配合物。化合物10是一个含有四种不同螺旋的柱撑螺旋双层配位聚合物。化合物11是一个具有纳米尺寸管状隧道的三维柱撑螺旋层配位骨架。化合物12的三维结构是由{Mn(bptc)(H2O)}n2n-螺旋层和层间的[Mn2(bpy)3(H2O)4]4+复合物柱子共价连结形成的。化合物13~15显示出一种新颖的螺旋双层结构。它们的三维超分子结构与化合物12的三维结构相似。因此,化合物13~15的三维超分子结构也可以看作是由一个二维氢键层通过金属-有机复合物柱撑而形成的。这些化合物同时拥有柱撑和螺旋结构的优点,很好地架接起柱撑结构和螺旋结构之间的联系。此外,对上述化合物进行了荧光和磁学性质的研究。
     3.利用双核金属簇和单核金属离子为节点,通过引入长V型羧酸配体和线性的4,4′-联吡啶配体,成功合成了2个空前的自穿网络。{[Zn_4(bptc)_2(bpy)_4]·(C_5H_3N)·4H_2O}n (16) {[Cd_2(sdba)_2(bpy)(H_2O)_2]·2H_2O}n (17)
     化合物16是一个含有五股分子辫,九重交织meso-螺旋和17重交织螺旋的三维自穿网络。其中的五股分子辫是目前最高股数的分子辫。化合物17是一个罕见二维自穿网络,并且含有pseudo-Borromean环和双股螺旋。如果考虑化合物17中层间强氢键,化合物17是一个空前的三维八连结的自穿网络(421.67),是目前自穿体系中最高连结拓扑。此外,对两个化合物进行了荧光性质的研究。
     4.利用金属离子或由其构成的多核金属簇为建筑单元,通过引入环丙沙星(cfH)和芳环多羧酸配体,水热合成和结构表征了一系列新型的螺旋金属-药物配合物: [Zn(cfH)(Hbtc)]·H2O (18) [Zn_2(cfH)2(odpa)] (19) [Zn_2(cfH)2(bptc)]·4H_2O (20) [Ca(cfH)_2(1,2-Hbdc)_2]·2H_2O (21) [Mn(cf)_2]·2.5H_2O (22) [Co(cf)_2]·2.5H_2O (23) [Zn(cf)_2]·2.5H_2O (24) [Cd(cf)_2]·2.5H_2O (25) [Mg(cf)_2]·2.5H_2O (26) [Ba_2(cf)_2(1,4-bdc)(H_2O)_2]·H_2O (27) [Sr_6(cf)_6(1,4-bdc)_3(H_2O)_6]·2H_2O (28)[Mn_2(cfH)_2(bptc)(H_2O)_2]·8H_2O (29) [Cd_2(cfH)_2(bptc)(H_2O)_2]·8H_2O (30) [Mn(cfH)(1,3-bdc)] (31) [Co(cfH)(1,3-bdc)] (32) [Zn(cfH)(1,3-bdc)] (33) [Zn2(cfH)_4(1,4-bdc)](1,4-bdc)·13H_2O (34)
     化合物18是一个含有五种不同螺旋的金属-环丙沙星配合物。化合物19含有三种不同螺旋,是第一个具有二维手性层结构的金属-喹诺酮配合物。化合物20具有和化合物19相似的手性层结构。化合物21的超分子结构中含有左手和右手的氢键螺旋。化合物22~26显示出一种新颖的二维格子层,该层中存在左手和右手的单股螺旋。化合物27和28是两个含有多核碱土金属簇的二维手臂式层状金属-环丙沙星配合物。化合物29和30是由[M2(cfH)_2(H2O)_2]双核单元和bptc配体连接而形成的一维链状结构。化合物31~33是由[M2(cfH)_2(CO2)_2]双核单元和过1,3-bdc配体连接而形成一维双链结构。化合物34是由一对[Zn(cfH)_2]~(2+)片断通过1,4-bdc配体桥连形成的双核哑铃型分子。这些化合物的合成将为我们进一步理解喹诺酮抗菌药的活性机理提供新的结构信息。此外,研究了由d10金属构筑的金属-环丙沙星配合物的荧光性质和化合物22,23,29和31的磁学性质。
The aim of this thesis is to synthesize new helical coordination compounds on the basis of V-shaped ligands, organic drugs, organic N-donor ligands and multi-nuclear metal-oxygen clusters or metal ions, to study the synthetic conditions and rules for these compounds, analysis influence of V-shaped ligands and N-donor chelate ligands on the formation of helical structure, and to explore the relationships between structures and properties for these new compounds.
     A series of new helical coordination compounds have been synthesized on the basis of hydrothermal technique and structurally characterized by elemental analyses, IR, EPR, XPS, XRPD, TG and single crystal X-ray diffractions. The thermal stabilities, magnetic properties and fluorescent activity of these compounds have been studied.
     1. Six new helical polyoxometalates have been hydrothermally synthesized on the basis of polyoxovanadates decorated or connected by {MxLy} (M = transition metal ions,L = N-donor chelate ligands) fragments: Cu(phen)V_2TeO_8 (1) Ni(phen)V_2TeO_8 (2) [V_4O_7(HAsO_4)_2(phen)_2] (3) [{CoIII(phen)_2}2V_8O_(23)] (4) [Co(2,2’-bpy)_2V_3O_(8.5)] (5) [{Zn(2,2’-bpy)}_2V_8O_(21)] (6)
     Compounds 1 and 2 exhibit a novel 2D chiral layer structure featuring two distinct helices. Compounds 1 and 2 represent the first vanadium tellurites covalently bonded with the metal-organic complex moieties and the two compounds also represent the first example of organic-inorganic hybrid vanadium tellurites containing chiral layer structure. Compound 3 represents the first example of 2D inorganic vanadium arsenate backbone decorated with the directly coordinated organic ligands and the compound also represents the first example of organic-inorganic hybrid vanadium arsenate with helical characters. Compounds 4-6 are three novel 2D inorganic-organic hybrid vanadate complexes containing left-handed and right-handed helical chains. Furthermore, by inspection of the structures of 1-6, it is believed that the L and {MxLy} fragments are important for the formation of the helical structures. In addition, the magnetic properties of compounds 1, 2, and 4 were also investigated.
     2. Nine new pillared helical-layer coordination polymers have been hydrothermally synthesized on the basis of metal ions or their multi-nuclear clusters connected by V-shaped 3,3’,4,4’-benzophenonetetracarboxylate (bptc) and linear 4,4’-bipyridine (bpy) ligands: [Cu_2(bptc)(bpy)_2] (7) [Fe_3(Hbptc)_2(bpy)_3(H_2O)4]·2H_2O (8) [Ni_3(Hbptc)_2(bpy)_3(H_2O)4]·2H_2O (9) [Co_2(bptc)(bpy)(H_2O)]·0.5bpy (10) [Cd_2(bptc)(bpy)(H_2O)2]·H_2O (11) [Cu_2(bptc)(bpy)_2] (7) [Fe_3(Hbptc)_2(bpy)_3(H_2O)4]·2H_2O (8) [Ni_3(Hbptc)_2(bpy)_3(H_2O)4]·2H_2O (9) [Co_2(bptc)(bpy)(H_2O)]·0.5bpy (10) [Cd_2(bptc)(bpy)(H_2O)2]·H_2O (11)
     Compound 7 is a pillared helical-layer complex featuring four distinct helical chains. Compounds 8 and 9 are isostructural and feature 3D structures formed from the interconnection of arm-shaped helical layers with bpy pillars. Compound 10 is a pillared helical-double-layer complex containing four different types of helices. Compound 11 exhibits a novel 3D covalent framework featuring nanosized tubular channels that are built from helical layers pillared by bptc ligands. The structure of 12 is constructed from {Mn(bptc)(H2O)}n2n- layers, which consist of left- and right-handed helical chains, pillared by [Mn2(bpy)3(H2O)4]4+ complexes into a 3D framework. Compounds 13-15 exhibit interesting 2D helical-double-layer structures. Furthermore, the 3D supramolecular structures of 13-15 are similar to the 3D structure of 12. Therefore, the 3D supramolecular structures of 13-15 can also be considered as being constructed from 2D hydrogen-bonded layers, which consist of {M(bptc)(H2O)2}n2n- ribbons, pillared by [M2(bpy)(H2O)6]4+ complexes. These compounds combine respective merits of pillared-layer and helical structures, which may provide a bridge between pillared-layer and helical systems. In addition, photoluminecent and magnetic properties of these compounds are studied.
     3. Two self-penetrating networks have been constructed based on binuclear or mononuclear metals as nodes and long V-shaped ligands and linear bpy ligands as links. {[Zn_4(bptc)_2(bpy)_4]·(C_5H_3N)·4H_2O}n (16) {[Cd_2(sdba)_2(bpy)(H_2O)_2]·2H_2O}n (17)
     Compound 16 adopts a novel 3D framework containing quintuple-stranded molecular braid, 9-fold meso helices and 17-fold interwoven helices, among which the quintuple-stranded molecular braid represents the highest-stranded molecular braid known in the field of coordination polymers and inorganic compounds. Compound 17 is an uncommon self-penetrating 2D network containing pseudo-Borromean links and double-stranded helices. More interestingly, when the strong hydrogen bonds between layers are taken into account, the resulting net of 17 becomes an 8-connected 3D self-penetrating network with an unprecedented (421.67) topology, which represents the highest connected topology presently known in self-penetrating systems. Furthermore, the photoluminescent properties of two compounds were studied.
     4. A series of new helical metal-drug complexes have been hydrothermally synthesized on the basis of metal ions or their multi-nuclear clusters connected by aromatic polycarboxylate ligands and ciprofloxacin (cfH): [Zn(cfH)(Hbtc)]·H2O (18) [Zn_2(cfH)2(odpa)] (19) [Zn_2(cfH)2(bptc)]·4H_2O (20) [Ca(cfH)_2(1,2-Hbdc)_2]·2H_2O (21) [Mn(cf)_2]·2.5H_2O (22) [Co(cf)_2]·2.5H_2O (23) [Zn(cf)_2]·2.5H_2O (24) [Cd(cf)_2]·2.5H_2O (25) [Mg(cf)_2]·2.5H_2O (26) [Ba_2(cf)_2(1,4-bdc)(H_2O)_2]·H_2O (27) [Sr_6(cf)_6(1,4-bdc)_3(H_2O)_6]·2H_2O (28) [Mn_2(cfH)_2(bptc)(H_2O)_2]·8H_2O (29) [Cd_2(cfH)_2(bptc)(H_2O)_2]·8H_2O (30) [Mn(cfH)(1,3-bdc)] (31) [Co(cfH)(1,3-bdc)] (32) [Zn(cfH)(1,3-bdc)] (33) [Zn_2(cfH)_4(1,4-bdc)](1,4-bdc)·13H_2O (34)
     Compound 18 is a unique helical metal-cfH complex containing five types of helices. Compound 19 exhibits a novel 2D chiral layer structure featuring three distinct helices, and the compound represents the first example of metal-quinolone complexes containing chiral layer structure. The chiral layer structure of 20 is similar to that of 19. The supramolecular structure of 21 contains left-handed and right-handed hydrogen-bonded helice. Compounds 22-26 exhibit interesting two-dimensional rhombic grids featuring left-handed and right-handed single helice. The structures of 27 and 28 consist of unique two-dimensional arm-shaped layers based on the one-dimensional Ba-O-Ba chains or hexanuclear strontium cluster units. Compounds 29 and 30 are isostructural and feature one-dimensional structures formed from the interconnection of [M2(cfH)2(H2O)2] dimers with bptc ligands. Compounds 31-33 contain double-chain-like ribbons constructed from [M2(cfH)2(CO2)2] dimers and 1,3-bdc. Compound 34 consists of a pair of [Zn(cfH)2]2+ fragments bridged by a 1,4-bdc into a dinuclear dumbbell structure. The successful isolation of these compounds provides new structural information that will aid in understanding the mechanisms of action of the quinolone antibacterial drugs. The fluorescent study on the compounds based on d10 metals and the magnetic properties of compounds 22,23,29 and 31 are also discussed.
引文
[1] Champness N R, Schroder M. Current Opinion in Solid State & Materials[J]. Science, 1998, 3: 419-424.
    [2] Bruser H J, Schwarzenbach D, Petter W, et al. The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O[J]. Inorg Chem, 1977, 16: 2704-2710.
    [3] Hosking B F and Robson R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments[J]. J Am Chem Soc, 1989, 111: 5962-5964.
    [4] Wells A F. Three Dimensional Nets and Polyhedra[M] New York, 1977.
    [5] Wells A F. Structrual Inorganic Chemistry, 5thed[M]. Oxford Univ. Press, 1983.
    [6] Wang E B, Hu C W, Xu L. Concise of Polyoxometalate Chemistry[M]. Beijing:Chemical Industrial Publishing Company, 1998, 4.
    [7] Müller A, Peters F, Pope M T, Gatteschi D. Polyoxometalates: Very Large Clusters-Nanoscale Magnets[J]. Chem Rev, 1998, 98: 239-271.
    [8] Müller A, K?gerler P, Lijamm C, A variety of combinatorially linkable units as disposition: from a giant icosahedral Keplerate to multi-functional metal-oxide based network structures[J]. Chem Commun, 1999, 1347-1358.
    [9] Müller A, Beckmann E, B?gge H, et al. Inorganic Chemistry Goes Protein Size: A Mo368 Nano-Hedgehog Initiating Nanochemistry by Symmetry Breaking[J]. Angew Chem Int Ed, 2002, 41: 1162-1167.
    [10] Yamase T, Prokop P V, Photochemical Formation of Tire-Shaped Molybdenum Blues: Topology of a Defect Anion, [Mo142O432H28(H2O)58]12-[J]. Angew Chem Int Ed, 2002, 41: 466-469.
    [11] Howell R C, Perez F G, Jain S, et al. A New Type of Heteropolyoxometalates formed from Lacunary Poloxotungstate Ions and Europium or Yttrium Cations[J]. Angew Chem Int Ed, 2001, 40: 4031-4034.
    [12] Fukaya K, Yamase T. Alkali-Metal-Controlled Self-Assembly of Crown-Shaped Ring Complexes of Lanthanide/[α-AsW9O33]9-:[K{Eu(H2O)2(α-AsW9O33)}6]35- and [Cs{Eu(H2O)2(α-AsW9O33)}4]23-[J]. Angew Chem Int Ed, 2003, 42: 654-658.
    [13] Wassermann K, Dickman M H, Pope M T. Self-Assembly of Supramolecular Polyoxometalates: The Compact, Water-Soluble Heteropolytungstate Anion [As12IIICe16III(H2O)36W148O524]76- [J]. Angew Chem Int Ed Engl, 1997, 36: 1445-1448.
    [14] Müller A, Rohlfing R, D?ring J, et al. Formation of a Cluster Sheath around a Central Cluster by a Self-Organization Process: the Mixed Valence Polyoxovanadate [V34O82]10- [J]. Angew Chem Int Ed Engl, 1991, 30: 588-590.
    [15] Piepenbrink M, Triller M U, Gorman N H J, et al. Bridging the Gap between Polyoxometalates and Classic Coordination Compounds: A Novel Type of Hexavanadate Complex[J], Angew Chem Int Ed Engl, 2002, 41: 2523-2525.
    [16] Bino A, Ardon M, Lee D, et al. Synthesis and Structure of [Fe13O4F24(OMe)12]5-: The First Open-Shell Keggin Ion[J]. J Am Chem Soc, 2002, 124: 4578-4579.
    [17] (a) Lu M,Wei Y G,Xu B B, et al. Hybrid Molecular Dumbbells: Bridging Polyoxometalate Clusters with an Organic π-Conjugated Rod[J]. Angew Chem Int Ed Engl, 2002, 41: 1566-1568. (b) Xu L, Lu M, Xu B B, et al. Towards Main-Chain-Polyoxometalate-Containing Hybrid Polymers: A Highly Efficient Approach to Bifunctionalized Organoimido Derivatives of Hexamolybdates[J]. Angew ChemInt Ed Engl, 2002, 41: 4129-4132.
    [18] Kortz U, Savelieff M G, Ghali F Y A, et al. Heteropolymolybdates of AsIII, SbIII, BiIII, SeIV, and TeIV Functionalized by Amino Acids[J]. Angew Chem Int Ed, 2002, 41: 4070-4073.
    [19] Soghomonian, V, Chen, Q, Haushalter, R C, et al. An inorganic double helix: hydrothermal synthesis, structure, and magnetism of chiral [(CH3)2NH2]K4[V10O10(H2O)2(OH)4(PO4)7]?4H2O[J]. Science, 1993, 259: 1596-1599.
    [20] Shi Z, Feng S H, Gao S, et al. Inorganic-Organic Hybrid Materials Constructed from [(VO2)(HPO4)]∞ Helical Chains and [M(4,4’-bpy)]2+(M=Co,Ni) [J]. Angew Chem Int Ed, 2000, 9: 2325-2327.
    [21] Wang Y, Yu J, Pan Q, et al. Synthesis and Structural Characterization of 0D Vanadium Borophosphate [Co(en)3]2[V3P3BO19][H2PO4]?4H2O and 1D Vanadium Oxides [Co(en)3][V3O9]?H2O and [Co(dien)2][V3O9]?H2O Templated by Cobalt Complexes: Cooperative Organization of the Complexes and the Inorganic Networks[J]. Inorg Chem 2004, 43: 559-565
    [22] Lu, C Z, Wu, C D, Lu, S F, et al. A three-dimensional zeolite-like organic–inorganic hybrid material constructed from {CuMo2O8N}n double helical chains linked via [Cu(4,4’-bpy)]n fragments[J]. Chem Commun, 2002, 152-153.
    [23] (a) Wu, C D, Lu, C Z, Lin X, et al. A novel left-handed double helicate constructed from L-tartrate bridged molybdenum(VI) and gadolinium(III) atoms[J]. Chem Commun, 2003, 1284-1285. (b) Wu, C D, Lu, C Z, Lu S-F, et al. Synthesis, structures and properties of a series of novel left- and right-handed metal coordination double helicates with chiral channels[J]. Dalton Trans, 2003, 3192-3198.
    [24] Lu J J, Xu Y, Goh N G, et al. Hydrothermal Assembly and Structural Characterisation of One- and two-Dimensional Organic/Inorganic Hybrid Materials Constructed from Diphosphopentamolybdate Clusters and {Cu(en)}2+ Complex Groups[J]. Chem Commun, 1998, 2733-2734.
    [25] Xu L, Qin C, Wang X L, et al. Hydrothermal synthesis and structure of a new helical chain constructed from only molybdenum-oxide building blocks[J]. Inorg Chem, 2003, 42: 7342-7344.
    [26] Shivaiah V, Nagaraju M, and Das S K. Formation of a Spiral-Shaped Inorganic-Organic Hybrid Chain, [CuII(2,2’-bipy)(H2O)2Al(OH)6Mo6O18]nn-: Influence of Intra- and Interchain Supramolecular Interactions[J]. Inorg Chem, 2003, 42: 6604-6606.
    [27] An H Y, Xiao D R, Wang E B, et al. A series of new polyoxoanion-based inorganic-organic hybrids: (C6NO2H5)[(H2O)4(C6NO2H5)Ln(CrMo6H6O24)]·4H2O (Ln = Ce, Pr, La and Nd) with chiral layer structures[J]. New J Chem, 2005, 29: 667-672
    [28] An H Y, Wang E B, Xiao D R, et al. Chiral 3D Architectures with Helical Channels Constructed from Polyoxometalate Clusters and Copper–Amino Acid Complexes[J]. Angew Chem Int Ed, 2006, 45: 904-908.
    [29] Kitagawa S, Kitaura R, Noro S. Functional Porous Coordination Polymers[J]. Angew Chem Int Ed, 2004, 43: 2334-2375.
    [30] Yaghi O M, O’Keeffe M, Ockwig N W, et al. Reticular Synthesis and the Design of New Materials. Nature, 2003, 423: 705-714.
    [31] (a) Li H, Eddaoudi M, O’Keeffe M, Yaghi O M. Design and synthesis of an exceptionally stable andhighly porous metal-organic framework[J]. Nature, 1999, 402: 276-279. (b) Eddaoudi, M, Kim, J, Rosi, N, Vodak, D, Wachter, J, O’Keeffe, M, Yaghi, O M. Systematic Design of Pore Size MOFs and Their Application in Methane Storage [J]. Science, 2002, 295: 469-472.
    [32] Chae H K, Diana Y, Siberio P, et al. A route to high surface area porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427: 523-527.
    [33] Chen B, Ockwig N W, Millward A R, et al. High H2 Adsorption in a Microporous Metal–Organic Framework with Open Metal Sites[J]. Angew Chem Int Ed, 2005, 44: 4745-4749.
    [34] Ferey G, Serre C, Mellot-Draznieks C, et al. A Chromium Terephthalate–Based Solid with Unusually Large Pore Volumes and Surface Area[J]. Science, 2005, 309: 2040-2042.
    [35] Abrahams B F, Moylan M, Orchard S D, et al. Zinc Saccharate: A Robust, 3D Coordination Network with Two Types of Isolated, Parallel Channels, One Hydrophilic and the Other Hydrophobic[J]. Angew Chem Int Ed, 2003, 42: 1848-1851.
    [36] Danil N, Dybtsev, Hyungphil Chun, Kimoon Kim, Rigid and Flexible: A Highly Porous Metal-Organic Framework with Unusual Guest-Dependent Dynamic Behavior[J]. Angew Chem Int Ed, 2004, 43, 5033-5036.
    [37] Kitaura R, Seki K, Akiyama G, et al. Porous Coordination-Polymer Crystals with Gated Channels Specific for Supercritical Gases[J]. Angew Chem Int Ed, 2003, 42: 428-431.
    [38] Zhang J P, Lin Y Y, Zhang W X, et al. Temperature- or Guest-Induced Drastic Single-Crystal-to-Single-Crystal Transformations of a Nanoporous Coordination Polymer[J]. J Am Chem Soc, 2005, 127: 14162-14163.
    [39] Piguet C, Bernardinelli G, Hopfgartner G. Helicates as Versatile Supramolecular Complexes[J]. Chem Rev,1997, 97: 2005-2062.
    [40] Albrecht M. “Let’s Twist Again”sDouble-Stranded, Triple-Stranded, and Circular Helicates[J]. Chem Rev, 2001, 101, 3457-3497
    [41] Nakano T, Okamoto Y. Synthetic Helical Polymers: Conformation and Function[J]. Chem Rev, 2001, 101, 4013-4038.
    [42] Lehn J-M, Rigault A, Siegel J, et al. Spontaneous Assembly of Double-Stranded Helicates from Oligobipyridine Ligands and Copper(I) Cations: Structure of an Inorganic Double Helix[J]. Proc Natl Acad Sci USA 1987, 84, 2565-2569.
    [43] Han L, Hong M. Recent advances in the design and construction of helical coordination polymers[J]. Inorg Chem Commun, 2005, 8: 406-419.
    [44] Hong M C, Su W P, Cao R., et al. Assembly of Silver(i) Polymers with Helical and Lamellar Structures[J]. Chem Eur J 2000, 6: 427-431.
    [45] Han L, Hong M C, Wang R H, et al. A novel nonlinear optically active tubular coordination network based on two distinct homo-chiral helices[J]. Chem Commun, 2003, 2580-2581.
    [46] Wang R H, Han L, Xu L J, et al. Syntheses and Characterizations of Metal-Organic Frameworks with Unusual Topologies Derived from Flexible Dipyridyl Ligands[J]. Eur J Inorg Chem, 2004, 3751-3763.
    [47] Wang R H, Zhou Y F, Sun Y Q, et al. Syntheses and Crystal Structures of Copper(II) Coordination Polymers Comprising Discrete Helical Chains[J]. Crystal Growth Des, 2005, 5: 251-256.
    [48] Chen X M, Liu G F. Double-Stranded Helices and Molecular Zippers Assembled from Single-Stranded Coordination Polymers Directed by Supramolecular Interactions[J]. Chem Eur J. 2002, 8: 4811-4817.
    [49] Zhang J-P, Lin Y-Y, Huang X-C, et al. Molecular chairs, zippers, zigzag and helical chains: chemical enumeration of supramolecular isomerism based on a predesigned metal–organic building-block[J]. Chem Commun, 2005, 1258-1260.
    [50] Jung O-S, Kim Y. J, Lee Y-A, et al. Smart Molecular Helical Springs as Tunable Receptors[J]. J Am Chem Soc, 2000, 122: 9921-9925.
    [51] Wu C-D, Ngo H L, Lin W. B. Luminescent homochiral silver(I) lamellar coordination networks built from helical chains[J]. Chem Commun, 2004, 1588-1589.
    [52] Wang X L, Qin C, Wang E B, et al. Syntheses, structures, and photoluminescence of a novel class of d10 metal complexes constructed from pyridine-3,4-dicarboxylic acid with different coordination architectures[J]. Inorg Chem, 2004, 43: 1850-1856.
    [53] Qin C, Wang X L, Wang E B, et al. Three-dimensional mesomeric networks assembled from helix-linked sheets: syntheses, structures, and magnetisms[J]. Dalton Trans, 2005, 2609-2614.
    [54] Anokhina E V, Go Y B, Lee Y, et al. Chiral Three-Dimensional Microporous Nickel Aspartate with Extended Ni-O-Ni Bonding[J]. J Am Chem Soc, 2006, 128: 9957-9962
    [55] Carlucci L, Ciani G, Wolf D, et al. Self-Assembly of Infinite Double Helical and Tubular Coordination Polymers from Ag(CF3SO3) and 1,3-Bis(4-pyridyl)propane[J]. Inorg Chem, 1997, 36: 3812-3813.
    [56] Erxleben A. Synthesis and Structure of {[Ag(SalGly)]·0.33H2O}n: An Infinite Double Helical Coordination Polymer[J]. Inorg Chem, 2001, 40: 2928-2931.
    [57] Mamula O, Zelewsky A V, Bark T, et al. Stereoselective Synthesis of Coordination Compounds: Self-Assembly of a Polymeric Double Helix with Controlled Chirality[J]. Angew Chem Int Ed Engl, 1999, 38: 2945-2948.
    [58] Zhang J-P, Zheng S-L, Huang X-C, et al. Two Unprecedented 3-Connected Three-Dimensional Networks of Copper(i) Triazolates: In Situ Formation of Ligands by Cycloaddition of Nitriles and Ammonia[J]. Angew Chem Int Ed, 2004, 43: 206-209.
    [59] Wang R H, Xu L J, Li X S, et al. New Types of Homochiral Helical Coordination Polymers Constructed by exo-Bidentate Binaphthol Derivatives[J]. Eur J Inorg Chem, 2004, 1595-1599.
    [60] Bu X-H, Tong M-L, Chang H-C, et al. A Neutral 3D Copper Coordination Polymer Showing 1D Open Channels and the First Interpenetrating NbO-Type Network[J]. Angew Chem Int Ed, 2004, 43: 192–195.
    [61] Yang E, Zhang J, Li Z-J, et al. Interweaving 3D Network with Double Helical Tubes Filled by 1D Coordination Polymer Chains[J]. Inorg Chem, 2004, 43: 6525-6527.
    [62] Lee J W, Kim E A, Kim Y J. Relationship between the Ratio of Ligand to Metal and the Coordinating Ability of Anions. Synthesis and Structural Properties of AgX-Bearing Bis(4-pyridyl)dimethylsilane (X- = NO2-, NO3-, CF3SO3-, and PF6-)[J]. Inorg Chem, 2005, 44: 3151-3155.
    [63] Sailaja S, Rajasekharan M V. One-Dimensional Coordination Polymers of Silver(I) with Aminomethylpyridines. Example of a Triple Helical Infinite Chain[J]. Inorg Chem, 2000, 39: 4586-4590.
    [64] Grosshansa P, Jouaitia A, Bulacha V, et al. Molecular tectonics: from enantiomerically pure sugars to enantiomerically pure triple stranded helical coordination network[J]. Chem Commun, 2003, 1336-1337.
    [65] Cui Y, Ngo H L, Lin W. B. A homochiral triple helix constructed from an axially chiral bipyridine[J]. Chem Commun, 2003, 1388-1389.
    [66] Huang X-C, Zhang J-P, Lin Y-Y, et al. Triple-stranded helices and zigzag chains of copper(I) 2-ethylimidazolate: solvent polarity-induced supramolecular isomerism[J]. Chem Commun, 2005, 2232-2234.
    [67]] Sun Y Q, Zhang J, Chen Y M, et al. Porous Lanthanide-Organic Open Frameworks with Helical Tubes Constructed from Interweaving Triple-Helical and Double-Helical Chains[J]. Angew Chem Int Ed, 2005, 44: 5814-5817.
    [68] Zang S, Su Y, Li Y, et al. Interweaving of Triple-Helical and Extended Metal-O-Metal Single-Helical Chains with the Same Helix Axis in a 3D Metal-Organic Framework[J]. Inorg Chem 2006, 45: 3855-3857.
    [69] Luan X-J, Wang Y-Y, Li D-S, et al. Self-Assembly of an Interlaced Triple-Stranded Molecular Braid with an Unprecedented Topology through Hydrogen-Bonding Interactions[J]. Angew Chem Int Ed, 2005, 44: 3864-3867.
    [70] Luan X-J, Cai X-H, Wang Y-Y, et al. An Investigation of the Self-Assembly of Neutral, Interlaced, Triple-Stranded Molecular Braids[J]. Chem Eur J, 2006, 12: 6281-6289.
    [71] Cui Y, Lee S J, Lin W. Interlocked Chiral Nanotubes Assembled from Quintuple Helices[J]. J. Am. Chem. Soc., 2003, 125: 6014-6015.
    [72] Wang X L, Qin C, Wang E B, et al. Interlocked and Interdigitated Architectures from Self-Assembly of Long Flexible Ligands and Cadmium Salts[J]. Angew Chem Int Ed, 2004, 43: 5036-5040.
    [73] Lightfoot M P, Mair F S, Pritchard R G, et al. New supramolecular packing motifs: p-stacked rods encased in triply-helical hydrogen bonded amide strands[J]. Chem Commun, 1999, 1945-1946.
    [74] Gangopadhyay P, Radhakrishnan T P. Helical Superstructures of a C2-Symmetric Molecule Exhibiting Strong Second Harmonic Generation in the Solid-State[J]. Angew Chem Int Ed, 2001 40: 2451-2455.
    [75] Song Y, Yu J, Li Y, et al. Hydrogen-Bonded Helices in the Layered Aluminophosphate (C2H8N)2[Al2(HPO4)(PO4)2] [J]. Angew Chem Int Ed, 2004, 43: 2399-2402.
    [76] Gouzerh P, Proust A. Main-Group Element, Organic, and Organometallic Derivatives of Polyoxometalates[J]. Chem Rev, 1998, 98: 77-111.
    [77] Johnson B J S, Schroden R C, Zhu C, et al. Design and Analysis of Chain and Network Structures from Organic Derivatives of Polyoxometalate Clusters[J]. Inorg Chem, 2002, 41: 2213-2218.
    [1] Pope, M.T. Heteropoly and Isopoly Oxometalates[M]. Springer-Verlag: Berlin,1983, 1-10.
    [2] Pope M T, Müller A. Polyoxometalate Chemistry[M]. Kluwer, Dordrecht, 2001, 1-10.
    [3] Wang E B, Hu C W, Xu L. Concise of Polyoxometalate Chemistry[M]. Beijing:Chemical Industrial Publishing Company, 1998, 4.
    [4] Hagrman D, Zapf P J, Zubieta J. A Two-Dimensional Network Constructed from Hexamolybdate, Octamolybdate and Cu3(4,7-phen)3]3+ Clusters: [{Cu3(4,7-phen)3}2{Mo14O45}][J]. Chem Commun, 1998, 1283-1284.
    [5] Wu C D, Lu C Z, Zhuang H H, et al. Hybrid Coordination Polymer Constructed from β-Octamolybdates Linked by Quinoxaline and Its Oxidized Product Benzimidazole Coordinated to Binuclear Copper(I) Fragments[J]. Inorg Chem, 2002, 41: 5636-5637.
    [6] Lü J, Shen E H, Yuan M, et al. A Novel Three-Dimensional Network Constructed from Tetramolybdate Clusters Linked via Two Types of Copper Complex Fragments: Synthesis, Characteri- zation, and Magnetic Behavior of [{CuII(2,2’-bpy)}{CuII(IN)2}{Mo4O12(OH)2}][J]. Inorg Chem, 2003, 42: 6956-6958.
    [7] Lü J, Li Y G, Shen E H, et al. Hydrothermal Synthesis and Crystal Structure of a Novel Two-Dimensional Organic-Inorganic Hybrid Copper Molybdate with Mixed Organodiamine and Dicarboxyl Ligands[J]. J Solid State Chem, 2004, 177: 1771-1775.
    [8] Shivaiah V, Nagaraju M, and Das S K. Formation of a Spiral-Shaped Inorganic-Organic Hybrid Chain, [CuII(2,2’-bipy)(H2O)2Al(OH)6Mo6O18]nn-: Influence of Intra- and Interchain SupramolecularInteractions[J]. Inorg Chem, 2003, 42: 6604-6606.
    [9] An H, Li Y, Wang E, et al. Self-Assembly of a Series of Extended Architectures Based on Polyoxometalate Clusters and Silver Coordination Complexes[J]. Inorg Chem, 2005, 44: 6062-6070.
    [10] Liu C M, Zhang D Q, Xiong M, et al. A Novel Two-Dimensional Mixed Molybdenum-Vanadium Polyoxometalate with Two Types of Cobalt(II) Complex Fragments as Bridges[J]. Chem Commun, 2002, 1416-1417.
    [11] Yuan M, Wang E, Lu Y, et al. A Two-Dimensional Molybdenum(V) Phosphate with Covalently Bonded Transition Metal Coordination Complexes: Hydrothermal Synthesis and Structure Characterization of Na2[{Mn(phen)2(H2O)}{Mn(phen)2}3{MnMoV12O24(HPO4)6(PO4)2 (OH)6}]·4H2O[J]. J Solid State Chem, 2003, 170: 41.
    [12] Lu J J, Xu Y, Goh N G, et al. Hydrothermal Assembly and Structural Characterisation of One- and two-Dimensional Organic/Inorganic Hybrid Materials Constructed from Diphosphopentamolybdate Clusters and {Cu(en)}2+ Complex Groups[J]. Chem Commun, 1998, 2733-2734.
    [13] Chen J, Lu S F, Yu R M, et al. A novel compound with an interpenetrating 2D network structure constructed by [Mo5P2O23] and Ni–4,4’-bipyridine components: its synthesis, characterization and magnetic behavior[J]. Chem Commun, 2002, 2640-2641.
    [14] Peloux C, Dolbecq A, Mialane P, et al. A New Family of Layered Molybdenum(v) Cobalto-Phosphates Built up of [H14(Mo16O32)Co16(PO4)24(H2O)20]10- Wheels[J]. Angew Chem Int Ed 2001, 40: 2455-2457.
    [15] Lin B Z, Chen Y M, Liu P D. A new polymeric chain formed by paradodecatungstate clusters and [Cu(en)2]2+ complexes: hydrothermal synthesis and characterization of [Cu(en)2]3[{Cu(en)2}2(H2W12- O42)]·12H2O[J]. Dalton Trans, 2003, 2474-2477.
    [16] Soghomonian, V, Chen, Q, Haushalter, R C, et al. An inorganic double helix: hydrothermal synthesis, structure, and magnetism of chiral [(CH3)2NH2]K4[V10O10(H2O)2(OH)4(PO4)7]?4H2O[J]. Science, 1993, 259: 1596-1599.
    [17] Shi Z, Feng S H, Gao S, et al. Inorganic-Organic Hybrid Materials Constructed from [(VO2)(HPO4)]∞ Helical Chains and [M(4,4’-bpy)]2+(M=Co,Ni) [J]. Angew Chem Int Ed, 2000, 9: 2325-2327.
    [18] Wang Y, Yu J, Pan Q, et al. Synthesis and Structural Characterization of 0D Vanadium Borophosphate [Co(en)3]2[V3P3BO19][H2PO4]?4H2O and 1D Vanadium Oxides [Co(en)3][V3O9]?H2O and [Co(dien)2][V3O9]?H2O Templated by Cobalt Complexes: Cooperative Organization of the Complexes and the Inorganic Networks[J]. Inorg Chem 2004, 43: 559-565
    [19] Lu, C Z, Wu, C D, Lu, S F, et al. A three-dimensional zeolite-like organic–inorganic hybrid material constructed from {CuMo2O8N}n double helical chains linked via [Cu(4,4’-bpy)]n fragments[J]. Chem Commun, 2002, 152-153.
    [20] (a) Wu, C D, Lu, C Z, Lin X, et al. A novel left-handed double helicate constructed from L-tartrate bridged molybdenum(VI) and gadolinium(III) atoms[J]. Chem Commun, 2003, 1284-1285. (b) Wu, C D, Lu, C Z, Lu S-F, et al. Synthesis, structures and properties of a series of novel left- and right-handedmetal coordination double helicates with chiral channels[J]. Dalton Trans, 2003, 3192-3198.
    [21] An H Y, Xiao D R, Wang E B, et al. A series of new polyoxoanion-based inorganic-organic hybrids: (C6NO2H5)[(H2O)4(C6NO2H5)Ln(CrMo6H6O24)]·4H2O (Ln = Ce, Pr, La and Nd) with chiral layer structures[J]. New J Chem, 2005, 29: 667-672
    [22] An H Y, Wang E B, Xiao D R, et al. Chiral 3D Architectures with Helical Channels Constructed from Polyoxometalate Clusters and Copper–Amino Acid Complexes[J]. Angew Chem Int Ed, 2006, 45: 904-908.
    [23] Müller A, Peters F, Pope M T, Gatteschi D. Polyoxometalates: Very Large Clusters-Nanoscale Magnets[J]. Chem Rev, 1998, 98: 239-271.
    [24] Zhang Y P, O’Connor C J, Clearfield A, et al. An Organically Templated Layered Vanadium Oxide: Hydrothermal Synthesis, Single-Crystal Structrue, and Magnetic Properties of (H3N(CH2)3NH3)[V4O10] [J]. Chem Mater, 1996, 8: 595-597.
    [25] Hagrman D, Hagrman P J, Zubieta J. Organic-inorganic hybrid materials: From “simple” coordination polymers to organodiamine-templated molybdenum oxides[J]. Angew Chem Int Ed, 1999, 38: 2638-2684.
    [26] Liang J, Wang Y, Yu J H, et al. Synthesis and structure of a new layered zinc phosphite (C5H6N2)Zn(HPO3) containing helical chains[J]. Chem Commun, 2003, 882-883.
    [27] (a) Sheldrick G M. SHELXS 97, Program for Crystal Structure Solution [CP], University of G?ttingen (Germany), 1997; b) Sheldrick G M. SHELXL 97, Program for Crystal Structure Refinement [CP], University of G?ttingen (Germany), 1997.
    [28] Gillsepie R J. Molecular Geometry[M]. Van Norstand-Reinholdt: London, 1972.
    [29] Hagrman P J, Finn R C, Zubieta J. Molecular manipulation of solid state structure: influences of organic components on vanadium oxide architectures[J]. Solid State Sciences, 2001, 3: 745–774.
    [30] Liu C M, Gao S, Kou H Z. Dehydrogenative coupling of phenanthroline under hydrothermal conditions: crystal structure of a novel layered vanadate complex constructed of 4,8,10-net sheets: [(2,2 -biphen)Co]V3O8.5[J]. Chem Commun, 2001, 1670-1671.
    [31] Liu C M, Gao S, Hu H, et al. A novel bimetallic cage complex constructed from six V4Co pentatomic rings: {[2,2’-Py2NH]2Co}3V8O23[J]. Chem Commun, 2001,1636-1637.
    [32] Zhang X M, Tong M L, Chen X M. Hydrothermal synthesis and crystal structures of two bimetallic chain-like and cluster complexes [{Co(phen)2}2V6O17]n and [{Cu(phen)2}4V10O29]·6H2O[J]. Chem Commun, 2000, 1817-1818.
    [33] Zheng L M, Wang X Q, Wang Y S, Jacobson A J. Syntheses and characterization of Co2(4,4 -bipy)2(V4O12), Co(pz)(VO3)2 and Co2(2-pzc)(H2O)(VO3)3 (4,4 -bipy = 4,4 -bipyridine, pz = pyrazine, 2-pzc = 2-pyrazinecarboxylate) [J]. J Mater Chem, 2001, 11: 1100-1105.
    [34] Hagrman P J, Zubieta J. Hydrothermal Syntheses and Structural Characterizations of Organic-Inorganic Hybrid Materials of the M(II)-Ligand/Vanadium Oxide System (M(II) = Cu(II) and Zn(II); Ligand = 2,2'-Bipyridine and 2,2':6',2''-Terpyridine) [J]. Inorg Chem, 2001, 40: 2800-2809.
    [35] Lu Y, Wang E B, Yuan M, et al. Hydrothermal synthesis and crystal structure of a layered vanadium phosphate with a directly coordinated organonitrogen ligand: [V4O7(HPO4)2(2,2’-bipy)2] [J]. J Chem Soc Dalton Trans, 2002, 3029-3031.
    [36] Shi Z, Feng S H, Zhang L R, et al. Hydrothermal Syntheses and X-ray Crystal Structures of Three Inorganic-Organic Hybrid Materials in a Copper Vanadium Phosphate Family: CuL(VO2)(PO4) (L = 4,4'-bipy, 1,10-phen, 2,2'-bipy) [J]. Chem Mater, 2000, 12: 2930-2935.
    [37] Zhang X M, Tong M L, Feng S H, et al. The unique dual role of zinc atoms in a mixed zinc–vanadium phosphate [Zn(phen)Zn(VO)(PO4)2][J]. J Chem Soc Dalton Trans, 2001, 2069-2070.
    [38] Huang C-H, Huang L-H, Lii K-H. Synthesis and Structure of (4,4'-H2bpy)[V2(HPO4)4(4,4'-bpy)2], a Novel Two-Dimensional Network Compound[J]. Inorg Chem, 2001, 40: 2625–2627.
    [39] Huang L H, Kao H M, Lii K H. Novel Vanadium(V) Compounds with a Layer Structure: Synthesis, Crystal Structures, and Solid State NMR Spectroscopy of [(VO2)2(4,4'-bpy)0.5(4,4'-Hbpy)(XO4)]·H2O (X = P and As) [J]. Inorg Chem, 2002, 41, 2936-2940.
    [40] O. Kahn, Molecular Magnetism[M]. New York: VCH 1993.
    [1] (a)Biradha K, Hongo Y, Fjita M. Open Square-Grid Coordination Polymers of the Dimensions 20×20?: Remarkably Stable and Crystalline Solids Even after Guest Removal[J]. Angew Chem Int Ed, 2000, 39: 3843-3846. (b) Hong M C, Zhao Y J, Su, W P. A Silver(I) Coordination Polymer Chain Containing Nanosized Tubes with Anionic and Solvent Molecule Guests[J]. Angew Chem Int Ed, 2000, 39: 2468-2470.
    [2] (a) Li H, Eddaoudi M, O’Keeffe M, Yaghi O M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402: 276-279. (b) Chen B, Eddaoudi M, Hyde S T, et al. Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores[J]. Science, 2001, 291: 1021-1023. (c) Rosi, N L, Eddaoudi, M, Kim, J, O’keeffe, M, Yaghi, O M Infinite Secondary Building Units and Forbidden Catenation in Metal-Organic Frameworks [J]. Angew Chem Int Ed 2002, 41: 284-287. (d) Eddaoudi, M, Kim, J, Rosi, N, Vodak, D, Wachter, J, O’Keeffe, M, Yaghi, O M. Systematic Design of Pore Size MOFs and Their Application in Methane Storage [J]. Science, 2002, 295: 469-472.
    [3] (a) Abrahams B F, Moylan M, Orchard S D, et al. Zinc Saccharate: A Robust, 3D Coordination Network with Two Types of Isolated, Parallel Channels, One Hydrophilic and the Other Hydrophobic[J]. Angew Chem Int Ed, 2003, 42: 1848-1851. (b) Su C-Y, Goforth A M, Smith M D, et al. Exceptionally Stable, Hollow Tubular Metal-Organic Architectures: Synthesis, Characterization, and Solid-State Transformation Study[J]. J Am Chem Soc, 2004, 126: 3576–3586.
    [4] (a) Batten S R, Robson R. Interpenetrating Nets: Ordered, Periodic Entanglement [J]. Angew Chem Int Ed 1998, 37: 1460-1494. (b) Hagrman D, Hagrman P J, Zubieta J. Organic-inorganic hybrid materials: From “simple” coordination polymers to organodiamine-templated molybdenum oxides[J]. Angew Chem Int Ed, 1999, 38: 2638-2684. (c) Blake A J, Champness N R, Hubberstey P, et al. Inorganic crystal engineering using self-assembly of tailored building-blocks. Coord Chem Rev, 1999, 183: 117-138. (d) Tong M L, Chen X M, Batten S R. A New Self-Penetrating Uniform Net, (8,4) (or 86), Containing Planar Four-Coordinate Nodes[J]. J Am Chem Soc, 2003, 125: 16170-16171.
    [5] Evans O R, Lin, W. Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks. Acc Chem Res, 2002, 35: 511-522.
    [6] (a) Danil N, Dybtsev, Hyungphil Chun, Kimoon Kim. Rigid and Flexible: A Highly Porous Metal-Organic Framework with Unusual Guest-Dependent Dynamic Behavior[J]. Angew. Chem. Int. Ed, 2004, 43, 5033-5036. (b) Bu X-H, Tong M-L, Chang H-C, et al. A Neutral 3D Copper Coordination Polymer Showing 1D Open Channels and the First Interpenetrating NbO-Type Network[J]. Angew Chem Int Ed, 2004, 43: 192-195.
    [7] (a) Yaghi O M, O’Keeffe M, Ockwig N W, et al. Reticular Synthesis and the Design of New Materials[J]. Nature, 2003, 423: 705-714. (b) Ockwig N W, Delgado-Friedrichs O, O’Keeffe M, et al. Reticular Chemistry: Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks[J]. Acc Chem Res, 2005, 38: 176-182. (c) Kitagawa S, Kitaura R, Noro S. Functional Porous Coordination Polymers[J]. Angew Chem Int Ed, 2004, 43: 2334-2375. (d) Rao C N R, Natarajan S, Vaidhyanathan R, Metal Carboxylates with Open Architectures[J]. Angew Chem Int Ed, 2004, 43: 1466-1496. (e) Ye B H, Tong M L, Chen X M. Metal-organic molecular architectures with 2,2’-bipyridyl-like and carboxylate ligands[J]. Coord Chem Rev, 2005, 249: 545-565.
    [8] (a) Zaworotko M J, Superstructural diversity in two dimensions: crystal engineering of laminated solids[J]. Chem Commun, 2001, 1-9. (b) Song J L, Zhao H H, Mao J G, et al. New Types of Layered and Pillared Layered Metal Carboxylate-Phosphonates Based on the 4,4'-Bipyridine Ligand[J]. Chem. Mater, 2004, 16: 1884-1889.
    [9] Kondo M, Okubo T, Asami A, et al. Rational Synthesis of Stable Channel-Like Cavities with Methane Gas Adsorption Properties: [{Cu2(pzdc)2(L)}n] (pzdc=pyrazine-2,3-dicarboxylate; L=a Pillar Ligand)[J]. Angew Chem Int Ed, 1999, 38: 140-143.
    [10] (a) Diskin-Posner Y, Dahal S, Goldberg I. Crystal Engineering of Metalloporphyrin Zeolite Analogues[J]. Angew Chem Int Ed, 2000, 39: 1288-1292. (b) Baiyin M, An Y, Liu X, et al. K2Ag6Sn3S10: A Quaternary Sulfide Composed of Silver Sulfide Layers Pillared by Zigzag Chains [SnS3]2-[J]. Inorg Chem, 2004, 43: 3764-3765.
    [11] C?téA P, Shimizu G K H. The first example of a functional pillared metal sulfonate network[J]. Chem Commun, 2001, 251-252. (b) Prior T J, Bradshaw D, Teat S J, et al. Designed layer assembly: a three-dimensional framework with 74% extra-framework volume by connection of infinite two-dimensional sheets[J]. Chem Commun, 2003, 500-501.
    [12] (a) Russell V A, Evans C, Li C W, et al. Nanoporous Molecular Sandwiches: Pillared Two-Dimensional Hydrogen-Bonded Networks with Adjustable Porosity[J]. Science, 1997, 276: 575-579. (b) Ngo H L, Lin W. Chiral Crown Ether Pillared Lamellar Lanthanide Phosphonates[J]. J Am Chem Soc, 2002, 124: 14298-14299.
    [13] (a) Moulton B, Zaworotko M J. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids[J]. Chem Rev, 2001, 101: 1629–1658. (b) Soghomonian, V, Chen, Q, Haushalter, R C, et al. An inorganic double helix: hydrothermal synthesis, structure, and magnetism of chiral [(CH3)2NH2]K4[V10O10(H2O)2(OH)4(PO4)7]?4H2O[J]. Science, 1993, 259: 1596-1599. (c) Shi Z, Feng S H, Gao S, et al. Inorganic-Organic Hybrid Materials Constructed from [(VO2)(HPO4)]∞ Helical Chains and [M(4,4’-bpy)]2+(M=Co,Ni) [J]. Angew Chem Int Ed, 2000, 9: 2325-2327.
    [14] Zhang J-P, Lin Y-Y, Huang X-C, et al. Molecular chairs, zippers, zigzag and helical chains: chemical enumeration of supramolecular isomerism based on a predesigned metal–organic building-block[J]. Chem Commun, 2005, 1258-1260.
    [15] (a) Chen X M, Liu G F. Double-Stranded Helices and Molecular Zippers Assembled from Single-Stranded Coordination Polymers Directed by Supramolecular Interactions[J]. Chem Eur J. 2002, 8: 4811-4817. (b) Cui Y, Lee S J, Lin W. Interlocked Chiral Nanotubes Assembled from Quintuple Helices[J]. J. Am. Chem. Soc., 2003, 125: 6014-6015.
    [16] (a) Kondo M, Miyazawa M, Irie Y, et al. A new Zn(II) coordination polymer with 4-pyridylthioacetate: assemblies of homo-chiral helices with sulfide sites[J]. Chem Commun, 2002, 2156-2157. (b) Sun D F, Cao R, Sun Y Q, et al. Self-Assembly of a One-Dimensional Silver Complex Containing Two Kinds of Helical Chains[J]. Eur J Inorg Chem, 2003, 38-41.
    [17] (a) Han L, Hong M C, Wang R H, et al. A novel nonlinear optically active tubular coordination network based on two distinct homo-chiral helices[J]. Chem Commun, 2003, 2580-2581. b) Liang J, Wang Y, Yu J H, et al. Synthesis and structure of a new layered zinc phosphite (C5H6N2)Zn(HPO3) containing helical chains[J]. Chem Commun, 2003, 882-883.
    [18] Feng S H; Xu R R. New Materials in Hydrothermal Synthesis[J], Acc Chem Res, 2001, 34: 239-247.
    [19] Tong M L, Kitagawa S, Chang H, et al. Temperature-controlled hydrothermal synthesis of a 2D ferromagnetic coordination bilayered polymer and a novel 3D network with inorganic Co3(OH)2 ferrimagnetic chains[J]. Chem Commun, 2004, 418-419.
    [20] (a) Sheldrick G M. SHELXS 97, Program for Crystal Structure Solution [CP], University of G?ttingen (Germany), 1997; b) Sheldrick G M. SHELXL 97, Program for Crystal Structure Refinement [CP], University of G?ttingen (Germany), 1997.
    [21] Zheng L M, Wang X Q, Wang Y S, Jacobson A J. Syntheses and characterization of Co2(4,4 -bipy)2(V4O12), Co(pz)(VO3)2 and Co2(2-pzc)(H2O)(VO3)3 (4,4 -bipy = 4,4 -bipyridine, pz = pyrazine, 2-pzc = 2-pyrazinecarboxylate) [J]. J Mater Chem, 2001, 11: 1100-1105
    [22] Tao J, Zhang Y, Tong M-L, et al. A mixed-valence copper coordination polymer generated byhydrothermal metal/ligand redox reactions [J]. Chem Commun, 2002, 1342-1343.
    [23] Carlucci L, Ciani G, Moret M, et al. Polymeric Layers Catenated by Ribbons of Rings in a Three-Dimensional Self-Assembled Architecture: A Nanoporous Network with Spongelike Behavior[J]. Angew. Chem. Int. Ed. Engl. 2000, 39: 1506-1510.
    [24] Tong M L, Chen X M, Ye B H, et al. Self-Assembled Three-Dimensional Coordination Polymers with Unusual Ligand-Unsupported Ag-Ag Bonds: Syntheses, Structures, and Luminescent Properties [J] Angew. Chem. Int. Ed., 1999, 38: 2237-2240.
    [25] Jensen P, Price D J, Batten S R, et al. Self-Penetration - A Structural Compromise between Single Networks and Interpenetration: Magnetic Properties and Crystal Structures of [Mn(dca)2(H2O)] and [M(dca)(tcm)], M=Co, Ni, Cu, dca=Dicyanamide, N(CN)2-, tcm=Tricyanomethanide, C(CN)3 [J]. Chem. Eur. J., 2000, 6: 3186-3195.
    [26] Svensson P H, Raud G., Kloo L, Metal Iodides in Polyiodide Networks - The Structural Chemistry of Complex Thallium Iodides with Excess Iodine [J]. Eur. J. Inorg. Chem., 2000, 1275-1282.
    [27] Eckhardt R, Hanika H H, Fischer R D, Spontaneously Organizing Metal Connectors as Supramolecular Structure Directors of Two- and Three-Dimensional Organometallic Assemblies [J]. Chem. Eur. J., 2003, 9: 1795-1804.
    [28] Pan L, Liu H, Kelly S P, et al, RPM-2: A recyclable porous material with unusual adsorption capability: self assembly via structural transformations [J] Chem. Commun., 2003, 854-855.
    [29] Manson J L, Gu J, Schlueter J A, et al. Structures and Magnetic Behavior of 1-, 2-, and 3D Coordination Polymers in the Cu(II)-Dicyanamide-Pyrimidine Family [J]. Inorg. Chem., 2003, 42: 3950-3955.
    [30] Niel V, Thompson A L, Munoz M C, et al. Crystalline-State Reaction with Allosteric Effect in Spin-Crossover, Interpenetrated Networks with Magnetic and Optical Bistability [J]. Angew. Chem. Int. Ed., 2003, 42: 3760-3763.
    [31] Gao E Q, Wang Z M, Yan C H, From manganese(II)-azido layers to a novel three-dimensional molecular magnet: spin canting and metamagnetism [J]. Chem. Commun., 2003, 1748-1749.
    [32] Carlucci L, Ciani G, Macchi P, et al, Complex Interwoven Polymeric Frames from the Self-Assembly of Silver(I) Cations and Sebaconitrile [J]. Chem. Eur. J., 1999, 5: 237-243.
    [33] Fang Q R, Zhu G S, Xue M, et al. A Metal–Organic Framework with the Zeolite MTN Topology Containing Large Cages of Volume 2.5nm [J]. Angew Chem Int Ed, 2005, 44: 3845-3848.
    [34] Biradha K, Fujita M. A Springlike 3D-Coordination Network That Shrinks or Swells in a crystal-to-Crystal Manner upon Guest Removal or Readsorption [J]. Angew. Chem. Int. Ed. 2002, 41: 3392-3395.
    [35] Kurmoo M, Estournes C, Oka Y, et al. Network Consisting of 3-Threads and a Zwitterionic One-Dimensional Polymorphs of trans-3-(3-Pyridyl)acrylate of Cobalt and Nickel, MII(C8H6NO2)2(H2O)2 [J]. Inorg. Chem., 2005, 44: 217-224.
    [36] Ma J F, Yang J, Zheng G L, et al, A Porous Supramolecular Architecture from a Copper(II) Coordination Polymerwith a 3D Four-Connected 86 Net [J]. Inorg. Chem., 2003, 42: 7531-7534.
    [37] Li X, Cao R, Sun D, et al, A Novel 3-D Self-Penetrating Topological Network Assembled by Mixed Bridging Ligands [J]. Eur. J. Inorg. Chem., 2004, 2228-2231.
    [38] Li X, Cao R, Bi W, et al. Self-Assembly of 1D to 3D Cadmium Complexes: Structural Characterization and Properties [J]. Eur. J. Inorg. Chem., 2005, 3156-3166.
    [39] Carlucci L, Ciani G, Proserpio D M, et al. Supramolecular isomers in the same crystal: a new case involving two different types of layers polycatenated in the 3D architecture of [Cu(bix)2(SO4)]·7.5H2O [bix = 1,4-bis(imidazol-1-ylmethyl)benzene] [J]. CrystEngComm, 2004, 6: 96-101.
    [40] Ng M T, Deivaraj T C, Klooster W T, et al. Hydrogen-Bonded Polyrotaxane-like Structure Containing Cyclic (H2O)4 in [Zn(OAc)2(-bpe)]2 H2O: X-ray and Neutron Diffraction Studies [J]. Chem. Eur. J., 2004, 10: 5853-5859.
    [41] Carlucci L, Ciani G, Proserpio D M. Parallel and Inclined (1D 2D) Interlacing Modes in New Polyrotaxane Frameworks [M2(bix)3(SO4)2] [M = Zn(II), Cd(II); Bix = 1,4-Bis(imidazol-1-ylmethyl)benzene] [J]. Cryst. Growth Des, 2005, 5: 37-39.
    [42] Niel V, Thompson A L, Goeta A E, et al. Thermal- and Photoinduced Spin-State Switching in an Unprecedented Three-Dimensional Bimetallic Coordination Polymer [J] Chem. Eur. J., 2005, 11: 2047-2060.
    [43] Long D L, Hill R J, Blake A J, et al. Anion Control over Interpenetration and Framework Topology in Coordination Networks Based on Homoleptic Six-Connected Scandium Nodes [J]. Chem. Eur. J., 2005, 11: 1384-1391.
    [44] Dai J C, Wu X T, Fu Z Y, et al. A novel ribbon-candy-like supramolecular architecture of cadmium(II)–terephthalate polymer with giant rhombic channels: twofold interpenetration of the 3D 8210-a net [J]. Chem. Commun., 2002, 12–13
    [45] Carlucci L, Ciani G, Proserpio D M, et al. Three Novel Interpenetrating Diaoid Networks from Self-Assembly of 1,12-Dodecanedinitrile with Silver(I) Salts [J]. Chem. Eur. J. 2002, 8:1519-1526.
    [46] Larsson K, Ohstrom L. Cobalt 2,2-biimidazole complexes co-crystallised with di-acids — synthesis, structure and quantum chemical calculations [J]. CrystEngComm, 2004, 6: 355-350.
    [47] (a) Luan X-J, Wang Y-Y, Li D-S, et al. Self-Assembly of an Interlaced Triple-Stranded Molecular Braid with an Unprecedented Topology through Hydrogen-Bonding Interactions[J]. Angew Chem Int Ed, 2005, 44: 3864-3867. (b) Luan X-J, Cai X-H, Wang Y-Y, et al. An Investigation of the Self-Assembly of Neutral, Interlaced, Triple-Stranded Molecular Braids[J]. Chem Eur J, 2006, 12: 6281-6289.
    [48] Plasseraud L, Maid H, Hampel F, et al. A meso-Helical Coordination Polymer from Achiral Dinuclear [Cu2(H3CCN)2(m-pydz)3][PF6]2 and 1,3-Bis(diphenylphosphanyl)propane―Synthesis and Crystal Structure of {[Cu(m-pydz)2][PF6]} (pydz = pyridazine) [J]. Chem Eur J, 2001, 7: 4007-4011.
    [49] (a) Wang X L, Qin C, Wang E B, et al. Interlocked and Interdigitated Architectures from Self-Assembly of Long Flexible Ligands and Cadmium Salts[J]. Angew Chem Int Ed, 2004, 43:5036-5040. (b) Wang X L, Qin C, Wang E B, et al. An unprecedented fivefold interpenetrated lvt network containing the exceptional racemic motifs originated from nine interwoven helices[J]. Chem Commun, 2005, 5450-5452. (c) Xiao D R, Wang E B, An H Y, et al. A Bridge between Pillared-Layer and Helical Structures: A Series of Three-Dimensional Pillared Coordination Polymers with Multiform Helical Chains[J]. Chem Eur J, 2006, 12: 6528-6541. (d) Xiao D R, Wang E B, An H Y, et al. Syntheses and Structures of Three Unprecedented Metal-Ciprofloxacin Complexes with Helical Character[J]. Cryst Growth Des, 2007, 7: 506-512.
    [50] (a) Wang X L, Qin C, Wang E B, et al. An unprecedented eight-connected self-penetrating network based on pentanuclear zinc cluster building blocks[J]. Chem Commun, 2005, 4789-4791. (b) Wang X L, Qin C, Wang E B, et al. Metal Nuclearity Modulated Four-, Six-, and Eight-Connected Entangled Frameworks Based on Mono-, Bi-, and Trimetallic Cores as Nodes[J]. Chem Eur J, 2006, 12: 2680-2691. (51) (a) Liu C M, Gao S, Kou H Z. Dehydrogenative coupling of phenanthroline under hydrothermal conditions: crystal structure of a novel layered vanadate complex constructed of 4,8,10-net sheets: [(2,2 -biphen)Co]V3O8.5[J]. Chem Commun, 2001, 1670-1671. (b) Xiao D R, Hou Y, Wang E B, et al. Dehydrogenative coupling of 2,2’-bipyridine: hydrothermal synthesis and crystal structure of a novel polyoxovanadate decorated with the 2,2’;6’,2’’;6’’,2’’’-quaterpyridine ligand[J]. Inorg Chem Commun, 2004, 7: 437-439. (c) Zhang J-P, Lin Y-Y, Huang X-C, et al. Copper(I) 1,2,4-Triazolates and Related Complexes: Studies of th
    e Solvothermal Ligand Reactions, Network Topologies, and Photoluminescence Properties[J]. J Am Chem Soc, 2005, 127: 5495-5506.
    [52] Zhang, X-M. Hydro(solvo)thermal in situ ligand syntheses[J]. Coord Chem Rev, 2005, 249: 1201-1219 and references therein.
    [53] Plater, M. J.; Foreman, M. R. J. St.; Gelbrich, T.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 2000, 1995.
    [54] Fan J, Sun W Y, Okamura T, et al. Novel Metal-Organic Frameworks with Specific Topology from New Tripodal Ligands: 1,3,5-Tris(1-imidazolyl)benzene and 1,3-Bis(1-imidazolyl)-5-(imidazol- 1-ylmethyl) benzene[J]. Inorg. Chem. 2003, 42: 3168-3175.
    [55] S A. Barnett, A J. Blake, N R. Champness, et al. Interpenetration of two-dimensional sheets with 4.82 topology[J]. J. Chem. Soc. Dalton Trans. 2001, 567-573.
    [56] Carlucci L, Ciani G., Proserpio D M. Borromean links and other non-conventional links in polycatenated coordination polymers: re-examination of some puzzling networks[J]. Cryst Eng Commun. 2003, 5: 269-280.
    [57] Yersin H, Vogler A. Photochemistry and Photophysics of Coordination Compounds[M], Springer, Berlin, 1987.
    [58] Valeur B, Molecular Fluorescence: Principles and Applications[M], Wiley-VCH: Weinheim, 2002.
    [59]Zheng S L, Chen X M. Recent Advances in Luminescent Monomeric, Multinuclear, and Polymeric Zn(II) and Cd(II) Coordination Complexes[J]. Aust J Chem. 2004, 57: 703-712.
    [1] Turel I. The interactions of metal ions with quinolone antibacterial agents[J]. Coord Chem Rev, 2002, 232: 27-47 and references therein.
    [2] (a) Lopez-Gresa M P, Ortiz R, Perell? L,et al. Interactions of metal ions with two quinolone antimicrobial agents (cinoxacin and ciprofloxacin) Spectroscopic and X-ray structural characterization. Antibacterial studies[J]. J Inorg Biochem, 2002, 92: 65-74. (b) Ruiz M, Perell? L, Server-Carri? J, et al. Cinoxacin complexes with divalent metal ions. Spectroscopic characterization. Crystal structure of a new dinuclear Cd(II) complex having two chelate-bridging carboxylate groups. Antibacterial studies[J]. J Inorg Biochem, 1998, 69: 231-239.
    [3] Jung O-S, Kim Y. J, Lee Y-A, et al. Smart Molecular Helical Springs as Tunable Receptors[J]. J Am Chem Soc, 2000, 122: 9921-9925.
    [4] Moulton B, Zaworotko M J. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids[J]. Chem Rev, 2001, 101: 1629–1658.
    [5] Zhang J-P, Lin Y-Y, Huang X-C, et al. Molecular chairs, zippers, zigzag and helical chains: chemical enumeration of supramolecular isomerism based on a predesigned metal–organic building-block[J]. Chem Commun, 2005, 1258-1260.
    [6] (a) Chen X M, Liu G F. Double-Stranded Helices and Molecular Zippers Assembled from Single-Stranded Coordination Polymers Directed by Supramolecular Interactions[J]. Chem Eur J. 2002, 8: 4811-4817. (b) Cui Y, Lee S J, Lin W. Interlocked Chiral Nanotubes Assembled from Quintuple Helices[J]. J. Am. Chem. Soc., 2003, 125: 6014-6015.
    [7] (a) Kondo M, Miyazawa M, Irie Y, et al. A new Zn(II) coordination polymer with 4-pyridylthioacetate: assemblies of homo-chiral helices with sulfide sites[J]. Chem Commun, 2002, 2156-2157. (b) Sun D F, Cao R, Sun Y Q, et al. Self-Assembly of a One-Dimensional Silver Complex Containing Two Kinds ofHelical Chains[J]. Eur J Inorg Chem, 2003, 38-41.
    [8] Han L, Hong M C, Wang R H, et al. A novel nonlinear optically active tubular coordination network based on two distinct homo-chiral helices[J]. Chem Commun, 2003, 2580-2581.
    [9] (a) Atwood J L, Steed J W. Encyclopedia of Supramolecular Chemistry[M]. Marcel Dekker: New York, 2004. (b) Steed J W, Atwood J L. Supramolecular Chemistry[M]. Wiley: Chichester, 2000. (c) Desiraju G R, Steiner T R. The Weak Hydrogen Bond in Structural Chemistry and Biology[M]. Oxford University Press: Oxford, 1999.
    [10] Song Y, Yu J, Li Y, et al. Hydrogen-Bonded Helices in the Layered Aluminophosphate (C2H8N)2[Al2(HPO4)(PO4)2] [J]. Angew Chem Int Ed, 2004, 43: 2399-2402.
    [11] Dreven?ek P, Zupan?i? T, Pihlar B, et al. Mixed-valence Cu(II)/Cu(I) complex of quinoloneciprofloxacin isolated by a hydrothermal reaction in the presence of L-histidine: comparison of biological activities of various copper–ciprofloxacin compounds[J]. J Inorg Biochem, 2005, 99: 432-442.
    [12] (a) Chen Z F, Xiong R G, Zuo J L, et al. X-Ray crystal structures of Mg2+ and Ca2+ dimers of the antibacterial drug norfloxacin[J]. Dalton Trans. 2000, 4013-4014. (b) Chen Z F, Xiong R G, Zhang J, et al. 2D Molecular Square Grid with Strong Blue Fluorescent Emission: A Complex of Norfloxacin with Zinc(II)[J]. Inorg Chem. 2001, 40: 4075-4077.
    [13] Jiménez-Garrido N, Perell? L, Ortiz R, et al. Antibacterial studies, DNA oxidative cleavage, and crystal structures of Cu(II) and Co(II) complexes with two quinolone family members, ciprofloxacin and enoxacin[J]. J Inorg Biochem, 2005, 99: 677-689.
    [14] (a) Sheldrick G M. SHELXS 97, Program for Crystal Structure Solution [CP], University of G?ttingen (Germany), 1997; b) Sheldrick G M. SHELXL 97, Program for Crystal Structure Refinement [CP], University of G?ttingen (Germany), 1997.
    [15] (a) Zang S, Su Y, Li Y, et al. Interweaving of Triple-Helical and Extended Metal-O-Metal Single-Helical Chains with the Same Helix Axis in a 3D Metal-Organic Framework[J]. Inorg Chem 2006, 45: 3855-3857. (b) Sun Y Q, Zhang J, Chen Y M, et al. Porous Lanthanide-Organic Open Frameworks with Helical Tubes Constructed from Interweaving Triple-Helical and Double-Helical Chains[J]. Angew Chem Int Ed, 2005, 44: 5814-5817.
    [16] Yersin H, Vogler A. Photochemistry and Photophysics of Coordination Compounds[M], Springer, Berlin, 1987.
    [17] Valeur B, Molecular Fluorescence: Principles and Applications[M], Wiley-VCH: Weinheim, 2002.
    [18] Tao J, Zhang Y, Tong M-L, et al. A mixed-valence copper coordination polymer generated by hydrothermal metal/ligand redox reactions [J]. Chem Commun, 2002, 1342-1343.
    [19] (a)Biradha K, Hongo Y, Fjita M. Open Square-Grid Coordination Polymers of the Dimensions 20×20?: Remarkably Stable and Crystalline Solids Even after Guest Removal[J]. Angew Chem Int Ed, 2000, 39: 3843-3846. (b) Hong M C, Zhao Y J, Su, W P. A Silver(I) Coordination Polymer Chain Containing Nanosized Tubes with Anionic and Solvent Molecule Guests[J]. Angew Chem Int Ed, 2000, 39:2468-2470.
    [20] (a) Li H, Eddaoudi M, O’Keeffe M, Yaghi O M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402: 276-279. (b) Chen B, Eddaoudi M, Hyde S T, et al. Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores[J]. Science, 2001, 291: 1021-1023. (c) Rosi, N L, Eddaoudi, M, Kim, J, O’keeffe, M, Yaghi, O M Infinite Secondary Building Units and Forbidden Catenation in Metal-Organic Frameworks [J]. Angew Chem Int Ed 2002, 41: 284-287. (d) Eddaoudi, M, Kim, J, Rosi, N, Vodak, D, Wachter, J, O’Keeffe, M, Yaghi, O M. Systematic Design of Pore Size MOFs and Their Application in Methane Storage [J]. Science, 2002, 295: 469-472.
    [21] (a) Abrahams B F, Moylan M, Orchard S D, et al. Zinc Saccharate: A Robust, 3D Coordination Network with Two Types of Isolated, Parallel Channels, One Hydrophilic and the Other Hydrophobic[J]. Angew Chem Int Ed, 2003, 42: 1848-1851. (b) Su C-Y, Goforth A M, Smith M D, et al. Exceptionally Stable, Hollow Tubular Metal-Organic Architectures: Synthesis, Characterization, and Solid-State Transformation Study[J]. J Am Chem Soc, 2004, 126: 3576–3586.
    [22] (a) Batten S R, Robson R. Interpenetrating Nets: Ordered, Periodic Entanglement [J]. Angew Chem Int Ed 1998, 37: 1460-1494. (b) Hagrman D, Hagrman P J, Zubieta J. Organic-inorganic hybrid materials: From “simple” coordination polymers to organodiamine-templated molybdenum oxides[J]. Angew Chem Int Ed, 1999, 38: 2638-2684. (c) Blake A J, Champness N R, Hubberstey P, et al. Inorganic crystal engineering using self-assembly of tailored building-blocks. Coord Chem Rev, 1999, 183: 117-138. (d) Tong M L, Chen X M, Batten S R. A New Self-Penetrating Uniform Net, (8,4) (or 86), Containing Planar Four-Coordinate Nodes[J]. J Am Chem Soc, 2003, 125: 16170-16171.
    [23] Evans O R, Lin, W. Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks. Acc Chem Res, 2002, 35: 511-522.
    [24] (a) Danil N, Dybtsev, Hyungphil Chun, Kimoon Kim. Rigid and Flexible: A Highly Porous Metal-Organic Framework with Unusual Guest-Dependent Dynamic Behavior[J]. Angew. Chem. Int. Ed, 2004, 43: 5033-5036. (b) Bu X-H, Tong M-L, Chang H-C, et al. A Neutral 3D Copper Coordination Polymer Showing 1D Open Channels and the First Interpenetrating NbO-Type Network[J]. Angew Chem Int Ed, 2004, 43: 192-195.
    [25] (a) Yaghi O M, O’Keeffe M, Ockwig N W, et al. Reticular Synthesis and the Design of New Materials[J]. Nature, 2003, 423: 705-714. (b) Ockwig N W, Delgado-Friedrichs O, O’Keeffe M, et al. Reticular Chemistry: Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks[J]. Acc Chem Res, 2005, 38: 176-182. (c) Kitagawa S, Kitaura R, Noro S. Functional Porous Coordination Polymers[J]. Angew Chem Int Ed, 2004, 43: 2334-2375. (d) Rao C N R, Natarajan S, Vaidhyanathan R, Metal Carboxylates with Open Architectures[J]. Angew Chem Int Ed, 2004, 43: 1466-1496. (e) Ye B H, Tong M L, Chen X M. Metal-organic molecular architectures with 2,2’-bipyridyl-like and carboxylate ligands[J]. Coord Chem Rev, 2005, 249: 545-565.