咪唑并[2,1-b]噻唑衍生物的微波合成和重氮乙酸乙酯的自分解反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波促进有机合成(MAOS)是二十世纪八十年代新兴的有机合成方法,与常规加热法比较,具有反应体系受热均匀,增加分子间的碰撞几率,缩短反应时间,提高产品收率等多种优点。
     包含咪唑并[2,1-b]噻唑骨架的化合物一直被用作驱虫剂,抗高血压,抗炎症,免疫系统抑制剂,杀菌剂,除草剂,抗肿瘤剂和强心剂等等,是一类具有很广泛的生物活性的物质。
     本论文主要通过微波合成技术合成一系列咪唑并[2,1-b]噻唑类衍生物。具体结论如下:
     1.本文将首次利用微波合成技术,在功率为200W,微波作用时间很短的情况下,一步合成具有较高产率的6-芳基咪唑并[2,1-b]噻唑类化合物。
     2.采用零价钯催化对6-芳基咪唑并[2,1-b]噻唑类化合物进行了Heck偶联反应的研究,发现在微波功率400W下,反应高选择性地在咪唑环的4-位上发生。得到一系列5-取代-6-芳基咪唑并[2,1-b]噻唑类衍生物。而且此类Heck反应进一步证实了含有吸电子取代基的卤代芳烃比其他卤代芳烃更容易进行Heck偶联反应。
     合成具有简单或复杂官能团的环丙烷衍生物都带有一定的生化性质,包括酶抑制作用,杀虫性,抗真菌性,除草性,抗生素,抗肿瘤性和抗病毒性等。本文第四章考察了EDA与苯乙烯在CO和手性SalenRu(Ⅱ)存在下各种产物的分配比。以及EDA的自聚反应。
Microwave irradiation technique has been applicated in organic synthesis since the 20th century eighties. Compared with the classical heating, the microwave technique have many advantages which can make the reaction system heating uniformly, increase the probability of collisions between molecules, reduce the reaction time, and improve the product yield and so on.
     Imidazo[2,1-b]thiazoles has been used as anthelmintic, antihypertensive, immune system inhibitors, bacteriostatic, herbicide, antitumor, and cardiotonic activity. Imidazo[2,1-b]thiazoles is a class of bioactive substances.
     This paper syntheses a series of imidazo[2,1-b]thiazoles by microwave irradiation technique. The specific conclusions are listed as followed:
     1. In the power of 200W, we have synthesized a series of 6-Arylimidazo [2,1-b]thiazoles firstly by microwave irradiation technique, and received higher yield in a short time.
     2. We have studied the Heck reaction on the 6-Arylimidazo[2,1-b]thiazoles by catalysis of Palladium(0), and obtain a series of 5-Substituted-6-Arylimidazo[2,1-b] thiazoles. In the power of 400W, the Heck reaction has high regioselectivity, and the substrates can bear substitutent in the fourth position in the imidazole ring. And the withdrawing electronic halogenated alkylbenzene can react more easily than other halogenated alkylbenzenes.
     Occurring and synthetic cyclopropanes bearing simple or complex functionalities are endowed with a large spectrum of biological properties, including enzyme inhibition and insecticidal, antifungal, herbicidal, antibiotic, antitumour, and antiviral activities and so on. In chapter 4, we have studied the reaction between EDA and styrene, in the Chiral catalyst system SalenRu(Ⅱ) and CO. And the EDA's self-polymerization has also been studied. We can see the distribution ratio of different products.
引文
[1]Vanderhoff J. W. Carrying out Chemical Reactions Using Microwave Energy. US 3432413,1969,3,11.
    [2]Gedye R.; Smith F.; Westaway K.; Ali. H.; Baldisera L.; Laberge L.; Rousell J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett.1986, 27(3),279.
    [3]Kappe C. O. Controlled Microwave Heating in Modern Organic Synthesis. Angew. Chem. Int. Ed.2004,4 (46),6250.
    [4]Caddick S. Microwave assisted organic reaction. Tetrahedron.1995,51(38), 10403.
    [5]Perreux L. and Loupy A. A tentative rationalization of microwave effects in organic synthesis according to the reaction medium and mechanistic considerations. Tetrahedron.2001,57(45),9199.
    [6]Lidstrom P.; Trerney J.; Wather B.; Westman J. Microwave assisted organic synthesis-a Review. Tetrahedron.2001,57(45),9225.
    [7]Brittany L. H. Microwave synthesis-chemistry at the speed of light. CEM,2002.
    [8]金钦汉.微波化学.科学出版社.1999.
    [9](a) Larhed, M.; Hallberg, A. Microwave-assisted high-speed chemistry:a new technique in drug discovery. Drug Discovery Today 2001,6,406. (b) Wathey, B.; Tierney, J.; Lidstrom, P.; Westman, J. The impact of microwave-assisted organic chemistry on drug discovery. Drug Discovery Today 2002,7,373. (c) Shipe, W. D.; Wolkenberg, S. E.; Lindsley, C. W. Accelerating lead development by microwave-enhanced medicinal chemistry.Drug Discovery Today:Technol.2005, 2,155. (e) Kappe, C. O.; Dallinger, D. The impact of microwave synthesis on drug discovery. Nature Rev. Drug Discovery 2006,5,51.
    [10]Wiesbrock, F.; Hoogenboom, R.; Schubert, U. S. Microwave-assisted polymer synthesis:state-of-the-art and future perspectives. Macromol. Rapid Commun.2004, 25,1739.
    [11]Zhu, Y.-J.; Wang, W. W.; Qi, R.-J.; Hu, X.-L. Iron oxide hollow spheres: Microwave-hydrothermal ionic liquid preparation, formation mechanism, crystal phase and morphology control and properties. Angew. Chem. Int. Ed.2004,43,1410.
    [12]Tsuji, M.; Hashimoto, M.; Nishizawa, Y.; Kubokawa, M.; Tsuji, T. Microwave-Assisted Synthesis of Metallic Nanostructures in Solution. Chem. Eur. J.2005,11, 440.
    [13](a) Orrling, K.; Nilsson, P.; Gullberg, M.; Larhed, M. An efficient method to perform milliliter-scale PCR utilizing highly controlled microwave thermocycling. Chem. Commun.2004,790. (b) Zhong, H.; Marcus, S. L.; Li, L. Microwave-assisted acid hydrolysis of proteins combined with liquid chromatography MALDI MS/MS for protein identification. J. Am. Soc. Mass Spectrom.2005,16, 471.
    [14]Adam D. Microwave Chemistry:Out of the Kitchen. Nature.2003,421,571.
    [15]罗军,蔡春,吕春绪.微波有机合成化学最新进展.合成化学2002,10(1),17.
    [16](a) Gabriel, C.; Gabriel, S.; Grant, E. H.; Halstead, B. S.; Mingos, D. M. P. Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev.1998, 27,213. (b) Mingos, D. M. P.; Baghurst, D. R. Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem. Soc. Rev.1991,20, 1.
    [17](a) Kingston, H. M.; Haswell, S. J. Eds. Microwave-Enhanced Chemistry. Fundamentals, Sample Preparation And Applications. American Chemical Society. Washington, DC.1997. (b) Loupy, A., Ed. Microwaves in Organic Synthesis.Wiley-VCH:Weinheim,2002. (c) Hayes, B. L. Microwave Synthesis:Chemistry at the Speed of Light. CEM Publishing:Matthews, NC.2002. (d) Lidstrom, P.; Tierney, J. P.; Eds. Microwave-Assisted Organic Synthesis. Blackwell Publishing:Oxford,2005. (e) Kappe, C. O. A. Microwaves in Organic and Medicinal Chemistry. Wiley-VCH: Weinheim,2005. (f) Loupy, A., Ed. Microwaves in Organic Synthesis,2nd ed. Wiley-VCH:Weinheim. 2006. (g) Larhed, M.; Olofsson, K.; Eds. Microwave Methods in Organic Synthesis. Springer:Berlin.2006.
    [18]Dallinger D.; Kappe C.. Microwave-Assisted Synthesis in Water an Solvent. Chem. Rev.2007,107,2563.
    [19]Kubrakova I. V.; Formanovskii A. A.;Kudinova T. F. Microwave oxidation of organic compounds by nitric acid.J. Anal. Chem.1999,54(5),460
    [20]Gedye R. N.; Wei J. B. Rate enhancement of organic reactions by microwave at atomospheric pressure. Can. J. Chem.1998,76(5),525.
    [21]Bremberg V.; Lutaenko S.; Kaiser N. F. Rapid and stereoselective C-C, C-O, C-N and C-S coupling via microwave accelerated Palladium-catalyzed allylic substitutions. Synthesis 2000,7,1004.
    [22]刘晔,刘蒲,高润雄等.微波条件下V2O5/TiO2低温选择氧化甲苯制苯甲酸.催化学报.1998,19(3),224.
    [23]Bashilov A.V.; Kuznim N. M.; Runov V. K. Complexation of Ruthenium (IV) with 1,10-Pkenanthroline under microwave radiation. J. Anal. Chem.1998,53,649.
    [24]Mallon F. K.; Ray W. H. Enhancement of solidstate polymerization with microwave energy. J. Appl polym. Sci.1998,69(6),1203.
    [25]朱建华.微波介电加热及其在化学中的应用.大学化学.1998,136,1.
    [26]张华莲,胡希明,赖声礼.微波对化学反应作用的动力学原理研究.华南理工大学学报.1997,25(9),46.
    [27]黄卡玛,刘永清,唐敬贤等.电磁波对化学反应非致热作用的实验研究.高等学校化学学报.1996,17(5),764.
    [28]Gedye. R.; Smith. F. K. Westaway.Microwaves in Organic and Organometallic Synthesis. Journal of Microwave Power and Electromagnetic Energy 1991,26(1),3.
    [29]Huang, K.; Tang J.; Liu. Y. Interference of electromagnetic waves in dynamic metabolism. Chinese Science Bulletin 1996,41(15),1259.
    [30]Whittaker A. G.; Mingos D. M. P. Synthetic reactions using metal powders under microwave irradiation. Journal of Microwave Power and Electromagnetic Energy.1994,29(4),195.
    [31](a)王静,姜凤超.有机化学.2002,3,212.(b)杨玲,路军.化学世界.2003,165.(c)曾昭钧,李香文.沈阳药科大学学报.1999,16(4),304.(d)苏跃增,孙晓娟,刘萍.化学通报.2000,4,1.
    [32]Vanderhoff J. W. Method for Carrying out chemical reactions using microwave energy.1969, U. S.3432413. Chem.Abstr.1969,70,97422v;
    [33]Bram G.; Loupy A. Microwave Irradiation plus Solid-Liquid Phase Transfer Catalysis without Solvent:Further Improvement in Anionic Activation. Synth. Commun.1990,20,125.
    [34]Giguere R. J.; Bray T. L.; Duncan S. M. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett.1986,27,4945.
    [35]Nicolas C.; Alexey L. M.; Alexander M. K. Chemoselective enzymic monoacylation of bifunctional compounds.J. Chem. Soc. Chem. Commun.1989,111, 386.
    [36]Jin J.; Wen Z.; Long J. One-Pot Diazo Coupling Reaction Under Microwave Irradiation in the Absence of Solvent. Synth. Commun.2000,30,829.
    [37]Liu F.; Li Y.; Xu W. Chem, Res. Chin. Univ.1993,2,168.
    [38]沙耀武,韩涛.微波促进的有机反应.精细石油化工.2001,6,25.
    [39]Gupta R.; Paul S.; Gupta A. K.; Kachroo P. L. India. J. Chem.,1994,33B,888.
    [40](a) Caddick. S. Microwave assisted organic reactions. Tetrahedron.1995,51(8), 10403.(b)沙耀武,王羽,葛俊林.有机化学.2001,21(2),102.
    [41]Yuan Y. C.; Gao D. B.; Jiang Y. L. Ethoxylation of o, p-Nitrochlorobenzene Using Phase Transfer Catalysts by Microwave Irradiation. Synth. Commun.1992,22, 2117.
    [42]Loupy A.; Pigeon P. Ramdani M. Synthesis of long chain aromatic esters in a solvent-free procedure under microwaves. Tetrahedron.1996,52,6705.
    [1]Andreani A.; Granaiola M.; Lenoni A.; Locatelli A.; Morigi R.; Rambaldi M.; Lenaz G.; Fato R.; Bergamini C.; and Farruggia G. Potential Antitumor Agents.37. Synthesis and Antitumor Activity of Guanylhydrazones from Imidazo[2,1-b]thiazoles and from the New Heterocyclic System Thiazolo[2',3':2,3] imidazo[4,5-c] quinoline. J. Med. Chem.2005,48,3085.
    [2]Andreani A.; Rambaldi M.; Locatelli A.; Bossa R.; Fraccari A.; Galatulas I. Potential antitumor agents.21. Structure determination and antitumor activity of imidazo[2, 1-b]thiazole guanylhydrazones. J. Med. Chem.1992,35,4634.
    [3]Tartler G.; Weuffen E. Relations of chemical constitution and bacteriostatic activity. XI. Pharmazie 1966,21,425.
    [4]Fidanze S. D.; Scott A., Erickson; Wang G. T.; Mantei R.; Clark R. F.;. Sorensen B. K; Bamaung N. Y.; Kovar P.; Johnson E. F.; Swinger K. K.; Stewart K. D.; Zhang Q.; Tucker L. A.; Pappano W. N.; Wilsbacher J. L.; Wang J.; Sheppard G. S.; Bell R. L.; Davidsen S. K.; Hubbard R. D. Imidazo[2,1-b]thiazoles: multitargeted inhibitors of both the insulin-like growth factor receptor and members of the epidermal growth factor family of receptor tyrosine kinases. Bioorganic & Medicinal Chemistry Letters 2010,20(8),2452.
    [5]Budriesi R.; loan P.; Locatelli A. Imidazo [2, 1-b]thiazole System:A Scaffold Endowing Dihydropyridines with Selective Cardiodepressant Activity. J. Med. Chem. 2008,51,1592.
    [6]Gu. N. U.; Zeldemirci O.;. Ku M.; Kbasmaci C. Synthesis and antimicrobial activity evaluation of new 1,2,4-triazoles and 1,3,4-thiadiazoles bearing imidazo [2,1-b]thiazole moiety. European Journal of Medicinal Chemistry.2010,45,63.
    [7]Andreani A.; Granaiola M.; Leoni A.; Locatelli A.; Morigi R.; Rambaldi M.. Synthesis and antitubercular activity of imidazo[2, 1-b]thiazoles. Eur. J. Med. Chem. 2001,36,743.
    [8]Lantoss I.; Bender P. E.; Razgaitis K. A.; Sutton B. M.; DiMartino M. J.; Griswold D. E.; Walz D. T. Antiinflammatory Activity of 5,6-Diaryl-2,3-dihydroimidazo[2,1-b] thiazoles. Isomeric 4-Pyridyl and 4-Substituted Phenyl Derivatives. J. Med. Chem.1984,27,72.
    [9]Meakins G. D.;. Musk S. R. R.; Robertson C. A.; Woodhouse L. S. Substituted Imidazo[2,1-b]thiazoles from 2-Aminothiazoles and a-BromoKetones: Efficient Preparation and Proof of Structure. J. Chem. Soc. Perkin Trans.Ⅰ1989,643.
    [10]Andreani A.; Granaiola M.; Leoni A.; Locatelli A.; Morigi R.; Rambald M.; Giorgi G.; Garaliene V. Potential Antitumor Agents.34.(1) Synthesis and Antitumor Activity of Guanylhydrazones from Imidazo[2, 1-b]thiazoles and from Diimidazo [1,2-a:1,2-c] primidine. Anticancer Research 2004,24,203.
    [11]Sayed S. M.; Khalil M. A.; Ahmed M. A.; Raslan M. A. Synthesis of new pyridazin-6-ones, pyridazin-6-imines,4-pyridazinals, and pyridazinals, and pyridines. Synthetic Communications,2002,32(3),481.
    [12]Kamali T. A. Mohammad Bakherad, Mahmoud Nasrollahzadeh, Shiva Farhangi, Davood Habibi. Synthesis of 6-substituted imidazo[2, 1-b]thiazoles via Pd/Cu-mediated Sonogashira coupling in water. Tetrahedron Letter.2009,50,5459.
    [13]Aggarwal R.; Sumran G. Hypervalent Iodine in the Synthesis of Bridgehead Heterocycles:A Facile Route to the Synthesis of 6-Arylimidazo [2, 1-b]thiazoles Using [Hydroxy(tosyloxy)iodo]benzene. Synthetic Communications.2006,36,875.
    [14]Kaila N.; Janz K.; Debernardo S.; Bedard P. W.; Camphausen R T.; Tam S.; Desiree H. H. T.; Keith J. C.; Jr.; Nickerson-Nutter C.; Shilling A.; Young-Sciame R.; and Wang Q.; Synthesis and Biological Evaluation of Quinoline Salicylic Acids As P-Selectin Antagonists. J. Med. Chem.2007, 50,21.
    [1]黄培强主编.有机人名反应.试剂与规则.化学工业出版社.2008,1.
    [2]Heck, R. F. Acylation, methylation, and carboxyalkylation of olefins by Group Ⅷ metal derivatives. J. Am. Chem. Soc.1968,90,5518.
    [3]Mizoroki, T.; Mori, k.; Ozaki, A. Arylation of Olefin with Aryl Iodide Catalyzed by Palladium.Bull. Chem. Soc. Jpn.1971,44,581.
    [4]Heck, R. F.; Nolley, J. P.; Jr. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J. Org. Chem.1972,37,2320.
    [5]Dounay, A. B.; Overman, L. E. The Asymmetric Intramolecular Heck Reaction in Natural Product Total Synthesis. Chem. Rev.2003,103,2945.
    [6]Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Palladium-Catalyzed Cross-Coupling Reactions in Total Synthesis. Angew. Chem. Int. Ed.2005,44,4442.
    [7]Beletskaya I. P.; Cheprakov A. V. The Heck Reaction as a Sharpening Stone of Palladium Catalysis. Chem. Rev.2000,100,3009.
    [8](a) Boelun, V. P. W.; Herrmann, W. A. Mechanism of the Heck Reaction Using a Phosphapalladacycle as the Catalyst:Classical versus Palladium(IV) Intermediatates. Chem.Eur.J.2001,7,4191. (b) Rosner, T.; Bars, J. L.; Pfaltz, A.; Blackmond, D. G. Kinetic Studies of Heck Coupling Reactions Using Palladacycle Catalysts:Experimental and Kinetic Modeling of the Role of Dimer Species. J. Am. Chem. Soc.2001,123,1848. (c) Catellani, M.; Frignani, F.; Rangoni, A. A Complex Catalytic Cycle Leading to a Regioselective Synthesis of o,o'-Disubstituted Vinylarenes. Angew. Chem. Int. Ed. 1997,36,119.
    [9]Reetz, M. T.; Westermann, E. Phosphane-Free Palladium-Catalyzed Coupling Reactions:The Decisive Role of Pd Nanoparticles. Angew. Chem. Int. Ed.2000,39, 165.
    [10]Mclaughlin, P. A.; Verkade, J. G. Fluoride-Catalyzed Reduction of Palladium (Ⅱ) to Palladium (0)-Phosphine Complexes. Organometallics.1998,17,5937.
    [11]Grushin, V. V. Catalysis for Catalysis:Synthesis of Mixed Phosphine Phosphine Oxide Ligands via Highly Selective, Pd-Catalyzed Monooxidation of Bidentate Phos-phines. J. Am. Chem. Soc.1999,121,5831.
    [12]Jutand, A.; Mosleh, A. Rate and Mechanism of Oxidative Addition of Aryl Tri-flates to Zerovalent Palladium Complexes. Evidence for the Formation of Cationic (sigma.-Aryl) palladium Complexes. Organometallics.1995,14,1810.
    [13]Larhed, M.; Andersson, C. M.; Hallberg, A. Chelation-controlled, palladium-catalyzed arylation of enol ethers with aryl triflates. Ligand control of selection for α-or β-arylation of [2-(dimethylamino) ethoxy] ethene. Tetrahedron.1991,50,285.
    [14]Cabri, W.; Candiani, I.; Bedeschi, A.; Santi, R.1,10-Phenanthroline derivatives: a new ligand class in the Heck reaction. Mechanistic aspects. J. Org. Chem.1993,58, 7421.
    [15]Spencer, A. Homogeneous palladium-catalysed arylation of activated alkenes with aryl chlorides. J. Organoment. Chem.1984,270,115.
    [16]Namyslo, J. C.; Kaufmann, D. E. Chemistry in the Ambient Field of the Alkaloid Epibatidine,2:Triphenylarsine as an Efficient Ligand in the Pd-Catalyzed Synthesis of Epibatidine and Analogs. Synlett.1999,114.
    [17]Oliveira D. F.; Severino E. A.; Correia C. R. D. Heck Reaction of Endocyclic Enecarbamates with Diazonium Salts.Formal Enantioselective Synth-eses of Alkaloids (-)-Codonopsine and (-) Codonopsinine, and the Synthesis of a New C-Aryl Azasugar. Tetrahedron Letters.1999,40,2083.
    [18]Dai, M.;liang, B.;Wang, C.;Chen, J.;Yang, Z. Synthesis of a Novel C2-Sym-metric Thiourea and Its Application in the Pd-Catalyzed Cross-Coupling Reactions with Arenediazonium Salts under Aerobic Conditions. Org. Lett.2004,6,221.
    [19]Tian, J.; Moeller, K. D. Electrochemically Assisted Heck Reactions. Org. Lett. 2005,7,5381.
    [20]Basnak, I.; Takatori, S.; Walker, R. T. Palladium-catalysed carbomethoxy-vinylation and thienylation of 5-iodo (bromo)-2,4-dimethoxypryrimidine in water. Tetrahedron Lett.1997,38,4869.
    [21]Bumagin, N. A.; More, P. G.; Beletskaya, I. P. Synthesis of substituted cinnamic acids and cinnamonitriles via palladium catalyzed coupling reactions of aryl halides with acrylic acid and acrylonitrile in aqueous media. J. Organomet. Chem.1989,371, 397.
    [22]Piva-Art, S.; Satoh, T.; Miura, M.; Nomura, M. Palladium-Catalyzed of Reaction Aryl Bromides with Diaklylacetylenes to Produce Allenic Compounds. Chem. Lett.1997,823.
    [23]Fu, C.; Ma, S. Observation of the First Heck-Type Cross-Coupling Reaction of Allenes with Aryl Halides. Synthesis of Polysubstituted 1,2-Allenyl Sulfones. Org. Lett.2005,7,1605.
    [24]Oestreich, M. Neighbouring-Group Effects in Heck Reactions. Eur. J. Org. Chem. 2005,783.
    [25]Heck, R. F. Palladium-Catalysed Vinylation of Organic Halides. Organic Reactions Inc. N. Y. Org. React.1982,27,345.
    [26]Gabri, W.; Candiani, I. Recent Developments and New Perspectives in the Heck Reaction. Acc. Chem. Res.1995,28,2.
    [27]Whitcombe, N.; Hii, K.; Gibson, S. Advances in the Heck chemistry of aryl bromides and chlorides. Tetrahedron.2001,57,7449.
    [28]Pereira, J.; Barlier, M.; Guillou, C. Formal Total Syntheses of Aspidosperma Alkaloids via a Novel and General Synthetic Pathway Based on an Intramolecular Heck Cyclization. Org. Lett.2007,9,3101.
    [29]Pinho, P.; Minnaard, A. J.; Feringa, B. L. The Tandem Heck-Allylic Substitution Reaction:A Novel Route to Lactams. Org. Lett.2003,5,259.
    [30]Ashimori, A.; Matsuura, T.; Overman, L. E.; Poon, D. J. Catalytic asymmetric synthesis of either enantiomer of physostigmine. Formation of quaternary carbon centers with high enantioselection by intramolecular Heck reactions of (Z)-2-butenanilides. J. Org. Chem.1993,58,6949.
    [31]Ashimori, A.; Bachand, B.; Overman, L. E.; Poon, D. J. Catalytic Asymmetric Synthesis of Quaternary Carbon Centers. Exploratory Investigations of Intramolecular Heck Reactions of (E)-α,β-Unsaturated 2-Haloanilides and Analogues To Form Enantioenriched Spirocyclic Products. J. Am. Chem. Soc.1998,120,6477.
    [32]Ohshima,T.; Kagechika, K.; Adachi, M.; Sodeoka, M.; Shibasaki, M. Asymm-etric Heck Reaction-Carbanion Capture Process. Catalytic Asymmetric Total Syn-thesis of (-)-△9(12)-Capnellene. J. Am. Chem. Soc.1996,118,7108.
    [33]Dai, L.-X.; Tu, T.; You, S.-L.; Deng, W,-P.; Hou, X.-L. Asymmetric Catalysis with Chiral Ferrocene Ligands. Acc. Chem. Res.2003,36,659.
    [34]Tu, T.; Hou, X.-L.; Dai, L.-X. Highly Regio-and Enantioselective Heck Rea-ction of N-Methoxycarbonyl-2-pyrroline with Planar Chiral Diphosphine-oxazoline Ferrocenyl Ligands. Org. Lett.2003,5,3651.
    [35]Bhanage, B. M.; Fujita, S. I.; Arai, M. Heck reactions with various types of palladium complex catalysts:application of multiphase catalysis and supercritical carbon dioxide. J. Organmet. Chem.2003,687,211.
    [36]Yeung, L. K.; Jachnston, K. P.; Richard, M.; Crooks, R. M. Catalysis in supercritical CO2 using dendrimer-encapsulated palladium nanoparticles.Chem. Commun.2001,2290.
    [37]Early, T. R.; Gordon, R. S.; Carroll, M. A. Palladium-catalysed cross-coupling reaction in supercritical carbon dioxide. Chem. Commun.2001,1966.
    [38]Zhang, R.; Zhao, F. Y.; Sato, M.; Ikushima, Y. Noncatalytic Heck coupling reaction using supercritical water. Chem. Commun.2003,1548.
    [39]Zhang, R.; Sato, O.; Sato, M.; Ikushima, Y. Heck Coupling Reaction of Iodobenzene and Styrene Using Supercritical Water in the Absence of a Catalyst. Chem. Eur. J.2004,10,1501.
    [40]Deshmukh, R. R.; Rajagopal, R.; Srinivasan, K. V. Ultrasound promoted C-C bond formation:Heck reaction at ambient conditions in room temperature ionic liquids. Chem. Commun.2001,1544.
    [41]Calb, V.; Nacci, A.; Monopoli, A.Regio-and stereo-selective carbon-carbon bond formation in ionic liquids. J. Mol. Catal. A:Chem.2004,214,45.
    [42]Xie, X. G.; Lu, J. P.; Pan, X. F. Pd/C-catalyzed Heck reaction in ionic liquid accelerated by microwave heating. Tetrahedron Lett.2004,45,809.
    [43]Klingelhbfer, S.; Heitz, W.; Greiner, A. Preparation of Palladium Colloids in Block Copolymer Micelles and Their Use for the Catalysis of the Heck Reaction. J. Am. Chem. Soc.1997,119,10116.
    [44]Cassol, C. C.; Umpierre, A. P.; Machado, Q. The Role of Pd Nanoparticles in Ionic Liquid in the Heck Reaction. J. Am. Chem. Soc.2005,127,3298.
    [45]Beller, M.; Fischer, H.; Kuhlein, K.; Reisinger, C. P.; Herrmann, W. A. First palladium-catalyzed Heck reactions with efficient colloidal catalyst systems. J. Organomet. Chem.1996,520,257.
    [46]Luo, C. C.; Zhang, Y. H.; Wang, Y. G. Palladium nanoparticles in poly(ethyl-eneglycool):the effcicient and recyclable catalyst for Heck reaction. J. Mol. Catal. A: Chem.2005,229,7.
    [47]Stambuli, J. P.; Staufer, S. R.; Shaughnessy, K. H.; Hartwig, J. F. Screening of Homogeneous Catalysts by Fluorescence Resonance Energy Transfer. Identification of Catalysts for Room-Temperature Heck Reactions. J. Am. Chem. Soc.2001,123, 2677.
    [48]Larhed, M.; Hallberg, A. Microwave-Promoted Palladium-Catalyzed Coupling Reactions. J. Org. Chem.1996,61,9582.
    [49]Cotton F. A. Tetrakis(triphenylphosphine) palladium(0). Inorganic Syntheses, 1972,8,121.
    [1]Pellissier H. Recent developments in asymmetric cyclopropanation. Tetrahedron. 2008,64,7041.
    [2]Faust, R. fascinating Natural and Artificial Cyclopropane Architectures. Angew. Chem. Int. Ed.2001,40,2251.
    [3]Gnad, F,; Reiser, O. Synthesis and Application ofβ-Aminocarboxylic Acids Con-taining a Cyclopropane Ring. Chem.Rev.2003,103,1603.
    [4]Liu, H. W.; Walsh, C. T. The Chemistry of the Cyclopropyl Group. Rappoport, Z., Ed., John Wiley:New York, NY,1997,P959.
    [5]Bonaccorsi, C.; Rachmann, S.; Mezzetti, A. Electronic tuning of the PNNP ligand for the asymmetric cyclopropanation of olefins catalysed by [RuCl((PNNP)]+. Tetrahedron:Asymmetry 2003,14,845.
    [6]Bonaccorsi, C.; Mezzetti, A. Optimization or Breakthrough? The First Highly cis-and Enantioselective Asymmetric Cyclopropanation of 1-Octene by "Electronic and Counterion"Tuning of [RuCl (PNNP)]+Catalysts. Organometallics.2005,24,4953.
    [7]Bonaccorsi, C.; Santoro,F.; Gischig, S.; Mezzetti, A. Chiral Dication Bis(aqua) Complexes [Ru(OH2)2(PNNP)]2+:The Effect of Double Chloride Abstraction on Asymmetric Cyclopropanation. Organometallics.2006,25,2002.
    [8]Huber, D.; Mezzetti, A. Chiral monodentate phosphoramidite ligands control the absolute configuration at pseudotetrahedral ruthenium:asymmetric catalytic cyclo-propanation of olefins. Tetrahedron:Asymmetry.2004,15,2193.
    [9]Huber,D.; Kumar, P.G.A.; Pregosin, P. S.; Mikhel, I. S.; Mezzetti, A. Chloro (η6-p-cymene) (phosphoramidite)ruthenium,a 16-Electron Fragment Stabilized by an η2-Aryl-Metal Interaction,and Its Use in Asymmetric Cyclopropanation. Helv. Chim. Acta 2006,89,1696.
    [10]Simmoneaux, G.; Maux L. P. Optically active ruthenium porphyrins:and asymmetric catalysis. Coord. Chem. Rev.2002,228,43.
    [11]Che, C. M.; Huang, J. S. Ruthenium and osmium porphyrin carbine complexes: synthesis, structure, and connection to the metal-mediated cyclopropanation of alkenes. Coord. Chem. Rev.2002,231,151.
    [12]Simmoneaux, G.; Le Maux, P.; Ferrand, Y.; Rault-Berthelot, J. Asymmetric heterogeneous catalysis by metalloporphyrins. Coord. Chem. Rev.2006,250,2212.
    [13]Berkessel, A.; Lex K. P. Electronically Tuned Chiral Ruthenium Por-phyrins: Extremely Stable and Selective Catalysts for Asymmetric Epoxidation and Cyclopropanation. J. Chem. Eur.2003,9,4746.
    [14]Teng, P.-F.; Lai, T.-S.; Kwong, H.-L.;Che, C.-M. Asymmetric inter-and intramole-cular cyclopropanations of alkenes catalyzed by rhodiumD4-porphyrin:a comparison of rhodium-centred catalysts. Tetrahedron:Asymmetry 2003,14,837.
    [15]Paul-Roth, C.; De M. F., Rethore, G.; Simmoneaux, G.; Gulea, M.; Masson S. Cyclopropanation of alkenes with diisopropyl diazomethylphosphonate catalysed by ruthenium porphyrin complexes. J. Mol. Catal. A 2003,201,79.
    [16]Ferrand, Y.; Le M. P.; Simmoneaux, G. Highly Enantioselective Synthesis of Cyclopropylphosphonates Catalyzed by Chiral Ruthenium porphyrins. Org. Lett.2004, 6,3211.
    [17]Le M. P.; Juillard, S.; Simmoneaux, G. Asymmetric Synthesis of Trifluoro-methylphenyl Cyclopropanes Catalyzed by Chiral Metalloporphyrins. Synthesis 2006, 10,1701.
    [18]Simpson, J. H.; Godfrey, J.; Fox, R.; Kotnis, A.; Kacsur, D.; Hamm, J.; Totel-ben, M.;Rosso,V.; Mueller, R.; Delaney, E.; Deshpande, R. P. A pilot-scale synthesis of (1R)-trans-2-(2,3-dihydro-4-benzofuranyl)cyclopropanecarboxylic acid: a practical application of asymmetric cyclopropanation using a styrene as a limiting reagent. Tetrahedron:Asymmetry 2003,14,3569.
    [19]Charette, A. B.; Bouchard, J.-E. Catalytic asymmetrics synthesis of Cyclopro-pylphosphonates-Catalysts'scope and reactivity. Can. J. Chem.2005,83,533.
    [20]Iwasa, S.; Tsushima, S.; Nishiyama, K.; Tsuchiya, Y.; Takazawa, F.; Nishiy-ama, H. Catalytic asymmetric cyclopropanation of alkenes with diazoesters in protic and biphasic media. Tetrahedron:Asymmetry 2003,14,855.
    [21]Miller, J. A.; Hennessy, E. J.; Marshall, W. J.; Scialdone, M. A.; Nguyen, S. T. trans-Cyclopropyl β-Amino Acid Derivatives via Asymmetric Cyclopropanation Us- ing a (Salen)Ru(Ⅱ) Catalyst.J. Org. Chem.2003,68,7884.
    [22]Miller J. A.; Gross B. A.; Zhuravel M.A.; Jin W.; Nguyen S-B. T. Axial Ligand Effects:Utilization of Chiral Sulfoxide Additives for the Induction of Asymmetry in (Salen)ruthenium(Ⅱ) Olefin Cyclopropanation Catal-ysts. Angew. Chem. Int. Ed.2005,44,3885.
    [23]Uchida, T.; Katsuki, T. α-Diazoacetates as Carbene Precursors:MetallosalenCa-talyzed Asymmetric Cyclopropanation. Synthesis 2006,10,1715.
    [24]Hoang, V. D. M.; Reddy, P. A. N.; Kim, T.-J. Highly enantioselective and cis-diastereoselective cyclopropanation of olefins catalyzed by ruthenium complexes of (iminophosphoranyl)ferrocenes. Tetrahedron Lett.2007,48,8014.
    [25]Xu Z-J.; Fang R.; Zhao C.; Huang J-S.; Li G-Y.; Zhu N-Y.; Che C-M. cis-β-Bis(carbonyl)Ruthenium-Salen Complexes:X-ray Crystal Structures and Remarkable Catalytic Properties toward Asymmetric Intermo-lecular Alkene Cyclopropanation. J. Am. Chem. Soc.2009,131 (12),4405.
    [26]Marino B.; Cristina T.; Andrea B.; Marco B.; Gabriella B.; Filippo L.; Pamela lunardi.; Chiara V.; Franco B.; and Alessandro Del Z.; Reactions of Diazo Compounds with Alkenes Catalysed by [RuCl(cod)(Cp)]:Effect of the Substituents in the Formation of Cyclopropanation or Metathesis Products. Chem. Eur. J.2009,15, 1516.
    [27]Eric G and Frederick R. L.; Stereoselective Generation of Cis or Trans Olefins from the RuCl2(PPh3)3-Catalyzed Diazo Coupling of Ethyldiazoacetate. Organometallics.2002,21,3823.
    [28]王洪钟,淳炯,金声.2-芳基-4-苯基-2,3-二氢-1,5-苯并而二氮杂卓与重氮乙酸乙酯反应机理和立体化学的研究.有机化学2000,2,218.
    [29]David M. H. and Deepshikha A. Highly Chemo-and Stereoselective Intermolecular Coupling of Diazoacetates To Give cis-Olefins by Using Grubbs Second-Generation Catalyst. Chem. Eur. J.2007,13,3470.
    [30]David M. H.; Deepshikha A.;Maleates from diazoacetates and dilactones from head-to-head dimerisation of alkenyl diazoacetates using Grubbs'2nd-generation ruthenium carbine catalyst. Chem. Commun.2005,4902.
    [31]Larrow J. F.; Jacobsen E. N. A Practical Method for the Large-Scale Preparation of [N,N'-Bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminato(2-)] manganese (Ⅲ) Chloride, a Highly Enantioselective Epoxidation Catalyst. J. Org. Chem.1994, 59,1939.
    [32]Sthphenson T. A.; Wilkinson G. New complexes of Ruthenoum (Ⅱ) and (Ⅲ) with Triphenylphosphine, Triphenyl Arsine, Trichlorostannate, Pyridine and other Ligands. J. Inorg. Nucl. Chem.1966,28,945.
    [33]Murray K. S.; Bergen A. M.; West B. O. Ruthenium Complexes with a Tetradentate Salicylaldimine Schiff Base. Aust. J. Chem.1978,31,203.
    [34]Martin P. and Peter R.; Studies on the Decomposition of Ethyl Diazoacetate and Its Reaction with Coal. Formation of a New Tetrameric Product and Reagent Access within the Coal. Energy & Fuels 1989,3,357.