中国部分黄牛群体Y染色体微卫星多态性与分子进化及生产性能关系初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过聚丙烯酰胺凝胶电泳分析,结合测序方法对13个黄牛群体680头公牛或阉牛的Y染色体6个微卫星多态性进行了研究,结果发现,中国地方黄牛的UMN0929、UMN0108、UMN0920、INRA124、UMN2404和UMN0103位点分别有4、5、2、2、5、4个等位基因。其中INRA124、UMN2404和UMN0103位点上的等位基因是区分瘤牛和普通牛的诊断基因,分别为瘤牛和普通牛特有,三个微卫星标记对不同群体或个体的鉴别一致率达到90%以上。
     根据等位基因组成计算了基因频率,获得了基因多样性(GD)、多态性信息含量(PIC)、有效等位基因数(E)数据。结果表明,中国黄牛Y-STRs微卫星的平均遗传多样性为0.58,鲁西牛最高为0.65,延边牛最低为0.44,说明鲁西牛的遗传变异程度较大,表明中国黄牛的遗传基础丰富,从而通过牛Y-STRs位点多态性方法检验了中国地方黄牛的遗传多样性。
     通过对3个微卫星INR124、UMN2404和UMN0103位点分析并结合前人对15个品种262头公牛Y染色体的形态学研究,揭示了中国黄牛普通牛和瘤牛Y染色体的分布特征以及Y染色体基因的流动迁移模式。北方种群中普通牛Y染色体单倍型频率最高(平均为93.0%),瘤牛单倍型在南方牛种群中占有优势(平均为90.3%)。中原黄牛品种中同时具有普通牛(平均为49.0%)和瘤牛(平均为51.0%)Y染色体单倍型,瘤牛Y染色体单倍型频率在中原黄牛中呈现出自东向西逐渐降低的趋势,在郏县红牛、鲁西牛、南阳牛、晋南牛、秦川牛和早胜牛群体中瘤牛的比例分别为75.0%,67.0%,66.0%、32.0%、29.0%和6.9%。晋南牛、秦川牛和早胜牛受北方普通牛的遗传影响较大,普通牛起源占主要地位;而郏县红牛、鲁西牛和南阳牛则受南方瘤牛的影响较大,瘤牛起源占主要地位。再次证明,中国黄牛主要血统来源于亚洲原牛和瘤原牛,这可能是这两类牛群在长期的历史进化过程中,分别从东南方向和西北方向进入我国,并在中原地区汇合的。
     Y-STR_S基因座的单倍型在个体识别和亲子鉴定的研究方面也有着潜在的应用价值。由单倍型频率可以计算出单倍型的遗传多样性为0.94,对Y染色体来说,此值等于个体识别率和非父排除率,说明Y-STRs具有较高的个体识别率,在非父排除方面有重要作用,表明该系统有较强的个体差异,对于牛的个体鉴定具有十分重要的价值。
     通过对三个纯种和两个杂种牛群254头阉牛(秦川牛58头、鲁西牛56头、晋南牛52头、西门塔尔×秦川牛40头、安格斯×秦川牛48头)Y-STRs UMN0929和UMN0108基因座的等位基因与一些肉用性能关系研究,发现牛Y-STRsUMN0929和UMN0108位点与一些肉用性能显著相关。
     在UMN0929位点,西门塔尔×秦川牛的肉用指数和胴体重的最小二乘均值最大,分别为4.50kg·cm~(-1)和338.28 kg,鲁西牛最小,分别为3.62 kg·cm~(-1)和269.33kg。秦川牛群中G-190基因的肉用指数和胴体重最大,分别为4.23kg·cm~(-1)和325.40kg,B-178基因的肉用指数和胴体重最小,分别为3.81kg·cm~(-1)和278.07kg。经检验,G-190和E-186基因的肉用指数和胴体重极显著高于B-178基因的牛(P<0.01)。在UMN0108位点,秦川牛E-189基因的肉用指数和胴体重最大,分别为4.07kg·cm~(-1)和243.30kg,C-185基因的肉用指数和胴体重最小,分别为3.49kg·cm~(-1)和194.90kg。经检验,E-189和F-191基因的肉用指数、胴体重及净肉率极显著高于C-185基因的牛(P<0.01)。
     采用聚丙烯酰胺凝胶电泳技术测定了秦川牛(148头)血红蛋白(Hb)、运铁蛋白(Tf)、后运铁蛋白(PTf)、血清白蛋白(Alb)和后白蛋白(Pa)的遗传多态性。分析了各多态位点不同基因型与秦川牛若干繁殖性状的关系。结果表明:Hb AA型母牛的初情期年龄(AFS),初产年龄(AFC)极显著早于Hb AB型母牛(P<0.01)。TfAA型母牛的初情期和初产年龄显著早于TfDD型母牛(P<0.05)。PTfSS型母牛的初情期显著早于PTfFS型母牛和PTfFF型母牛(P<0.05)。Alb AA型母牛的初情期显著早于Alb AC型母牛(P<0.05)。TfA基因对D基因的替代平均效应值初情期提前1.68d,初产年龄提前19.89d。AlbA基因对B基因的替代平均效应值初情期提前8.06d。
Polymorphisms of Six Y chromosomes microsatellites were analyzed among 680 bulls or steers from 13 breeds and 4, 5, 2, 2, 5 and 4 alleles were observed at UMN0929, UMN0108, UMN0920, INRA124, UMN2404 and UMN0103, respectively. INRA124, UMN2404 and UMN0103 are the diagnose genes to distinguish the Bos Taurus and Bos indicus. The alleles specially belong to Bos Taurus and Bos indicus, respectively. Distinguish accord rate for different breeds and different individuals were above 90%.
     Gene Diversity index (GD), polymorphism information content (PIC), effective number of allele (E) and haplotype data were estimated of the six Y chromosome microsatellites. It showed that the average genetic diversity of Y-STRs of Chinese yellow cattle was 0.58, it was the highest in Luxi cattle (0.65) and the lowest in Yanbian cattle (0.44) and it showed that the degree of genetic variance was high in Luxi cattle and the genetic base is abundance in Chinese yellow cattle. The gene diversity of Chinese yellow cattle was proved through Y-STRs polymorphism.
     Based on the investigation of Bos taurus and Bos indicus Y chromosome minisatellites makers of INRA124, UMN2404 and UMN0103, in conjunction with the published data resulted from the study of Y chromosome morphologies of 262 bulls from 15 breeds, we revealed the characteristic of the distribution and genetic introgression of male indicine and taurine of Y chromosome in Chinese yellow cattle.
     The haplotype frequency of Y chromosome of Bos taurus was high in north breeds population (93.0%), and that of Bos indicus is high in south breeds populations(90.3%). There were both Y chromosome haplotype of Bos Taurus and Bos indicus in Chinese yellow cattle of central area. The haplotype frequency of Y chromosome of Bos indicus presented depressed trend from east to west in Chinese yellow cattle of central area, it was 75%, 67%, 66%, 32%, 29% and 6.9% in Jiaxian, Luxi, Nanyang, Jinnan, Qinchuan and Zaosheng cattle, respectively. The genetic influence of Bos Taurus is bigger than that of Bos indicus in Jinnan, Qinchuan and Zaosheng cattle, and on the contrary in Jiaxian, Luxi and Nanyang cattle. The Bos Taurus origin is the highest flight in the former breeds and the Bos indicus is the highest flight in the latter breeds.
     The haplotype of Y-STR had potential application value in individual identity and parentage test. The haplotype genetic diversity was figured out by haplotype frequency and it was 0.94 and the individual identify rate and non-father eliminate rate was the same. It showed that Y-STR had important role in non-father eliminate and it had high distinguish rate. It showed that the system had strong individual difference and it had important role for individual identify of cattle. The relationship between the alleles of Y-STRs UMN0929 and UMN0108 and some beef performance of 254 steers in three pure cattle and two hybrid cattle (Qinchuan 58, Luxi56, Jinnan52, hybrid of Simmental and Qinchuan 40, hybrid of Angus and Qinchuan 48) was studied. It showed that Y-STRs UMN0929 and UMN0108 had significant correlation with some beef performances.
     The least square means of BPI and CW of hybrids of Simmental and Qinchuan were the biggest, and it were 4.50 (kg·cm-1) and 338.28 kg, respectively, Luxi's were the smallest, and it were 3.62 (kg·cm-1) and 269.33kg, respectively in UMN0929.
     The least square means of BPI and CW of G-190 of UMN0929 in Qinchuan were the biggest, and it were 4.23 (kg·cm-1) and 325.40 kg, respectively. It were the smallest, and it were 3.81 (kg·cm-1) and 278.07kg of B-178, respectively. The BPI and CW of G-190 and E-186 were higher significantly than that of B-178 (P<0.01). The least square means of BPI and CW of E-189 of UMN0108 in Qinchuan were the biggest, and it were 4.07 (kg·cm-1) and 243.30 kg, respectively. It were the smallest in C-185, and it were 3.49 (kg·cm-1) and 194.90kg, respectively. The BPI, CW and NR of E-189 and F-191 were higher significantly than that of C-185 (P<0.01).
     Haemoglobin(Hb), transferring(Tf) post transferring(PTf), albumin(Alb), post albumin(Pa) polymorphism in the blood of 148 individuals in Qinchuan were investigated by poly acrylamide gel electrophoresis (PAGE) in this study. Date on their phenotypes and gene frequency of the five polymorphic loci were tabulated. Relationships between genetic markers and reproductive performance were analyzed by least square. The results revealed that AFS and AFC of Hb AA were remarkable earlier than Hb AB's. AFS and AFC of Tf AA were remarkable earlier than Tf DD's. AFS of PT_f SS were remarkable earlier than PT_f FS's and PT_f FF'S. AFS of Alb AA was remarkable earlier than Alb AC's. CI of Pa AA were remarkable shorter than PaBB's. The gene replacement average benefit of Tf A substitute TfD were AFS1. 68 days and AFC19.89 days. The gene replacement average benefit of AlbA substitute AlbB were AFS8.06 days.
引文
[1] 邱怀主编.中国牛品种志[M].上海:上海科技出版社,1986.
    [2] 常洪主编.家畜遗传资源学纲要[M].北京:中国农业出版社,1995,8~71.
    [3] 陈幼春.中国黄牛生态种持征及其利用方向[M].中国农业科学院畜牧研究所编,中国农业出版社,1990,3~7
    [4] 胡志昂,张亚平,等.中国动植物遗传多样性浙江科学技术出版社1997,111-123
    [5] 陈宏,邱怀,詹铁生,等.中国四个品种黄牛性染色体多态性的研究[J].遗传,1993,15(4):14~17.
    [6] 张英汉,辛亚平.牛血液蛋白多态性与数量性状的关系[J].黄牛杂志,2004年第4期27~30.
    [7] 涂正超,张亚平,邱怀.中国牦牛线粒体DNA多态性及遗传分化.遗传学报,1998,25(3):205~212.
    [8] 张志清.中国四个黄牛品种的父系和母系起源研究西北农林科技大学硕士学位论文
    [9] 雷初朝.中国四个畜种(黄牛、水牛、牦牛、家驴)线粒体DNA遗传多样性研究 西北农林科技大学博士学位论文
    [10] 常洪,苗泽荣,黄牛育种[M].北京:中国环境科学出版社,1988.
    [11] 昝林森,辛亚平.秦川牛血液蛋白多态性与繁殖性状关系的研究[J].畜牧兽医学报2006,2 23~27
    [12] 陈幼春,曹红鹤.中国黄牛群体多样性及其保护[J].生物多样性,2001,9(3):275~283
    [13] 杨关福,吴显华,丘陵,等.海南黄牛毛色的遗传[J].见:中国黄牛生态种特征及其利用方向.中国农业出版社,1990,136~139.
    [14] 陈幼春,王毓英,常洪,等.中国黄牛的分类[A].陈幼春:中国黄牛生态种特征及其利用方向[C].北京:中国农业出版社,1990.
    [15] 陈智华.西藏牦牛血液蛋白多态性研究[J].西南民族学院学报,1995,4:414~417.
    [16] 何燕,单可人.贵州三都水族Y染色体上7个STR基因座的遗传多态性分析[J].遗传2006,28(12):1495-1499.
    [17] 涂正超,邱怀.家牛mtDNA多态性研究进展[J].黄牛杂志,1997,23(1):11~12.
    [18] 雷初朝.中国四个畜种(黄牛、水牛、牦牛、家驴)线粒体DNA遗传多样性研究[D].西北农林科技大学博士学位论文.陕西杨凌,2002.
    [19] 常洪,耿社民,武彬,陈幼春.秦岭两侧黄牛品种遗传检测报告.中国家畜遗传资源研究,1998,159~166.
    [20] 单祥年.中国五个牛种的染色体比较研究.动物学研究,1980,1:75~81.
    [21] Manwell C, Baker C M A. Chemical classification of catle. 2. Phylogenetic tree and specific status of
    [22] 蔡欣,吴建平,徐明旭,等.应用Nested和touch down PCR技术分离牦牛CAPN1大亚基基因EST[J].西北农林科技大学学报(自然科学版),2005,33(2):14~18.
    [23] 陈智华,钟金城,邓晓莹,等.西藏黄牛染色体的研究[J].黄牛杂志,1995,21(4):1~2.
    [24] 门正明,韩建林.四个品种黄牛染色体组型及其Y染色体多态性的研究[J].甘肃农业大学学报,1988,2:39~44.
    [25] 齐福印.科尔沁牛染色体1424易位的初步研究[J].兽医大学学报,1988,8(3):243~245.
    [26] 龚荣慈,张成忠,冯蜀举,等.四川黄牛的分类地位与染色体G带核型研究[J].黄牛杂志,1992,18(1):19~24.
    [27] 于汝梁,陈琳,陈幼春.峨边花牛的染色体研究[J].黄牛杂志,1989,15(1):10~12.
    [28] 于汝梁,辛彩云,李绍宏等.温岭高峰牛的227罗伯逊易位[J].遗传,1991,13(4):17~18.
    [29] 于汝梁.中国黄牛的Y染色体多态性与品种类型[J].见:中国黄牛生态种特征及其利用方向.中国农业出版社,1990,136~139.
    [30] 俞英,文际坤,朱芳贤,等.云南文山黄牛和迪庆黄牛的遗传多态性比较研究[J].黄牛杂志,1996,22(增刊):50~55.
    [31] 涂正超,邱怀.牛属的遗传多样性及种间遗传分化研究进展.黄牛杂志,1997,4:14~16.
    [32] 邓志辉,吴国光,张旋.中国南方汉族人群6个Y—STR基因座遗传多态性及法医学应用.遗传,2004,26(4):446~450.
    [33] 雷初朝,陈宏,胡沈荣.Y染色体多态性与中国黄牛起源和分类研究.西北农业学报,2000,9(4):43~47
    [34] 蔡欣,陈宏,雷初朝,胡沈荣,苏丽红.中国三个牛种cyt b基因多态性及其系统发育研究.西北农林科技大学学报(自然科学版),2006 3:34~37.
    [35] 蔡欣.中国黄牛母系和父系起源的分子特征与系统进化研究 西北农林科技大学博士学位论文
    [36] PAGE, DC Function coherence of the human Y chromosome. Science 1997, 278: 675-680
    [37] Yu Y, Nie L, He Z Q, Wen J K, Jian L S and Zhang Y P. Mitochondrial DNA variation I ncattle of South China: origin and introgression[J]. Animal Genetics, 1999, 30: 245~250.
    [38] Kiddy C. A Transferring type and transmit ability for production in Dairy Science, 1995 58: 1 501.
    [39] Cai Xin, Chen Hong, Wang Shan, Xue Kai, Lei Chuzhao. polymorphisms of two Y chromosome microsatellites in Chinese cattle breeds[J] Genetics Selection Evolution, 2006, 38(4): 1230~1234.
    [40] Liu W S, Mariani P, Beattie C W, Alexander L J, Ponce De Leon F A. A radiation hybrid map for the bovine Y chromosome[J] Mammalian Genome, 2002, 13: 320~326
    [41] Giovambattista G, Ripoli M V, De Luca J C, Mirol PM, Liron JP, Dulout FN. Malemediated introgression of Bos indicus genes into Argentine and Bolivian Creole cattle breeds[J]. Animal Genetics, 2000, 31(5): 302~305.
    [42] Verkaar E L C, Nijman I J, Beeke M, et al. Maternal and paternal lineages in cross-breeding bovine species: The unusual phylogeny of wisent. Submitted 2002
    [43] Verkaar E L C, Nijman I J, Boutaga K et al. Differentiation of cattle species in beef by PCR-RFLP of mitochondrial and satellite DNA[J]. Meat Science, 2002, 60: 365~369.
    [44] Hanotte O, Tawah, C L, Bradley D G, Ochieng JW, Verjee Y, Hill EW, Rege JE. Geographic distribution and frequency of a taurine Bos taurus and an indicine Bos indicus Y specific allele amongst sub-saharan African cattle breeds[J]. Molecular Ecology, 2000, 9(4): 387~396.
    [45] Edwards C J, Gaillard C, Bradley D G and MacHugh D E. Y-specific microsatellite polymorphisms in a range of bovid species[J]. Animal Genetics, 2000, 31(2): 127~130.
    [46] Liu W S, Beattie C W, Ponce de Leon F A. Bovine Y chromosome microsatellite polymorphisms[J]. Cytogenetic and Genome Research, 2003, 102(1-4): 53~58.
    [47] Ward T J, Skow L C, Gallagher D S, Schnabel RD, Nall CA, Kolenda CE, Davis SK, Taylor JF, Derr JN. Differential introgression of uniparentally inherited markers in bison populations with hybrid ancestries[J]. Animal Genetics, 2001, 32(2): 89~91.
    [48] Van Hooft WF, Groen AF, Prins HH. Phylogeography of the African buffalo based on mitochondrial and Y-chromosomal loci: Pleistocene origin and population expansion of the Cape buffalo subspecies. Molecular Ecology[J], 2002, 11(2): 267~279.
    [49] Vaiman D, Mercier D, Moazami-Goudarzi K, Eggen A, Ciampolini R, Lepingle A, Velmala R, Kaukinen J, Varvio SL, Martin P. A set of 99 cattle microsatellites: characterization, synteny mapping, and polymorphism[J]. Mammalian Genome, 1994, 5(5): 288~297.
    [50] Kappes S M, Keele J W, Stone R T, McGraw RA, Sonstegard TS, Smith TP, Lopez-Corrales NL, Beattie CW. A second-generation linkage map of the bovine genome[J] Genome Research, 1997, 7(3): 235~249.
    [51] Bishop M D, Kappes S M, Keele J W, Stone RT, Sunden SL, Hawkins GA, Toldo SS, Fries R, Grosz MD, Yoo J. A genetic linkage map for cattle[J] Genetics, 1994, 136(2): 619~639.
    [52] Kikkawa K, Takada T, Sutopo K, Nomura K, Namikawa T, Yonekawa H, Amano T. Phylogenies using mtDNA and SRY provide evidence for male-mediated introgression in Asian domestic cattle[J]. Animal Genetics, 2003, 34(2): 96~101.
    [53] Cathey A C, Bickham J W and Patto J C. Introgressive hybridization and nonconcordant evolutionary history of maternal and paternal lineages in north-american deer[J]. Evolution, 1998, 52: 1224~1229
    [54] Kadwell M, Fernandez M, Stanley H F, Baidi R, Wheeler JC, Rosadio R, Bruford MW. Genetic analysis reveals the wild ancestors of the llama and the alpaca[J]. Processing Biological Sciences/The Royal Society, 2001, 268(1485): 2575~2584.
    [55] Pecon-Slattery J, Pearks Wilkerson AJ, Murphy WJ, O'Brien SJ. Phylogenetic assessment of introns and SINEs within the Y chromosome using the cat family felidae as a species tree[J] Molecular Biology and Evolution, 2004, 21(12): 2299~2309.
    [56] Tosi A J, Morales J C, and Melnick D J. Comparison of Y chromosome and mtDNA Phylogenies Leads to Unique Inferences of Macaque Evolutionary History[J] Molecular Phylogenetics Evolution, 2000, 17(2): 133~144.
    [57] TAKEDA K, TAKAHASHI S, ONISHI A, Goto Y, Miyazawa A, Imai H. Dominant distribution of mitochondrial DNA from recipient oocytes in bovine embryos and offspring after nuclear transfer[J]. Reproduction and Fertility, 1999, 116(2): 253~259.
    [58] Mannen H, Tsuji S, Loftus R T, Bradley DG. Mitochondrial DNA variation and evolution of Japanese Black cattle(Bos Taurus)[J] Genetics, 1998, 150(3): 1169~1175
    [59] Lee K J and Sim C J. Taxonomic Study on Marine Sponges of Komundo Island, Korea[J]. Korean J. System Zool, 1999, 15(1): 141~152.
    [60] MAA, MacHugh D E & Bradley DG. A microsatellite survey of cattle from a centre of origin: the Near East[J]. Molecular Ecology, 1999, 8: 2015~2022
    [61] Troy CS, MacHugh DE, Bailey JF, Magee DA, Loftus RT, Cunningham P, Chamberlain AT, Sykes BC, Bradley DG. Genetic evdence for Near-Easern origins of European cattle[J] Nature, 2001April 26, 410(6832): 1088-1091.
    [62] 毛永江,钟光辉,郑玉才,彭先文,杨章平,王永,江明峰.中国牦牛乳蛋白遗传多态性及其与泌乳性能相关研究.中国农业科学,2004,37:291~295
    [63] 高雪,徐秀容,许尚忠,张英汉.影响牛生长发育性状的GH基因遗传效应分析.中国农业科学,2006,39:606~611
    [64] 刘波,陈宏,蓝贤勇,雷初朝,张志清,张润锋.秦川牛及其杂种牛POU1F1基因多态与生长性能相关性.中国农业科学,2005,38:2520~2525
    [65] Hellborg L and Ellegren H. Y chromosome conserved anchored tagged sequences(YCATS) for the analysis of mammalian male-specific DNA[J]. Mol Ecol, 2003, 12: 283~291
    [66] Charles A. Tilford, Tomokokuroda-kawaguchi, Helen Skaletsky, Steverozen, Laurag. Brown, Michael Rosenberg, Johnd. Mcpherson, Kristine Wylie, Mandeep Sekhon, Tamaraa. KucabRoberth. Waterston Dawidc. Page a physical map of the human Y chromo-some. Nature, 2001, 409: 943~945
    [67] Charlesworth B and Charlesworth D. The degeneration of Y chromosomes Philosophical Transactions of Royal Society of London.Series B Biological sciences, 2000, 355: 1563-1572
    [68] Steve Rozen, Helen Skaletsky, Janet D. Marszalek, Patrick J. Minx, Holland S. Cordum, Robert H. Waterston, Richard K. Wilson and David C. Page. Abundant gene conversion between arms of palindromes in human and ape Y chromosomes Nature, 2003, 423: 873-876
    
    [69] Ali S and Hasnain S E. Molecular dissection of the human Y-chromosome. Gene, 2002,283: 1-10
    [70] Graves J A and Delbridge M L. The X--a sexy chromosome Bioessays, 2001, 23: 1091-1094
    [71] Brown WM, George M Jr, Wilson A C. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sicences the United States of America, 1979 Apr; 76 (4): 1967-1971.
    [72] Boettcher P J, Steverin D W B k, Beitz D C, Freeman A E, Mcdaniel B T. Multiple herd evaluation of the effects of maternal lineage in yield traits of Holstein cattle. Journal of Dairy Science, 1996, 79: 655-662
    
    [73] Mannen H, Morimoto M, Oyama K, Mukai F, Tsuji S Identification of mitochondrial DNA substitutions related to meat quality in Japanese Black cattle. Journal of Animal Science, 2003, 81: 68-73
    [74] Jobling M A, Tyler-Smith C. New uses for new haplotypes the human Y chromosome, disease and selection. Trends in Genetics, 2000,16: 356-362
    [75] Kuroda-Kawaguchi T, Skaletsky H, Brown L G, Minx PJ, Cordum HS, Waterston RH, Wilson RK, Silber S, Oates R, Rozen S, Page DC. The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nature Genetics, 2001, 29: 279-286
    [76] Oates R D, Silber S, Brown L G, Page D C. Clinical characterization of 42 oligospermic or azoospermic men with microdeletion of the AZFc region of the Y chromosome, and of 18 children conceived via ICSI. Human Reproduction, 2002, 17: 2813-2824
    
    [77] Queipo G, Zenteno C, Pena R, Nieto K, Radillo A, Dorantes LM, Erana L, Lieberman E, Soderlund D, Jimenez AL, Ramon G, Kofman-Alfaro S. Molecular analysis in true hermaphroditism: demonstration of low-level hidden mosaicism for Y-derived sequences in 46, XX cases. Human Genetics, 2002, 111: 278-283
    
    [78] Skaletsky H, Kuroda-Kawaguchi T, Minx P J, et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes [J]. Nature, 2003,423: 825—837.
    [79] Lander E S, Linton L M, Birren B, Nusbaum C, et al. Initial sequencing and analysis of the human genome[J]. Nature, 2001,409: 860—921.
    [80] Tilford C A, Kuroda-Kawaguchi T, Skaletsky H, et al, A physical map of the human Y chromosome[J]. Nature, 2001, 409: 943—945.
    [81] Wyckoff G J, Li J and Wu C I, Molecular evolution of functional genes on the Mammalian y chromosome [J]. Mol Biol Evol, 2002, 19: 1633—1636.
    [82] Dechend F, Williams G, Skawran B, Schubert S, et al, TSPY variants in six loci on the human Y chromosome[J]. Cytogenet Cell Genet, 2000, 91: 67—71.
    
    [83] Vogel T, Boettger-Tong H, Nanda I, et al, A murine TSPY[J] chromosome Res., 1998a, 1: 35—40.
    [84] Lau Y F, Zhang J, Expression analysis of thirty one Y chromosome genes in human prostate cance [J]. r. Mol Carcinog, 2000, 27: 308-321.
    [85] Lau Y F, Chou P M, Iezzoni J, C, et al. Expression of a candidate gene for the gonadoblastoma locus in gonadoblastoma and testicular seminoma[J]. Cytogenet Cell Genet, 2000, 91: 160—164.
    [86] Vogel T, and Schmidtke J, Structure and function of TSPY, the Y-chromosome gene coding for the "testis-specific protein"[J]. Cytogenet Cell Genet, 1998, 80: 209—213.
    [87] Dechend F, Schubert S, Nanda I, et al. Organization and expression of rat Tspy [J]. Cytogenet Cell Genet, 1998,83:270-274.
    [88] Schubert S, Dechend F, Skawran B, et al. silencing of the Y-chromosomal gene tspy during murine evolution [J]. Mamm Genome, 20001, 1: 288—291.
    [89] Cotinot C, Pailhoux E, Jaubert F and Fellous M. Molecular genetics of sex determination[J]. Semin Reprod Med, 2002, 20: 157-168.
    [90] Veitia R A, Salas-Cortes L, Ottolenghi C, et al. Testis determination in mammals: more questions than answers [J]. Mol Cell Endocrinol, 2001, 179: 3—16.
    [91] Quintana-Murci L, Krausz C, and McElreavey K. The human Y chromosome: function, evolution and disease [J]. Forensic Sci Int, 2001, 118: 169—181.
    [92] Mackay S. Gonadal development in mammals at the cellular and molecular levels [J] Int Rev Cytol, 2000, 200: 47-99.
    [93] Morrish B C, and Sinclair A H, Vertebrate sex determination: many means to an end [J]. Reproduction, 2002, 124: 447-457.
    [94] Vogel T and Schmidtke J. Structure and function of TSPY, the Y-chromosome gene coding for the "testis-specific protein"[J]. Cytogenet Cell Genet, 1998, 80: 209—213.
    
    [95] Ali S and Hasnain S E. Molecular dissection of the human Y-chromosome [J]. Gene, 2002,283: 1 — 10.
    [96] Jobling M A and Tyler-Smith C. New uses for new haplotypes the human Y chromosome, disease and selection [J]. Trends Genet, 2000, 16: 356—362. [97] Kuroda-Kawaguchi T, Skaletsky H, Brown L G, et al. The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men [J]. Nat Genet, 2001, 29: 279— 286.
    [98] Oates R D, Silber S, Brown L G and Page D C. Clinical characterization of 42 oligospermic or azoospermic men with microdeletion of the AZFc region of the Y chromosome, and of 18 children conceived via ICSI [J]. Hum Reprod, 2002, 17: 2813—2824.
    [99] Queipo G, Zenteno C, Pena R, et al. Molecular analysis in true hermaphroditism: demonstration of low-level hidden mosaicism for Y-derived sequences in 46, XX cases [J]. Hum Genet, 2002, 111: 278-283.
    
    [100] Kirsch S, et al. Y chromosome reveals hidden sequence [J]. Genome Res, 15, 195—204 (2005).
    [101] Grochowska R, Lunden A, Zwierzchowski Let al, Association between gene polymorphism of growth hormone and carcass traits in dairy bulls [J] Animal Science, 2001, 72: 441-447.
    [102] Waters P D, Duffy B, Frost C J, Delbridge M L and Graves J A. The human Y chromosome derives largely from a single autosomal region added to the sex chromosomes 80-130 million years ago [J]. Cytogenet Cell Genet, 2001, 92: 74—79.
    [103] Toder R, Wakefield M J and Graves J A, The minimal mammalian Y chromosome the marsupial Y as a model system [J] Cytogenet Cell Genet, 2000, 91: 285—292.
    [104] Tuggle C. K, A. E. Freeman. A genetic marker for improved milk production traits in cattle[J]. Claited States Patent, 5614364
    
    [105] Hurst L D, Evolutionary genomics Sex and the X [J] Nature, 2001,411: 149-150
    [106] Lahn B T and Page D C, Functional coherence of the human Y chromosome [J] Science, 1997, 278: 675-680.
    [107] Rice W R. The accumulation of sexually antagonistic genes as a selective agent promoting the evolution of reduced recombination between primitive sex-chromosomes[J]. Evolution, 1987, 41: 911~914.
    [108] Hurst L D, Selfish genes and meiotic drive[J] Nature, 1998, 391: 223.
    [109] Amos W and Harwood J., Factors affecting levels of genetic diversity in natural populations[J] Philos Trans R Soc Lond B Biol Sci, 1998, 353: 177~186
    [110] Charlesworth B and Charlesworth D, The degeneration of Y chromosomes[J] Philos Trans R Soc Lond B Biol Sci, 2000, 355: 1563~1572.
    [111] Wyckoff G J, Li J and Wu C I. 2002 Molecular evolution of functional genes on the Mammalian y chromosome[J]. Mol Biol Evol, 19: 1633~1636.
    [112] Green P Falls, K Crooks S. Documentation of Crimap(Version 2. 4). 1990
    [113] Reinsch N, Xu NY, Thomsen H, et al, First results on somatic cellcount loci from the ADR bovine mapping project. 6WCGALP, 1998, 26: 426~429
    [114] Hoeschele I. Genetic evaluation with data presenting evidence of mixed major gene and polygenic inheritance[J]Theor[J] Appl Genet, 1988, 76: 81~92.
    [115] Georges M. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing[J] Genetics, 1995, 139: 907~920.
    [116] Van zeveren A, Peelman L J. New mutation in exon 2 of the bovine leptin gene[J] Animal Genetics, 1994, 31: 79
    [117] H. Boverl huis, Bennett GL, Bottema C D K, et al. Comprehensive linkage map of bovine chromosome 11[J] Animal Genetics, 1994, 32: 92~94.
    [118] Astwell, Wienberg J. Comparative chromosome painting defines the high rate of karyotype changes between pigs and bovids[J]. Mammalian Genome, 1996, 12: 442~449
    [119] Vilkki J, de Koning DJ, Elo K, et al. Multiple marker mapping of quantitative trait loci of Finnish dairy cattle by regression. J Dairy Sci, 1997, 80: 198~204
    [120] M. Lindersson, Keele J W, Fahrenkrug S C, et al. Quantitative analysis of birth, weaning and yearling weights and calving difficulty in Piedmontese crossbreds segregating an inactive myostatin allele[J] Journal of Animal Science, 1998, 77: 1 686~1 692.
    [121] Grochowska R, Royomartin L J, Poncelet D, et al, A deletion in the myostatin gene causes double2muscling in cattle[J] Nature Genetics, 1998, 17: 71~74.
    [122] 徐宁迎.微卫星多态性的评定及其适用范围.Animal Biotechnology Bulletin,1998,6(1):29~33.
    [123] Sonstegard T S, Barendse W, Bennett G L, Brockmann G A, Davis et al S. Consensus and comprehensive linkage maps of the bovine sex chromosomes[J]. Anim Genet, 2001, 32: 115~117.
    [124] Zwierzchowski L, J. Krzyzewski, N. Strzalkowska, et al. Effect of polymorphisms of growth hormone(GH), Pit-1, and leptin(LEP)genes, cow's age, lactation stage and somatic cell count on milk yield and composition of Polish Black-and-White cows[J]. Anim. Sci. Papers Reports, Inst. Genet Anim. Breed., Jastrzebiec, Poland. 2002, 20: 213~227
    [125] Renaville R. D., Gengler E., Vrech A., et al. Pit-1 gene polymorphism, milk yield and conformation trait for Italian Holstein-Friesian bulls[J]. Journal of Animal Science, 2002, 33: 61~64
    [126] Renaville R. D., Gengler E., Vrech A., et al. Pit-1 gene polymorphism, milk yield and conformation trait for Italian Holstein-Friesian bulls[J]. Journal of Animal Science, 2002, 33: 61~64
    [127] Hurles M E and Jobling M A. Haploid chromosomes in molecular ecology: lessons from the human Y[J]. Mol Ecol, 2001, 10: 1599~1613.
    [128] Boissinot S andBoursot P.Discordant phylogeographic patterns between the Y chromosome and mitochondrial DNA in the house mouse: selection on the Y chromosome [J]. Genetics, 1997, 146: 1019-1034.
    
    [129] Ridley M, Evolution and Blackwell science Cambridge, USA 1996
    [130] Carrol L, through the looking glass Penguin books 1887.
    [131] Jobling M A, Williams G A, Schiebel G A, et a. Aselective difference between human Y-chromosomal DNA haplotypes[J]. Curr Biol, 1998,18:1391 — 1394.
    [132] Malaspina P, Cruciani F, Ciminelli B M, et al. Network analyses of Y-chromosomal types in Europe, northern Africa, and western Asia reveal specific patterns of geographic distribution[J]. Am J Hum Genet, 1998,63:847-860.
    [133] Oota H, Settheetham-Ishida W, Tiwawech D, et al. Human mtDNA and Y-chromosome variation is correlated with matrilocal versus patrilocal residence[J]. Nat Genet, 2001, 29: 20—21.
    [134] Seielstad M T, Minch E and L L. Cavalli-Sforza, Genetic evidence for a higher female migration rate in humans[J]. Nat Genet, 1998, 20: 278—280.
    [135] Rice W R and Holland B, The enemies within: intergenomic conflict, interlocus contest evolution (ICE), and the intraspecific Red Queen [J]. Behav Ecol Sociobiol, 1997:1 — 10.
    [136] Su B. Natives or Immigartions: modern huamn orgin in East Asia[J]. Hum Genet,2000,107: 582 — 590.
    [137] Underhill P A, Shen P, Lin A A, et al. Y chromosome sequence variation and the history of human populations [J]. Nat Genet, 2000, 26(3): 358—361.
    [138] Graves J A. Evolution of the testis-determining gene--the rise and fall of SRY Novartis Found Symp, 2002, 244: 86-97; discussion 97-101, 203-106, 253-107.
    [139] Kittles R A, Perola M, Peltonen L, et al. Dual origins of Finns revealed by Y chromosome haplotype variation[J]. Am J Hum Genet, 1998, 62: 1171—9.
    [140] Bosch E, Calafell F, Perez-Lezaun A. Ancestral Asian sources) of new world Y-chromosome founder haplotypes [J] Am J Hum Genet, 1999,65: 1623—1638
    [141] Karafet T M, Zegura S L, Posukh O, et al. Ancestral Asian source(s) of New World Y-chromosome founder haplotypes[J]. Am J Hum Genet, 1999, 64: 817—831.
    
    [142] Hedges S B. Human evolution A start for population genomics [J] Nature, 2000, 408: 652—653.
    [143] Knijff P. Messages through bottlenecks: on the combined use of slow and fast evolving polymorphic markers on the human Y chromosome [J]. Am J Hum Genet, 2000, 67: 1055—1061.
    [144] Mannen H, Tsuji S, Loftus R T, et al. Mitochondrial DNA variation and evolution of Japanese Black cattle (Bos taurus) [J]. Genetics, 1998,150: 1169—1175
    [145] Ke Y, Su B, Song X, Lu D, Chen et al L. African origin of modern humans in East Asia: a tale of 12,000 Y chromosomes[J]. Science, 2001, 292: 1151 -1153.
    [146] Van Hooft P., Population genetics of the African buffalo Thesis Wageningen University,department of Environmental Sciences, Tropical Nature conservationand vertebrate ecology group: 2001, 61 — 83.
    [147] Wang P J, McCarrey J R, Yang F and Page D C. An abundance of X-linked genes expressed in spermatogonia [J]. Nat Genet, 2001, 27: 422—426.
    [148] Cathey A C, Bickham J W and Patto J C. Introgressive hybridization and nonconcordant evolutionary history of maternal and paternal lineages in north-american deer[J]. Evolution, 1998, 52: 1224— 1229.
    [149] Kadwell M, Fernandez M, Stanley H F, et al, Genetic analysis reveals the wild ancestors of the llama and the alpaca [J]. Proc R Soc Lond B Biol Sci, 2001,268: 2575—2584.
    [150] Pecon Slattery J, and O'Brien S J. Patterns of Y and X chromosome DNA sequence divergence during the Felidae radiation [J]. Genetics, 1998,148: 1245—1255.
    [151] Tosi A J, Morales J C, and Melnick D J. Comparison of Y Chromosome and mtDNA Phylogenies Leads to Unique Inferences of Macaque Evolutionary History[J]. Mol Phylogenet Evol,2000, 17: 133-144.
    [152] TAKEDA K, TAKAHASHI S, ONISHI A, et al. Dominant distribution of mitochondrial DNA from recipient oocytes in bovine embryos and offspring after nuclear transfer[J]. J. Reprod. Fertil, 1999,116:253-259
    [153] Seielstad M T, Minch E and L L. Cavalli-Sforza, Genetic evidence for a higher female migration rate in humans[J]. Nat Genet, 1998, 20: 278—280.
    [154] Lee K J and Sim C J, Taxonomic Study on Marine Sponges of Komundo Island, Korea [J] Korean J.Syst.Zool, 1999, 15(1): 141-152
    [155] MAA, MacHugh D E & Bradley DG, A microsatellite survey of cattle from a centre, of origin: the Near East[J]. Molecular Ecology, 1999, 8,2015—22.
    [156] Christopher S, Troy, Davia E, et al. Genetic evdence for Near-Easern origins of European cattle[J]. Nature, 2001,410: 1088-1091.
    [157] Loftus R T, Ertugrul O, Harba A H, et al., A microsatellite survey of cattle from a center of orgin: the near east [J]. Molecular Ecology, 1999, 8, 2015—25.
    [158] Schreiber A, Seibold I, Notzold G, et al. Cytochrome b gene haplotypes characterize chromosomal lineages of Anoa, the Sulawesi Dwarf Buffalo (Bovidae: Bubalus sp.). The Journal of Heredity, 1999, 90(l):165~176
    [159] Nakahori Y, Kuroki Y, Komaki R, et al., The Y chromosome region essential for spermatogenesis[J]. Horm Res, 1996, 46 Suppl 1 : 20-23.
    [160] Goldammer T, Brunner R M and Schwerin M. Comparative analysis of Y chromosome structure in Bos taurus and B. indicus by FISH using region-specific, microdissected, and locus-specific DNA probes[J]. Cytogenet Cell Genet, 1997,77: 238—241.
    [161] Mannen H, Morimoto M, Oyama K, et al.Identification of mitochondrial DNA substitutions related to meat quality in Japanese Black cattle[J]. J. Anim. Sci, 2003, 81: 68—73.
    [162] Gallagher D S, Jr S K, Davis M, et al, A molecular cytogenetic analysis of the tribe Bovini (Artiodactyla: Bovidae:Bovinae) with an emphasis on sex chromosome morphology and NOR distribution[J]. Chromosome Res, 1999, 7: 481-492
    [163] Iannuzzi L, Di Meo G, Perucatti P A, et al,. A pericentric inversion in the cattle Y chromosome [J] Cytogenet Cell Genet, 2001, 94: 202—205.
    [164] Iannuzzi L, Molteni L, Di Meo G P, et al. A case of azoospermia in a bull carrying a Y-autosome reciprocal translocation [J] Cytogenet Cell Genet, 2001, 95: 225-227
    [165] Xiao C, Tsuchiya K and Sutou S. Cloning and mapping of bovine ZFX gene to the long arm of the X-chromosome (Xq34) and homologous mapping of ZFY gene to the distal region of the short arm of the bovine (Yp13), ovine (Yp12-p13), and caprine (Yp12-p13) Y chromosome[J]. Mamm Genome, 1998,9: 125-130.
    [166] Quilter C R, Blott S C, Mileham A J, et al, A mapping and evolutionary study of porcine sex chromosome genes[J]. Mamm Genome, 2002, 13: 588—594.
    [167] Popescu C P, Cotinot C, Boscher J and Kirszenbaum M. Chromosomal localization of a bovine male specific probe[J]. Ann Genet, 1988, 31: 39—42.
    [168] VanTassell, Kashi Y, Soller M. Power of daughter and grand- daughter designs for determining linkage between marker loci and quantitative trait loci in dairy cattle. J Dairy Sci, 1999, 73:2525~ 2537
    [169] Charlesworth B. and Charlesworth D., The degeneration of Y chromosomes [J] PhilosTrans R. Soc Lond B., Biol. Sci., 2000, 355: 1563-1572.
    [170] AliS.and Hasnain S. E., Molecular dissection of the human Y-chromosome [J] Gene, 2002, 283: 1- 10.
    [171] Quintana-Murci, L., C. Krausz and K. McElreavey, The human Y chromosome: function, evolution and disease [J]. Forensic Sci Int, 2001, 118: 169—181.
    [172] Mitchell M J, Wilcox S A, Watson J M, Lerner J L, Woods et al D R. The origin and loss of the ubiquitin activating enzyme gene on the mammalian Y chromosome [J] Hum Mol Genet, 1998, 7: 429-434.
    [173] O'Neill R J, Eldridge M D and Graves J A. Chromosome heterozygosity and de novo chromosome rearrangements in mammalian interspecies hybrids[J]. Mamm Genome, 2001,12: 256-259.
    [174] Quintana-Murci, L., C. Krausz and K. McElreavey, The human Y chromosome: function, evolution and disease [J]. Forensic Sci Int, 2001, 118: 169—181.
    [175] Marshall Graves J.A., human Y chromosome, sex determination, and spermatogenesis-a feminist [J] View Biol Reprod, 2000, 63: 667—676.
    [176] Rozen S, Skaletsky H, Marszalek J D, et al. Abundant gene conversion between arms of palindromes in human and ape Y chromosomes[J]. Nature, 2003,423: 873—876.
    [177] Jones M H, Furlong R A, Burkin H, et al. The Drosophila developmental gene fat facets has a human homologue in Xp11. 4 whichescapes X-inactivation and has related sequences on Yq11.2 [J]. Hum Mol Genet, 1996, 5 (11): 1695-701.
    [178] Brown G M, Furlong R A, Sargent C A, et al. Characterisation of the coding sequence and fine mapping of the human DFFR Y gene and comparative expression analysis and mapping to the Sxrb interval of the mouse Y chromosome of the Dffry gene[J]. Hum Mol Genet, 1998, 7 (1): 97—107.
    [179] Sargent C A, Boucher C A, Kirsch S. The critical region of overlap defining the AZFa male infertility interval of proximal Yq contains three transcribed sequences [J]. J Med Genet, 1999, 36 (9): 670— 677.
    [180] Foresta C, Ferlin A and Moro E. Deletion and expression analysis of AZFa genes on the human Y chromosome revealed a major role for DB Y in male infertility [J]. Hum Mol Genet, 2000, 9 (8): 1161-1169.
    [181] Elliott D J, Millar M R, O'Ghene K, et al. Expression of RBM in the nuclei of human germ cells is dependent on a critical region of the Y chromosome long arm[J]. Proc Natl Acad Sci USA, 1997, 94 (8): 3848-3853.
    [182] Conrad C, Hierl T, Glaser B, et al. High-resolution fluorescence in situ hybridization of RBM 2and TS PY 2related cosmidson released Y chromatin in humans and pygmy chimpanzees[J].Chromosome Res, 1996, 4 (3): 201-206.
    
    [183] Eggen A, Fries R.An integrated cytogenetic and meiotic map of the bovine genome Animal Genetics, 1995, 26 (4) : 215-236
    [184] Xu NY. Markerkarten fur acht Chromosomen und erste QTL- Analyse an deutschen Milchrinder-Familien, Schriftenreihe Heft 99:1997
    [185] Napolitano F., Leone P. Puppo S., et al. Exploitation of microsatellites as genetic markers of beef-performance traits in Piemontese x Chianina crossbred cattle. J. Anim. Breed. Genet, 1996, 113:157-162
    [186] Chai N N, Zhou H Y, Joseph H, et al. Structure and Organization of the RBM Y genes on the human Ychromosome: Transpo sition and Amplification of an Ancestral Autosomal hnRN PG Gene[J] . Genomics, 1998, 49 (2), 283-289.
    [187] Jobling M. A, Barbujani G. Y-chromosome mismatches distributions in Europe [J]. Mol. Ecol, 2001,8:89-103.
    [188] D.G.Riley, S.W.Coleman, et al. Genetic parameters for body weight, hip height, and the ratio of weight to hip height from random regression analyses of Brahman feedlot cattle [J] Anim.Sci. 2007, 85:42 - 52
    [189] Scott D M, Ethraman I E , Ellis P S, et al. Identification of a mouse malespecific transplantation antigen[J], Nature, 1995, 376 (6542): 695-698.
    [190] Wang w, Meadows L R, den Haan J M, et al. Human H Y: a malespecific histocompatibility antigen derived from the SMCY protein [J]. Science, 1995,269 (5230): 1588—90.
    [191] Ciccodicola A, D'Esposito M, Esposito T, et al. differentially regulated and evolved genes in the fully sequenced Xq/Yq pseudoautosomal region [J]. Hum Mol Genet, 2000,9: 395—401.
    [192] Perret J, Shia Y C, Fries R, Vassart G and Georges M. A polymorphic satellite sequence maps to the pericentric region of the bovine Y chromosome [J]. Genomics, 1990, 6: 482—490.
    [193] M.E., Goddard Animal breeding in the postgenomic era Animal science 2003, 76:353-365
    
    [194] CA.Morris et al Genetic and phenotypic relationships among faecal egg count anti nematode antibody level and live weight in Angus cattle
    [195] Rutledge J. J. Greek temples, tropical kine and recombination load Livestock Production Science2001.68 171-179.
    [196] A.Chambedainet al Mapping QTL Affecting Milk Composition Traits in Dairy Cattle Using A complex Pedigree 7th world Congress on Genetics Applied to livestock Production August 19-23 2002. Montpellier, France.
    [197] M. S. Ashwell, Detection of Quantitative Trait Loci Affecting Milk Production, Health, and Reproductive Traits in Holstein Cattle J. Anim. Sci. 2003. 81:2976-2983
    [198] Su B, Xiao J, Underhill P, et al. The mitochondrial gene tree comes of age[J]. Am. J. Hum. Genet, 2001,68,1315-23
    [199] Matthews M E and Reed K C. sequences from a family of bovine Y-chromosomal repeats [J] Genomics, 1992,13: 1267-1273.
    [200] Frederic Farnir Simultaneous Mining of Linkage and Linkage Disequilibrium to Fine Map Quantitative Trait Loci in Outbred Half-Sib Pedigrees: Revisiting the Location of a Quantitative Trait Locus With Major Effect on Milk Production on Bovine Chromosome 14 Genetics, Vol. 161, 275-287, May 2002.
    [201] Bernard Grisart, Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition [J] Genetics
    [202] Sarah Blott, ntitative Trait Locus: A Phenylalanine-to-Tyrosine Substitution in the Transmembrane Domain of the Bovine Growth Hormone Receptor Is Associated With a Major Effect on Milk Yield and Composition Molecular Dissection of a Qua Genetics, Vol. 163, 253-266, January 2003.
    [203] J. -J. Kim Detection of quantitative trait loci for growth and beef carcass fatness traits in a cross between Bos taurus(Angus) and Bos indicus(Brahman) cattle J. Anim. Sci. 2003. 81: 1933~1942.
    [204] Anderson S, Bankier A T, Earrell B G. Sequence and organization of the human mitochondrial genome[J]. Nature, 1981, 290: 457~465.
    [205] Brown W M. Evolution of animal mitochondrial DNA In: Nei M and Koehn R. K. eds. Evolution of genes and proteins[J]. Sinauer Associates Inc.: Sunderland, Massachusetts, 1983, 62~68.
    [206] Boettcher P J, Steverin D W B k, Beitz D C, et al. Multiple herd evaluation of the effects of maternal lineage in yield traits of Holstein cattle[J]. J. Dairy Sci, 1996, 79: 655~662.
    [207] Potter W L, Upton P C, Cooper J, et al. C-and G-banding patterns and chromosomal morphology of some breeds of Australian cattle[J]. Australian Veterinary Journal, 1979, 55, 560~567.
    [208] Thomsen P. D. and Jorgensen C. B., Distribution of two conserved, male-enriched repeat families on the Bos Taurus Y-chromosome[J]. Mamm Genome, 1994, 5: 171~173.
    [209] 张勤,张沅,秦志锐.中国奶牛育种现状及发展趋势,北京奶业 2000.4:44~47
    [210] 聂龙,陈永久,刘瑞清.海南黄牛和徐闻黄牛线粒体DNA的多态性及其品种分化关系[J].动物学研究,1996,17(3):269~274
    [211] 郭爱扑.黄牛、牦牛和它们杂种后代犏牛染色体的比较研究[J].畜牧兽医学报,1983,10(2):133~143.
    [212] 曾养志.云南瘤牛[J].畜牧兽医学报,1984,4:217~222
    [213] 杨关福,吴显华,丘陵等.海南黄牛毛色的遗传[J].中国黄牛生态种特征及其利用方向.中国农业出版社,1990,136~139
    [214] 姚平.猪Y染色体遗传标记和比较基因研究中国农业大学硕士学位论文
    [215] 郭经恂.牛.中国农业百科全书(畜牧业卷),1996,433~437.
    [216] Kiddy C. A transferrins type and transmit ability for production in Dairy Sci.,(1995)58, 1501
    [217] Berovides. V. Hemoglobin polymorphism in F. hybrid Holstein ⅹ zebu In ⅩⅣ International Congress of Genetics Moscow 21-30 August Contributed paper sessions Abstracts. Part Ⅰ. Constitution, sections 13-20 Moscow, USS R Nauka. 1978.
    [218] Ashok Singh etc, Indian Vet. J., 1988, Vol. 65, NO, 3: 227~232.
    [219] Chai N N, Salido E C, Yen PH. Multiple functional copies of the RBM gene family, a spermatogenesis candidate on the human Y chromosome[J]. Genomics, 1997, 45(2): 355~361.
    [220] 辛亚平,张英汉,许尚忠.鲁西牛四个Y-STR微卫星位点的遗传多态性分析[J].西北农林科技大学学报 2007,3:11~14
    [221] 张英汉.论牛的肉用、役用经济类型划分的意义和方法(BPI指数).黄牛杂志,2001,26(4):1-5
    [222] Song-Jia Lai, Genetic diversity and origin of Chinese cattle revealed by mtDNA D-loop sequence variation Molecular Phylogenetics and Evolution 2oo5.06.013
    [223] Aitken R J and Marshall Graves J A, The future of sex[J] Nature, 2002, 415: 963.
    [224] Gallagher DS, Jr, Davis S K, De Donato M, Burzlaff J D, Womack et al J E. A molecular cytogenetic analysis of the tribe Bovini(Artiodactyla: Bovidae: Bovinae) with an emphasis on sex chromosome morphology and NOR distribution[J]. Chromosome Res, 1999, 7: 481~492.
    [225] Kayser M, Caglia A, Corach D, et al. Evaluation of Y-chromosomal STRs: a multicenter study[J]. Int J Legal Med, 1997, 110: 125~33.