阳离子有机硅表面活性剂的制备及其聚集行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机硅表面活性剂是以硅氧/碳烷为疏水链节,连接一个或多个亲水基团组成的一类新型高效的表面活性剂。不但具有比烷烃类表面活性剂更优良的表面活性和“超铺展”性,而且具备有机硅材料的耐高低温、耐气候老化、无毒生理惰性等优异的性能。以其独特、优异的性能广泛应用于聚氨酯泡沫、涂料/农药/纺织助剂、日用品、油田化学品等领域。随着有机硅材料进一步发展和对有机硅下游产品深入的开发,有机硅表面活性剂的品种也将不断的增加,应用领域也会不断扩大,这都是有机硅表面活性剂的发展方向与研究热点。
     本文通过分子设计合成不同疏水结构、亲水结构、平衡离子的阳离子有机硅表面活性剂、比较系统的探索疏水基团、亲水基团、平衡离子对阳离子有机硅表面活性剂在水溶液中聚集行为的影响。以期望实现为有机硅表面活性剂的实际应用提供理论依据。本论文主要分为以下五部分工作:
     第一部分概述了有机硅表面活性剂的类型、特性及其合成方法。
     第二部分合成了一系列不同疏水基、亲水基、平衡离子的阳离子型有机硅表面活性,三硅氧烷季铵氯盐(Si3ACl)、三硅碳烷季铵氯盐(Si3C2ACl)、四硅氧烷季铵氯盐(Si4ACl)、四硅氧烷咪唑氯盐(Si4mimCl)、四硅氧烷吡咯氯盐(Si4pyCl)>四硅氧烷吡咯硝酸盐(Si4pyNO3)、四硅氧烷吡咯醋酸盐(Si4pyAc)。并用1HNMR、FT-IR、ESI-MS对其分子结构进行了表征。表明所合成的阳离子型有机硅表面活性剂均为目标产品。
     第三部分探讨阳离子有机硅表面活性剂亲水头基对其在水溶液中的聚集行为影响。通过表面张力、电导率和稳态荧光方法研究了SimimCl、Si4pyCl和Si4ACl三种阳离子有机硅表面活性剂在水溶液中的表面活性及其聚集行为。发现,Si4mimCl、Si4pyCl和Si4ACl能降低水的表面张力至约20mN·m-1,具有较高降低表面张力的效率和效能,表明这三种阳离子型机硅表面活性剂具有优良的表面活性。其CMC值大小顺序为Si4pyCl     第四部分运用表面张力、电导率法研究了Si4ACl,Si3ACl和Si3C2ACl三种阳离子有机硅表面活性剂在水溶液中的聚集行为。探讨了疏水基对阳离子有机硅表面活性剂表面活性及胶束化的影响。Si3ACl,Si3ACl和Si3C2ACl能降低水的表面张力至约21~24mN.m-1,表明这三种有机硅表面活性剂具有优良的表面活性,且具有较高的降低表面张力的效率与效能。Si3C2ACl疏水链中含有疏水的CH2基团,而Si4ACl含有三个Si(CH3)3基团,导致CMC值顺序为Si3C2AClNaBr>NaCl。
     第五部分利用表面张力、电导率法、动态光散射(DLS)、透射电镜(TEM)研究三种有机硅离子液体,Si4pyAc,Si4pyCl和Si4pyNO3,在水溶液中的聚集行为,借此进一步探讨了平衡离子对阳离子有机硅表面活性剂表面活性及胶束化的影响。表面张力结果发现,Si4pyCl和Si4pyNO3能降低水的表面张力至约20mN.m-1,表明三种有机硅离子液体具有优良的表面活性,且具有较高的降低表面张力的效率与效能。平衡离子对有机硅离子液体的表面活性等性能有着很大的影响。水溶液中有机硅离子液体的聚集体形貌为圆形。热力学探讨发现,Si4pyAc,Si4pyCl和Si4pyNO3在水溶液中的聚集行为是自发的。Si4pyCl离子液体胶束的形成是熵驱动的过程。而Si4pyAc和Si4pyNO3离子液体胶束的形成是焓驱动的过程。同时探讨了NaBr和NaCl对有机硅离子液体聚集行为的影响。发现对有机硅离子液体γCMC及其在气/液界面的吸附(Γmax、Amin)基本没有影响或影响不大。
Silicone surfactants consist of a permethylated siloxane/silane group coupled to one or more polar groups, which are a new class of surfactants with excellent surface active. They are widely used in industrial fields, such as agricultural adjuvant, polyurethane foam additives, paint additives, emulsifiers in cosmetics, and textile conditioning. This wide application is attributed to those properties of silicone surfactant:(i) its high surface activity and "super-spreading",(ii) its low toxicity and excellent association behavior and (iii) its low glass transition temperature even for higher molecular weight make it easier to use at room temperature. With the further development of silicone materials, silicone surfactants will be widely investigated and under the spotlight.
     In this dissertation, a series of cationic silicone surfactants with different hydrophobic groups, different hydrophilic groups and different counterion groups are designed and prepared. Their aggregation behaviors in aqueous solution have been investigated systematically in order to study the effect of hydrophobic groups, hydrophilic groups and counterion groups on aggregation behavior of cationic silicone surfactant. Our research is helpful to establish the dependence of aggregation behavior of cationic silicone surfactants on their structures. This dissertation is divided into5parts as follows:
     The first part, the types, synthesized methods and study progress of silicone surfactants are summaried.
     The second part, a series of cationic silicone surfactants with different hydrophobic groups, different hydrophilic groups and different counterion groups are designed and synthesized. The results of FT-IR,1H NMR, and ESI-MS indicate that these cationic silicone surfactants are all objective products.
     The third part, the surface activity and aggregation behavior of Si4mimCl, Si4pyCl and Si4ACl in aqueous solution was systematically investigated by surface tension, electrical conductivity, and steady-state fluorescence. Surface tension of water can be reduced almost to20mN·m-1with the addition of the cationic silicone surfactants. The results indicate that all the three surfactants exhibit admirable surface activity. Because of the effect of the headgroups, the critical micelle concentrations (CMC) values increase following the order Si4pyCl     The forth part, aggregation behavior of Si4ACl, Si3ACl and Si3C2ACl in aqueous solution was investigated by surface tension and electrical conductivity. The results show that all the three cationic silicone surfactants perform admirable surface activity. Because of the effect of the hydrophobic groups, the critical micelle concentrations (CMC) values increase following the order Si3C2ACl     The fifth parts, the aggregation behavior of three silicone ionic liquids, Si4pyAc, Si4pyCl and Si4pyNO3, in aqueous solution was systematically investigated by surface tension, electrical conductivity, dynamic light scattering (DLS), and transmission electron microscope (TEM). Surface tension of water can be reduced almost to20mN·m-1with the addition of the silicone ionic liquids, indicating that all the three silicone ionic liquids exhibit excellent surface activity. The critical micelle concentrations (CMC) values of Si4pyNO3is less than that of Si4pyAc. Electrical conductivity measurements show that the degree of counterion binding (β) for Si4pyNO3is twice larger than that for Si4pyAc. Thermodynamic parameters (△Hm0, ASm0, and AGm0) of micellization derived from electrical conductivities indicate that the micellization for Si4pyNO3and Si4pyAc is enthalpy-driven process. The heat capacities,△cm,p0, are negative for two silicone ionic liquids (Si4pyNO3and Si4pyAc) relating to the removal of water accessible non-polar surfaces.
引文
[1]Hill, R. M. Silicone Surfactants [M]. Marcel Dekker, New York,1999.
    [2]Hill, R. M. silicone surfactants-new development [J]. Curr. Opin. Colloid Interface Sci.,2002,7 (5-6):255-261.
    [3]Peter, J. G.. Organosilicon surfactants as adjuvants for agrochemicals [J]. Pesticide Science,1993,38 (2-3):103-122.
    [4]Somasundaran, P.; Mehta, S. C;. Purohit, P. Silicone emulsions [J]. Adv. Colloid Interface Sci.,2006,128-130:103-109.
    [5]Smid-Korbar, J.; Kristi, J.; Stare, M. Efficiency and usability of silicone surfactants in emulsions [J]. Int. J. Cosmet. Sci.,1990,12 (3):135-139.
    [6]Zhang, X. D.; Macosko, C. W.; Davis, H. T.; Nikolov, A. D. Role of silicone surfactant in flexible polyurethane foam [J]. J. Colloid Interface Sci.,1999,215 (2):270-279.
    [7]Svitova, T.; Hoffmann, K.; Hill, R. M. Trisiloxane Surfactants:Surface/Interfacial Tension Dynamics and Spreading on Hydrophobic Surfaces [J]. Langmuir,1996, 12(7):1712-1721.
    [8]Kim, D. W.; Noh, S. T. Synthesis and Surface-Active Properties of a Trisiloxane-Modified Oligo(propylene oxide-block-ethylene oxide) Wetting Agent [J]. J. Appl. Polym. Sci.,2004,92(5):3292-3302.
    [9]Churaev, N. V.; Ershov, A. P.; Esipova, N. E.; Hill, R. M.; Sobolev, V. D.; Zorin, Z. M. Application of a Trisiloxane Surfactant for Removal of Oils from Hydrophobic Surfaces [J]. Langmuir,2001,17(5):1349-1356
    [10]Kekevi, B.; Berber, H.; Yildirim, H. Synthesis and Characterization of Silicone-Based Surfactants as Anti-Foaming Agents [J]. J Surfact Deterg,2012, 15(1):73-81.
    [11]Liu, X. M.; Song, J. L.; Wu, D.; Genzer, J.; Theyson, T.; Roja, O. J. Surface and Friction Behavior of a Silicone Surfactant Adsorbed on Model Textiles Substrates [J]. Ind. Eng. Chem. Res.2010,49(18):8550-8557.
    [12]He, Y. Y.; Li, Z. B.; Simone, P.; Lodge, T. P. Self-assembly of block copolyner micelles in an ionic liquids [J]. J. Am. Chem. Soc.,2006,128(8):2745-2750.
    [13]Chen, Q. B.; Liang X. D.; Wang S. L.; Xu S. H.; Liu H. L.; Hu Y. Cationic Gemini surfactant at the air/water interface [J]. J. Colloid Interface Sci.,2007, 314(2):651-658.
    [14]Fuhrhop, J. H.;Wang, T. Bolaamphiphiles [J]. Chem. Rev.,2004,104(6): 2901-2937.
    [15]Lin, L. H.; Wang, C. C.; Chen, K. M.; Lin, P. C. Synthesis and physicochemical properties of silicon-based gemini surfactants [J]. Colloid Surfaces A,2013,436: 881-889.
    [16]Wang, G. Y.; Qu, W. S.; Du, Z. P.; Wang, W. X.; Li, Q. X. Adsorption and Aggregation Behaviors of Tetrasiloxane-Tailed Gemini Surfactants with (E0)m Spacers [J]. J. Phys. Chem. B 2013,117(11):3154-3160.
    [17]Marciniec, B.; Gulinski, J.; Urbaniak, W.; W.Kornetka, Z. Comprehensive handbook on hydrosilylation [M]. Pergamon, Oxford,1992.
    [18]Chung, D. W.; Kim, T. G. Study on the Effect of Platinum Catalyst for the Synthesis of Polydimethylsiloxane Grafted with Polyoxyethylene [J]. J. Ind. Eng. Chem.,2007,13(4):571-577
    [19]Chung, D. W.; Kim, T. G. Solvent Effect on the Hydrosilylation Reactions for the Synthesis of Polydimethylsiloxane Grafted with Polyoxyethylene Catalyzed by Speier's Catalyst [J]. J. Ind. Eng. Chem.,2007,13(6):979-984
    [20]Bauer, J.; Husing, N.; Kickelbick, Guido. Synthesis of new types of polysiloxane based surfactants [J]. Chem. Commun.,2001,137-138
    [21]Kumar, A.; Uddin, M. H.; Kunieda, H.; Furukawa, H.; Harashima, A. Solubilization Enhancing Effect of A-B-Type Silicone Surfactants in Microemulsions [J]. J. Disper. Sci. Technol.,2001,22(2-3):245-253.
    [22]Nardin, C.; Hirt, T.; Leukel, J.; Meier, W. Polymerized ABA Triblock Copolymer Vesicles [J]. Langmuri,2000,16(3):1035-1041.
    [23]Bauer J, Husing N, Kickelbick G, Preparation of Funtionalized Block Copolymers Based on A Polysiloxane Backone by Anionic Ring-Opening Polymerization [J]. J. Polym. Sci. Pol. Chem,2002,40(10):1539-1551.
    [24]Jakobs, B.; Sottmann, T.; Strey, R. Amphiphilic Block Copolymers as Efficiency Boosters for Microemulsions [J]. Langmuir 1999,15(20):6707-6711.
    [25]Garti N, Aserin A, Wachtel E, Gans O, Shaul Y. Water-solubilization in nonionic microemulsions stabilized by grafted siliconic emulsifiers [J]. J Colloid Interface Sci 2001,233(2):286-294.
    [26]Berkovich Y, Aserin A, Wachtel E, Garti N. Preparation of amorphous aluminum oxide-hydroxide nanoparticles in amphiphilic silicone-based copolymer microemulsions [J]. J Colloid Interface Sci.,2002; 245(1):58-67.
    [27]Owen, M. J.; Dvornic, P. R. Silicone Surface Science [M] Michigan Molecular Institute Midland,2012
    [28]黄薇.有机硅非离子表面活性剂(二)[J].有机硅材料.2009,23(3):205-206.
    [29]Mehta, S. C.; Somasundaran, P. Mechanism of Stabilization of Silicone Oil-Water Emulsions Using Hybrid Siloxane Polymers [J]. Langmuir,2008, 24(9):4558-4563.
    [30]Chung, D. W.; Lim, J. C.Study on the effect of structure of polydimethylsiloxane grafted with polyethyleneoxide on surface activities[J].Colloid Surfaces A,2009, 336(1-3):35-40
    [31]Soni, S.S.; Sastry, N. V.; Aswal, V. K.; Goyal, P. S. Micellar Structure of Silicone Surfactants in Water from Surface Activity, SANS and Viscosity Studies [J]. J. Phys. Chem. B,2002,106(10):2606-2617.
    [32]Soni, S.S.; Sastry, N. V.; George, J. Dynamic Light Scattering and Viscosity Studies on the Association Behavior of Silicone Surfactants in Aqueous Solutions [J]. J. Phys. Chem. B 2003,107(22):5382-5390.
    [33]Srividhya, M.; Chandrasekar, K.; Baskar, G.; Reddy, B. S. R. Physico-chemical properties of siloxane surfactants in water and their surface energy characteristics [J]. Polymer,2007,48 (5):1261-1268.
    [34]Kuo, P. L.; Hou, S. S.; Teng, C. K.; Liang, W. J. Function and performance of silicone copolymer (VI). Synthesis and novel solution behavior of water-soluble polysiloxanes with different hydrophiles [J]. Colloid Polym. Sci.,2001, 279(3):286-291.
    [35]Lin, Y. N.; Alexandridis, P. Self-Assembly of an Amphiphilic Siloxane Graft Copolymer in Water [J]. J. Phys. Chem. B,2002,106(42):10845-10853
    [36]Kickelbick, G.; Bauer, J.; Huesing, N.; Andersson, M.; Holmberg, K. Aggregation Behavior of Short-Chain PDMS-b-PEO Diblock Copolymers in Aqueous Solutions [J]. Langmuir,2003,19(24):10073-10076.
    [37]Kickelbick, G.; Bauer, J.; Htlsing, N.; Andersson, M.; Palmqvist, A. Spontaneous Vesicle Formation of Short-Chain Amphiphilic Polysiloxane-b-Poly(ethylene oxide) Block Copolymers [J]. Langmuir,2003,19(8):3198-3201.
    [38]Uddin, M. H.; guez, C. R.; Watanabe, K.; Lo'pez-Quintela, A.; Kato, T.; Furukawa, H.; Harashima, A.; Kunieda, H. Phase Behavior and Formation of Reverse Cubic Phase Based Emulsion in Water/Poly(oxyethylene)Poly(dimethylsiloxane) Surfactants/Silicone Oil Systems [J]. Langmuir,2001,17(17):5169-5175.
    [39]Kunieda, H.; Uddin, M. H.; Furukawa, H.; Harashima, A. Phase Behavior of a Mixture of Poly(oxyethylene)-Poly(dimethylsiloxane) Copolymer and Nonionic Surfactant in Water [J] Macromolecules,2001,34(26):9093-9099.
    [40]Kunieda, H.; Uddin, M. H.; Horii, M.; Furukawa, H.; Harashima, A. Effect of Hydrophilic-and Hydrophobic-Chain Lengths on the Phase Behavior of A-B-type Silicone Surfactants in Water [J]. J. Phys. Chem. B,2001, 105(23):5419-5426.
    [41]Stebe, M. J.; Emo, M.; Follotec, A. F.; Metlas-Komunjer, L.; Pezron, I.; Blin, J. L. Triblock Siloxane Copolymer Surfactant:Template for Spherical Mesoporous Silica with a Hexagonal Pore Ordering [J]. Langmuir 2013,29(5):1618-1626.
    [42]Wu, Y. F.; Rosen, M. J. Superspreading of Trisiloxane Surfactant Mixtures on Hydrophobic Surfaces 2. Interaction and Spreading of Aqueous Trisiloxane Surfactant-N-Alkyl-Pyrrolidinone Mixtures in Contact with Polyethylene [J]. Langmuir,2002,18(6):2205-2215.
    [43]Dong, J. P.; Mao, G. Z.; Hill, R. M. Nanoscale Aggregate Structures of Trisiloxane Surfactants at the Solid-Liquid Interface [J] Langmuir,2004, 20(7):2695-2700.
    [44]Radulovic, J.; Sefiane, K.; Martin, E.R..Spreading and Wetting Behaviour of Trisiloxanes [J].J. Bionic Eng..2009,6(4):341-349
    [45]Peng, Z. L.; Wu, Q.; Cai, T..Syntheses and properties of hydrolysis resistant twin-trail trisiloxane surfactants [J].Colloid Surfaces A,2009,342(1-3):127-131.
    [46]Walderhaug, H.. Microstructures in Aqueous Solutions of a Polyoxyethylene Trisiloxane Surfactant and a Cosurfactant Studied by SANS and NMR Self-Diffusion [J]. Langmuir,2008,24(19):10637-10645.
    [47]Venzmer, J. Superspreading-20 years of physicochemical research [J]. Curr. Opin. Colloid Interface Sci.,2011,16 (4):335-343.
    [48]Ivanova, N.; Starov, V.; Johnson, D.; Hilal, N.; Rubio, R. Spreading of aqueous solutions of trisiloxanes and conventional surfactants over PTFE AF coated silicon wafers [J]. Langmuir 2009;25(6):3564-3570.
    [49]Chengara, A.; Nikolov, A.D.; Wasan, D. T. Vertical spreading of aqueous trisiloxane solution driven by a spontaneously developing surface tension gradient [J]. Ind Eng Chem Res.,2008,47(10):3639-3644.
    [50]Radulovic, J.; Sefiane, K.; Shanahan, E. R. Dynamics of trisiloxane wetting: effects of diffusion and surface hydrophobicity [J]. J Phys Chem C 2010;114(32):13620-13629.
    [51]Gentle, T. E.;Snow, S. A.Adsorption of Small Silicone Polyether Surfactants at the Air/water Interface [J].Langmuir,1995, 11(8):2905-2910.
    [52]He, M.; Hill, R. M.; Lin, Z.; Scriven, L. E.; Davis, H. T. Phase Behavior and Microstructure of Polyoxyethylene Trisiloxane Surfactants in Aqueous Solution [J]. J. Phys. Chem.,1993,97(34):8820-8834.
    [53]Kunieda, H.; Taoka, H.; Iwanaga, T.; Harashima, A. Phase Behavior of Polyoxyethylene Trisiloxane Surfactant in Water and Water-Oil [J]. Langmuir, 1998,14(18):5113-5120.
    [54]Li, X.; Washenberger, R. M.; Scriven, L. E.; Davis, H. T. Phase Behavior and Microstructure of Water/Trisiloxane E6 and Eio Polyoxyethylene Surfactant/Silicone Oil Systems [J]. Langmuir,1999,15(7):2278-2289.
    [55]Zhang, S. H.; Liu, J.; Li, N.; Yang, X. J.; Zheng, L. Q. Aggregation behavior of silicone surfactants in ethylammonium nitrate ionic liquid [J]. Colloid Polym Sci., 2012,290(18):1927-1935.
    [56]Liu H J, Liu H. Synthesis and surface activity of polyethyleneglycol-maleic anhydride polydimethylsiloxane polyester surfactants [J]. Colloid Surfaces A, 2003,215(1-3):213-219.
    [57]Policello, G. A.; Ossining, N. Y. Terminally modified amino polyether siloxanes:US,2001028892[P].2001-10-11.
    [58]Czech, A. Silicone aminopolyalkyleneoxide block copolymers silicone: US,5981681 [P].1999-11-09
    [59]Luo, R. X.; Liu, P. P.; Chen, Y. B. Synthesis and Properties of a Hydrolysis Resistant Cationic Trisiloxane Surfactant [J]. J Surfact Deterg.,2013, 16(1):33-38.
    [60]Azechi, S.; Meguriya, N.; Tanaka, M. cationic silicone surfactant and method of its manufacture [P].US:5124466,1992-6-23
    [61]Reid, W. G.; Island, G. Dialkylamino hydroxy organosilicon compounds and derivatives thereof [P].3389160,1968-6-18
    [62]Rosen, M. R.; Prokai, B. METHOD OF EXTINGUISHING FIRES AND COMPOSITIONS THEREFOR CONTAINING CATIONIC SILICONE SURFACTANTS [P].3677347,1972-7-18
    [63]Schmaucks, G.; Sonnek, G.; Wustneck, R.; Herbst, M,; Ramms, M. Effect of Siloxanyl Groups on the Interfacial Behavior of Quaternary Ammonium Compounds [J]. Langmuir 1992,8(7):1724-1730.
    [64]Snow, S. A. Synthesis, characterization, stability, aqueous surface activity, and aqueous solution aggregation of the novel, cationic siloxane surfactants (Me3SiO)2Si(Me)-(CH2)3+NMe2(CH2)2OR X (R=hydrogen, acetyl, N-phenylcarbamyl; X= chloride, bromide, iodide, nitrate, methyl sulfate, Langmuir,1993,9(2):424-430.
    [65]Lin, Z.; He, M.; Scriven, L. E.; Davis, H. T. Vesicle Formation in Electrolyte Solutions of a New Cationic Siloxane Surfactant [J]. J. Phys. Chem.1993, 97(14):3571-3578.
    [66]He, M.; Lin, Z.; Scriven, L. E.; Davis, H. T. Aggregation Behavior and Microstructure of Cationic Trisiloxane Surfactants in Aqueous Solutions [J]. J. Phys. Chem.1994,98(24):6148-6157.
    [67]Gradzielski, M.; Hoffman, H.; Robisch, P.; Gruning, B. The aggregation behavior of silicone surfactants in aqueous solutions [J]. Tenside, Surfact. Det. 1990,27(6):366-379.
    [68]Cao, Y.; Du, Z. P.; Wang, G. Y. Synthesis and surface activity of trisiloxane-based imidazolimn ionic liquid surfactant [J]. China Surfactant Detergent Cosmetics,2011,41(6):391-394
    [69]Cao, Y.; Du, Z. P.; Wang, G. Y. Synthesis and characterization of trisiloxane-based pyridinium ionic Uquid surfactant [J]. Textile Auxiuaries,2012, 29(4):12-15
    [70]Du, Z. P.; Li, E.; Cao, Y.; Wang, G. Y. Synthesis of trisiloxane-tailed surface active ionic liquids and theiraggregation behavior in aqueous solution [J]. Colloid Surfaces A,2014,441:744-751.
    [71]Nohr, R. S.; MacDonald, J. G. Non-woven web containing antimicrobial siloxane quaternary ammonium salts[P].US:5854147.
    [72]Meguriya,Noriyuki,Azechi.et al. Anionic silicone surfactant and method of its manufacture[P].US:5068380,1991-11-26.
    [73]Lin, L. H.; Chen, K.M. Surface activity and water repellency propertiesofcleavablemodified silicone surfactants[J].Colloid Surfaces A,2006, 275:99-106.
    [74]Lin, L. H.; Wang, C. C.; Chen, C. W. Water-repellency and antibacterial activities of plasma-treated cleavable silicone surfactants on nylon fabrics[J]. Surface & Coatings Technology,2006,201:674-678.
    [75]An, Q. F.; Yang, G.; Li, M. T.; Wang, W. J. Preparation,Characterization and Properties of Carboxyl Modified Polyether Polysiloxane Surfactant CPES [J]. FINE CHEMICALS,2007,24(7):640-644.
    [76]Anthony, J.; O'Lenick, Jr. silicone alkyl phosphate esters[P].US.6175028.2001-6-16.
    [77]Liu, G. Y.; Gu, D. M.; Liu, H. Y.; Ding,W.; Luan,H. X.; Lou,Y. M. Thermodynamic properties of micellization of Sulfobetaine-type Zwitterionic Gemini Surfactants in aqueous solutions-A free energy perturbation study [J]. J. Colloid. Interf. Sci.,2012,375(1):148-153.
    [78]Tondo, D. W.; Leopoldino, E. C.; Souza, B. S.; Micke, G. A.; Costa, A. C. O. Synthesis of a New Zwitterionic Surfactant Containing an Imidazolium Ring. Evaluating the Chameleon-like Behavior of Zwitterionic Micelles [J]. Langmuir,2010,26 (20):15754-15760.
    [79]Kawamoto H, Ichinohe S, Tsubone K. Betaine-containing siloxane compounds and method for making[P].US.5068377,1991-11-26.
    [80]Timothy Rex Bunce,Llantwit Major,Avril Surgenor.hydrosilylation process[P].US.7208619,2007-4-24.
    [81]Wang, X. C.; Ding, J. H.; Yuan, X. Z.; Liu, J. Synthesis and application of betaine modified organopolysiloxanes surfactants [J]. China Surfactant Detergent Cosmetics,2008,38(1):45-49.
    [82]丁建华,聚醚硅氧烷的甜菜碱基改性及其加脂应用[D].陕西科技大学.2009.
    [83]Snow, S. A.; Fenton, W. N.; Owen, M. J. Zwitterionic Organofunctional Siloxanes as Aqueous Surfactants:Synthesis and Characterization of Betaine Functional Siloxanes and Their Comparison to Sulfobetaine Functional Siloxanes [J]. Langmuir,1991,7(5):868-871.
    [84]Snow, S. A.; Fenton, W. N.; Owen, M. J. Synthesis and Characterization of Zwitterionic Silicone Sulfobetaine Surfactants [J]. Langmuir,1990,6(2):385-391.
    [85]Han, F.; Zhang, G. Y. Synthesis and Characterization of Glucosamide-Based Trisiloxane Gemini Surfactants [J]. J. Surfactant Deterg.,2004,7(2):175-180
    [86]Ma, Q.Y.; Feng, S. Y. Synthesis of a new kind of carbohydrate-modified polysiloxanes and its morphological transition of molecular aggregates in water[J]. Carbohyd. Polym.,2006,65 (3):321-326.
    [87]Han, F.; Deng, Y. Y.; Zhou, Y. W.; Xu, B. C. Carbohydrate-Modified Silicone Surfactants [J]. J. Surfact Deterg.,2012,15(2):123-129.
    [88]Loos, K.; Jonas, G.; Stadler, R. Carbohydrate Modified Polysiloxanes,3. Solution Properties of Carbohydrate-Polysiloxane Conjugates in Toluene [J]. Macromol. Chem. Phys.2001,202(16):3210-3218.
    [89]Ogawa, T. Simplified Synthesis of Carbohydrate-Functional Siloxanes via Transacetalation. I. Glucose-Functional Siloxanes [J]. J. Polym. Sci. Pol. Chem, 2003,41(21):3336-3345.
    [90]Wang, W. X.; Wang, S. J.; Du, Z. P.; Wang, G. Y.; Wang, L. Properties of Glucosamide-Based Tetrasiloxane Surfactants [J]. J. Disper. Sci. Technol.,2012, 33(5):654-659.
    [91]Racles, C.; Hamaide, T. Synthesis and Characterization of Water Soluble Saccharide Functionalized Polysiloxanes and Their Use as Polymer Surfactants for the Stabilization of Polycaprolactone Nanoparticles [J]. Macromol. Chem. Phys.2005,206(17):1757-1768.
    [92]Zeng, X. J.; Lu, Z. P.; Liu, Y. Synthesis and Solution Properties of Novel Sugar-Based Polysiloxane Surfactants [J]. J Surfact Deterg.,2013, 16(1):131-137.
    [93]Peng, Z. L.; Lu,C. F.; Lai, J. X. Synthesis and Properties of Novel Double-Tail Trisiloxane Surfactants [J]. J. Surfactant Deterg.,2009,12(4):331-336
    [94]Du,Z. P.; Wang, L.; Wang, G. Y.; Wang, S. J. Synthesis, surface and aggregation properties of glucosamide-grafted amphiphilic glycopolysiloxanes [J]. Colloid Surfactant A,2011,381(1-3):55-60
    [95]Han, F.; Zhang, G. Y. New family of Gemini surfactants with glucosamide-based trisiloxane [J]. Colloid Surfactant A,2001,237(1-3):79-85
    [96]O'Lenick, A. J.; Liburn, J. silicone based glycosides [P]. US5428142, 1995-06-27
    [97]Sejpka, J.; Wimmer, F. Process for preparing organosilicon compounds containing glycoside radicals [P]. US5831080,1998-11-3
    [98]Sejpka, J.; Franz, W. Glycoside containing organosilicon compounds and method for their preparation [P]. DE4306041,1994-9-1
    [99]Sahoo B, Brandstadt K F, Gross R A, et al., Sweet Silicones:Biocataltic Reactions to Form Organosilicon Carbohydrate Macromers [J]. Organic Lett 2005,7(18):3857-3860
    [100]Wagner, R.; Richter, L.; Wieland, B. Silicon-modified carbohydrate surfactants VIII. Equilibrium wetting of perfluorinated solid surfaces by solutions of surfactants above and below the critical micelle concentration-surfactant distribution between liquid-vapour and solid-liquid interfaces [J]. Appl. Organometal. Chem.,1999,13(1),21-28.
    [101]Wagner, R.; Richter, L.; Wieland, B. Silicon-Modified Carbohydrate Surfactants Ⅲ:Cationic and Anionic Compounds [J]. Appl. Organometal. Chem.,1997,11(6):523-538.
    [102]马庆宇.含糖有机硅聚合物的合成及其溶液性质研究[D].山东大学学位论文,2006
    [103]Zhou C. J.; Guan, R. F.; Feng, S. Y. The preparation of a new polysiloxane copolymer with glucosylthioureylene groups on the side chains [J]. Eur. Polym. J., 2004,40(1):165-170
    [104]Wang, G. Y.; Qu, W. S.; Du, Z. P.; Cao, Q. Y.; Li, Q. X. Adsorption and Aggregation Behavior of Tetrasiloxane-Tailed Surfactants Containing Oligo(ethylene oxide) Methyl Ether and a Sugar Moiety [J]. J. Phys. Chem. B 2011,115(14):3811-3818.
    [105]Wang, G. Y.; Du, Z. P.; Li, Q. X.; Zhang, W. Carbohydrate-Modified Siloxane Surfactants and Their Adsorption and Aggregation Behavior in Aqueous Solution[J]. J. Phys. Chem. B,2010,114(20):6872-6877
    [106]Zhang, D. L.; Zhong, G. Y.; Wang, G. Y.; Li, G. J. Synthesis and Properties of Gluconamide-Based Trisiloxane Surfactant [J]. J. Disper. Sci. Technol.,2012, 33(11):1603-1607.
    [1]Hill, R. M. Silicone Surfactants [M]. Marcel Dekker, New York,1999.
    [2]冯圣玉,张洁,李美江,朱庆增.有机硅高分子及其应用[M].第一版.北京:化学工业出版社,2004.
    [3]Hill, R. M. silicone surfactants-new development [J]. Curr. Opin. Colloid Interface Sci.,2002,7(5-6):255-261.
    [4]Li, J. Y.; Zhang, Q. S.; Wang, Y.; Zhang, W. Y. Li, T. D. Synthesis and Properties of Organosilicon Quaternary Salts Surfactants [J]. J Surfact Deterg.,2012, 15(3):339-344.
    [5]Somasundaran, P.; Mehta, S. C;. Purohit, P. Silicone emulsions [J]. Adv. Colloid Interface Sci.,2006,128-130:103-109.
    [6]Peter, J. G.. Organosilicon surfactants as adjuvants for agrochemicals [J]. Pestic. Sci.,1993,38(2-3):103-122.
    [7]Zhang, X. D.; Macosko, C. W.; Davis, H. T.; Nikolov, A. D. Role of silicone surfactant in flexible polyurethane foam [J]. J. Colloid Interface Sci.,1999, 215(2):270-279.
    [8]Smid-Korbar, J.; Kristi, J.; Stare, M. Efficiency and usability of silicone surfactants in emulsions [J]. Int. J. Cosmet. Sci.,1990,12 (3):135-139.
    [9]Chojnowski, J.; Fortuniak, W.; Scibiorek, M.; Rozga-Wijas, K.; Grzelka, A.; Mizerska, U.3-Chloropropyl Functionalized Dendrigraft Polysiloxanes and Dendritic Polyelectrolytes [J]. Macromolecules 2007,40(26):9339-9347.
    [10]Sauvet, G.; Fortuniak, W.; Kazmierski, K.; Chojnowski, J. Amphiphilic Block and Statistical Siloxane Copolymers with Antimicrobial Activity [J]. J. Polym. Sci. Polym. Chem.,2003,41 (19):2939-2948.
    [11]Sauvet, G.; Dupond, S.; Kazmierski, K.; Chojnowski, J. Biocidal Polymers Active by Contact. V. Synthesis of Polysiloxanes with Biocidal Activity [J]. J. Appl. Polym. Sci.,2000,75(8):1005-1012.
    [12]Huang, Z. X.; Yu, Y. Z.; Huang, Y. Ion Aggregation in the Polysiloxane Ionomers Bearing Pendant Quaternary Ammonium Groups [J]. J. Appl. Polym. Sci.,2002,83(14):3099-3104.
    [13]Rozga-Wijas, K.; Mizerska, U.; Fortuniak, W.; Chojnowski, J.; Halasa, R.; Werel, W. Quaternary Ammonium Salts (QAS) Modified Polysiloxane Biocide Supported on Silica Materials [J]. J Inorg Organomet Polym.,2007, 17(4):605-613.
    [14]Rozga-Wijas, K.; Fortuniak, W.; Chojnowski, J.; Labadens, F.; Sauvet, G. Reactions of tertiary hydroxyalkylamines with 3-halogenopropyl substituted polysiloxanes:a route to water soluble and amphiphilic silicones [J]. React. Funct. Polym.,2005,61(3):315-323.
    [15]Reid, W. G.; Island, G. Dialkylamino hydroxy organosilicon compounds and derivatives thereof [P].3389160,1968-6-18.
    [16]Margida, A. J.; Ohio, M. Quarternary ammonium pendant siloxane copolymers [P]. US4895964A,1990-6-23.
    [17]McCarthy, J. P.; Greene, G. H. Cationic silicones [P]. US5164522A,1992-77-17.
    [18]Helmrick, L. R.; Kennan, J. J. Silicon based quaternary ammonium functional compositions and methods for making them [P]. US6482969B1,2002-11-19.
    [19]吴鲁燕.三硅氧烷表面活性剂的合成及性能研究[D].浙江大学2010
    [20]李建勇.氯硅烷的醇解和水解研究[D].南昌大学2011
    [21]Churaev, N. V.; Ershov, A. P.; Esipova, N. E.Application of a trisiloxane surfactant for removal ofoils from hydrophobic surfaces [J]. Langmuir,2001, 17(5):1349-1356.
    [22]Okawara, R.; Sakiyama, M. Mehtylhydropolysiloxanes from cohydrolysis of methylhydroehlorosilanes and methylchlorosilanes [J].Bull Chem Soc Jpn,1956, 29:547
    [23]Pal, Y. M.; Servis, K. L.; Weber, W. P. Preparation of oligomeric and polymeric Bis(trimathylsiloxy)polymethylchlorosiloxanes and their reactions with alkyllithium reagents [J]. Organometallics,1986,5(4):683-690
    [24]蒋波詹晓力陈丰秋季铵化反应中的溶剂效应[J].化学通报,2006,69(1):
    [25]蒋波詹晓力陈丰秋氯丙基三甲氧基硅烷季铵化反应规律探讨化学反应工程与工艺2006,22(1):33-36
    [26]Wang, T. T.; Iou, Q. L. The solvent effect and the structural effect of halides on the quaternization Et3N+RX→ Et3RNX [J]. Chem. Eng. J.,2002,87(2): 197-206
    [27]Reinheimer, J.D.; Harley, J. D.; Meyers, W. W. Solvent effects in the Menschutkin reaction, J. Chem. Soc.1963,28(6):1575-1579.
    [28]Popov, A. F.; Matveev, A. A.; Piskunova, Z. P. Factors affecting formation rate of alkenes in case of interaction of alkyliodides with aliphatic amines [J]. Org. React.1986,23 (3):83,307.
    [1]赵国玺;朱步瑶.表面活性剂作用原理[M].中国轻工业出版社,北京,2003
    [2]Hill, R. M. Silicone Surfactants, Marcel Dekker, New York,1999.
    [3]Hill, R. M. silicone surfactants-new development [J]. Curr. Opin. Colloid Interface Sci.2002,7(5-6):255-261.
    [4]Stevens, P. J. G. Organosilicon surfactants as adjuvants for agrochemicals [J].Pesticide Science,1993,38 (2-3) 103-122.
    [5]Somasundaran, P.; Mehta, S. C; Purohit, P. Silicone emulsions [J]. Adv. Colloid Interface Sci.,2006,128-130 () 103-109.
    [6]Smid-Korbar, J.; Kristi, J.; Stare, M. Efficiency and usability of silicone surfactants in emulsions [J]. Int. J. Cosmet. Sci.,1990,12 (3):135-139.
    [7]Zhang, X. D.; Macosko, C. W.; Davis, H. T.; Nikolov, A. D. Role of silicone surfactant in flexible polyurethane foam [J]. J. Colloid Interface Sci.,1999,215 (2):270-279.
    [8]Wallace, G. R.; Grand, I. N. Y. Dialklamfao hydroxy organosilicon compounds and derivatives thereo [P] US3389160,1968-06-18
    [9]Srividhya, M.; Chandrasekar, K.; Baskar, G.; Reddy, B. S. R. Physico-chemical properties of siloxane surfactants in water and their surface energy characteristics [J]. Polymer,2007,48 (5):1261-1268.
    [10]Soni, S. S.; Sastry, N. V.; Aswal, V. K.; Goyal, P. S. Micellar Structure of Silicone Surfactants in Water from Surface Activity, SANS and Viscosity Studies [J]. J. Phys. Chem. B,2002,106 (10):2606-2617.
    [11]Hill, R. M.; Churaev, V.; Esipova, N. E.; Sobolev, V. D. The Superspreading Effect of Trisiloxane Surfactant Solutions [J]. Langmuir,2001,17 (5):1338-1348.
    [12]Natalia, I.; Victor, S.; Daniel, J.; Nidal, H.; Ramon, R. Spreading of Aqueous Solutions of Trisiloxanes and Conventional Surfactants over PTFE AF Coated Silicone Wafers [J]. Langmuir,2009,25(6):3564-3570.
    [13]Snow, S. A. Synthesis, characterization, stability, aqueous surface activity, and aqueous solution aggregation of the novel, cationic siloxane surfactants X (R=hydrogen, acetyl, N-phenylcarbamyl; X=chloride, bromide, iodide, nitrate, methyl sulfate [J]. Langmuir,1993,9 (2):424-430.
    [14]Snow, S. A.; Fenton, W. N.; Owen, M. J. Zwitterionic Organofunctional Siloxanes as Aqueous Surfactants:Synthesis and Characterization of Betaine Functional Siloxanes and Their Comparison to Sulfobetaine Functional Siloxanes [J]. Langmuir,1991,7 (5):868-871.
    [15]Snow, S. A.; Fenton, W. N.; Owen, M. J. Synthesis and Characterization of Zwitterionic Silicone Sulfobetaine Surfactants [J]. Langmuir,1990,6 (2):385-391.
    [16]He, M.; Lin, Z.; Scriven, L. E.; Davis, H. T. Aggregation Behavior and Microstructure of Cationic Trisiloxane Surfactants in Aqueous Solutions [J]. J. Phys. Chem.,1994,98 (24):6148-6157.
    [17]Lin, Z.; He, M.; Scriven, L. E. Vesicle Formation in Electrolyte Solutions of a New Cationic Siloxane Surfactant [J]. J. Phys. Chem.,1993,97 (14):3571-3578.
    [18]Schmaucks, G.; Sonnek, G.; Wustneck, M.; Ramm, M. Effect of Siloxanyl Groups on the Interfacial Behavior of Quaternary Ammonium Compounds [J]. Langmuir,1992,8 (7):1724-1730.
    [19]敖明祺.咪唑Gemini表面活性剂的合成及其聚集行为的研究[D].山东大学2010
    [20]陈国珍;黄贤智;郑朱梓.荧光分析法(第二版).科学出版社,北京,1990.
    [21]Zana, R.; In, M.; Levy, H.; Duportail, G. Alkanediyl-a,co-bis(dimethylalkyl-ammonium bromide).7. Fluorescence probing studies of micelle micropolarity and microviscosity [J]. Langmuir,1997,13(21):5552-5557.
    [22]Bowers, J.; Butts, C. P.; Martin, P. J.; Vergara-Gutierrez, M. C. Aggregation Behavior of Aqueous Solutions of Ionic Liquids [J]. Langmuir,2004,20 (6):2191-2198.
    [23]张旗,新型长链头基季铵盐Gemini表面活性剂的合成及其吸附、聚集行为研究[D]武汉大学博士学位论文.2012
    [24]Hang, X.; Peng, Y.; Zhao, K. S.; Xiao, J. X. Effect of Headgroup Size on the Thermodynamic Properties of Micellization of Dodecyltrialkylammonium Bromides [J]. J. Chem. Eng. Data., [J].2011,56 (4):865-873.
    [25]Buckingham, S. A.; Garvey, C. J.; Warr, G. G. Effect of Head-Group Size on Micellization and Phase Behavior in Quaternary Ammonium Surfactant Systems [J]. J. Phys. Chem.,1993,97 (39):10236-10244.
    [26]Shi, L. J.; Li, N.; Yan, H.; Gao, Y. A.; Zheng, L. Q. Aggregation Behavior of Long-Chain N-Aryl Imidazolium Bromide in Aqueous Solution [J]. Langmuir, 2011,27(5):1618-1625.
    [27]Miki, K.; Westh, P.; Nishikawa, K.; Koga, Y. Effect of an "Ionic Liquid" Cation, 1-Butyl-3-methylimidazolium, on the Molecular Organization of H2O [J] J. Phys. Chem. B,2005,109 (18):9014-9019.
    [28]Brown, P.; Butts, C.; Dyer, R.; Eastoe, J.; Grill, I.; Guittard, F.; Rogers, S.; Heenan, R. Anionic Surfactants and Surfactant Ionic Liquids with Quaternary Ammonium Counterions [J]. Langmuir,2011,27 (8):4563-4571.
    [29]Mata, J.; Varade, D.; Bahadur, P. Aggregation behavior of quaternary salt based cationic surfactants [J]. Thermochim Acta.,2005,428 (1-2):147-155.
    [30]Hunt, P. A.; Kirchner, B.; Welton, T. Characterising the Electronic Structure of Ionic Liquids:An Examination of the 1-Butyl-3-Methylimidazolium Chloride Ion Pair [J]. Chem. Eur. J.,2006,12(26),6762-6775
    [31]Zhao, N.; Liu, L.; Biedermann, F.; Scherman, O. A. Binding Studies on CB[6] with a Series of 1-Alkyl-3-methylimidazolium Ionic Liquids in an Aqueous System [J]. Chem. Asian J.,2010,5(3):530-537
    [32]Rosen, M. J. Surfactants and Interfacial Phenomena, New York, Wiley 1989.
    [33]Dong, B.; Zhao, X. Y.; Zheng, L. Q.; Zhang, J.; Li, N.; Inoue, T. Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution: Micellization and characterization of micelle microenvironment [J]. Colloids Surf. A,2008,317(1-3):666-672.
    [34]Jaycock, M. J.; Parfitt, G. D. Chemistry of Interfaces; John Wiley and Sons:New York,1981.
    [35]Gentle, T. E.; Snow, S. A. Absorption of Small Silicone Polyether Surfactants at the Air/Water Surface [J]. Langmuir,1995, 11(8):2905-2910.
    [36]Rao, K. S.; Singh, T.; Trivedi, T. J.; Kumar, A. Aggregation Behavior of Amino Acid Ionic Liquid Surfactants in Aqueous Media [J]. J. Phys. Chem. B,2011,115 (47):13847-13853.
    [37]Tine-Martin, P.; Bester-Rogac, M. Thermodynamics of micelle formation of alkyltrimethylammonium chlorides from high performance electric conductivity measurements [J]. J. Colloid Interface Sci.,2007,313(1):288-295.
    [38]Mehta, S. K.; Bhasin, K. K.; Chauhan, R.; Dham, S. Effect of temperature on critical micelle concentration and thermodynamic behavior of dodecyldimethylethylammonium bromide and dodecyltrimethylammonium chloride in aqueous media [J]. Colloids Surf. A,2005,255(1-3):153-157.
    [39]Zhang, Q.; Gao, Z. N.; Xu, F.; Tai, S. X. Effect of hydrocarbon structure of the headgroup on the thermodynamic properties of micellization of cationic gemini surfactants:An electrical conductivity study [J]. J. Colloid Interface Sci.,2012, 371 (1):73-81.
    [40]Bhattacharya, S.; Haldar,J. Thermodynamics of micellization of multiheaded single-chain cationic suffactants [J]. Langmuir,2004,20(19):7940-7947.
    [41]Tsao, H. K. Countefion distribution enclosed in a cylinder and a sphere. [J]. J. Phys. Chem. B,1998,102(50):10243-10247.
    [42]Gonzalez-Perez, A.; Ruso, J. M.; Prieto, G.; Sarmiento, F. Self-Assembly of Sodium Heptafluorobutyrate in Aqueous Solution [J]. Colloids Surf. A,2004,249 (1):41-44.
    [43]Rozycka-Roszak, B. Micellization of some amphiphilic quaternary ammonium chlorides [J]. J. Colloid Interface Sci.,1990,140 (2):538-540.
    [44]Shimizu, S.; Pires, P. A. R.; Seoud, O. A. El. Thermodynamics of Micellization of Benzyl(2-acylaminoethyl)dimethylammonium Chloride Surfactants in Aqueous Solutions:A Conductivity and Titration Calorimetry Study [J]. Langmuir,2004,20 (22):9551-9559.
    [45]Olutas, E. B.; Aamis, M. Thermodynamic parameters of some partially fluorinated and hydrogenated amphiphilic enantiomers and their racemates in aqueous solution [J]. J. Chem. Thermodyna.,2012,47:144-153.
    [46]Tanford, C. The Hydrophobic Effect:Formation of Micelles and Biological Membranes; Wiley:New York,1980.
    [47]Blokzijl, W.; Engberts, J. B. F. N. Hydrophobic Effects Opinions and Facts [J]. Angew. Chem. Int. Ed.,1993,32 (11):1545-1579.
    [48]Frank, H. S.; Evans, M. W. Free Volume and Entropy in Condensed Systems.3. Entropy in Binary Liquid Mixtures; Partial Molal Entropy in Dilute Solutions; Structure and Thermodynamics in Aqueous Electrolytes [J]. J. Chem. Phys.,1945, 13(11):507-532.
    [49]Lin, Y. N.; Alexandridis, P. Cosolvent Effects on the Micellization of an Amphiphilic Siloxane Graft Copolymer in Aqueous Solutions [J]. Langmuir, 2002,18(11):4220-4231.
    [50]Kickelbick, G.; Bauer, J.; Huesing, N.; Andersson, M.; Holmberg, K. Aggregation Behavior of Short-Chain PDMS-b-PEO Diblock Copolymers in Aqueous Solutions [J]. Langmuir,2003,19(24):10073-10076.
    [51]Anthony,C. C.; Vijay, K.; Robert, N. J. Internal Hydrogen Bonding in Benzo[a]pyrene Diol and Diol Epoxide Metabolites [J]. J. Chem. Soc., Perkin Trans. II,1989:937-941.
    [52]Kalyanasundaram, K.; Thomas, J. K. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. [J]. J. Am. Chem. Soc.,1977,99(7):2039-2044
    [53]A. R. Jakob, H. Graeme, H. Bjork, Pyrene:Hydrogenation, hydrogen evolution, and π-band model, J. Chem. Phys.,2011,134 (16):164703-164712.
    [1]Churaev, N. V.; Esipova,N. E.; Hill, R. M.; Sobolev, V. D. Starov, V. M. Zorin, Z. M. The Superspreading Effect of Trisiloxane Surfactant Solutions [J]. Langmuir 2001,17(5),1338-1348
    [2]Wang, G. Y.; Qu, W. S.; Du, Z. P.; Cao, Q. Y.; Li, Q. X. Adsorption and Aggregation Behavior of Tetrasiloxane-Tailed Surfactants Containing Oligo(ethylene oxide) Methyl Ether and a Sugar Moiety [J]. J. Phys. Chem. B, 2011,115(14):3811-3818
    [3]Steven, D.; Vick, C. Structure/Property relationships for silicone polyalkyleneoxide copolymers and their effects on performance in cosmetics [J]. Soap/Cosmetics/Chemical Specialties,1984,60:36-45.
    [4]Ivanova, N.; Starova, V.; Rubiob, R.; Ritaccob, H.; Hilal, N.; Johnson, D.; Critical wetting concentrations of trisiloxane surfactants[J]. Colloids Surfaces A,2010, 354 (1-3) 143-148
    [5]Wu, Y. F.; Rosen, M. J. Superspreading of Trisiloxane Surfactant Mixtures on Hydrophobic Surfaces 2. Interaction and Spreading of Aqueous Trisiloxane Surfactant-N-Alkyl-Pyrrolidinone Mixtures in Contact with Polyethylene [J]. Langmuir 2002,18(6):2205-2215
    [6]Ruckenstein, E.; Superspreading:A possible mechanism [J]. Colloids Surfaces A, 2012,412:36-37
    [7]Bowers. J.; Butts, P.; Martin, J.; Vergara-Gutierrez, C.; Heenan, K. Aggregation behavior of aqueous solutions of ionic liquids [J]. Langmuir,2004,20(6): 2191-2198.
    [8]El Seoud, O. A.; Pires, P. A. R.; Abdel-Moghny, T.; Bastos, E. L. Synthesis and micellar properties of surface-active ionic liquids:1-alkyl-3-methylimidazolium chlorides [J]. J. Colloid Interf. Sci.,2007,313(1):296-304.
    [9]Blesic, M.; Marques, M. H.; Plechkova, N. V.; Seddon, K. R.; Rebelo, L. P. N.; Lopes, A. Self-aggregation of ionic liquids:micelle formation in aqueous solution [J]. Green Chem.,2007,9(5):481-490.
    [10]Headley, A. D.; Kotti, S. R. S. S.; Nam, J.; Li, K. Effect of hydrophobic side-chains on the solvation of imidazolium salts [J]. J. Phys. Org. Chem.,2005, 18(10):1018-1022.
    [11]Modaressi, A.; Sifaoui, H.; Mielcarz, M.; Domanska, U.; Rogalski, M. Influence of the molecular structure on the aggregation of imidazolium ionic liquids in aqueous solutions [J]. Colloids Surf., A,2007,302(1-3):181-185.
    [12]Luczaka, J.; Hupkaa, J.; Thoming, J.; Jungnickel, C. Self-organization of imidazolium ionic liquids in aqueous solution [J]. Colloids Surf. A,2008,329(3): 125-133.
    [13]Zhao, Y.; Gao, S. J.; Wang, J. J.; Tang, J. M. Aggregation of ionic liquids [Cnmim]Br (n=4,6,8,10,12) in D2O:a NMR study [J]. J. Phys. Chem. B,2008, 112(7):2031-2039.
    [14]Galgano, P. D.; El Seoud, O. A. Micellar properties of surface active ionic liquids: a comparison of 1-hexadecyl-3-methylimidazolium chloride with structurally related cationic surfactants [J]. J Colloid Interf. Sci.,2010,345(1):1-11.
    [15]Goodchild, I.; Collier, L.; Millar, S. L.; Prokes, I.; Lord, J. C. D.; Butts, C. P. B.; Bowers, J.; Webster, J. R. P.; Heenan, R. K. Structural studies of the phase, aggregation and surface behaviour of 1-alkyl-3-methylimidazolium halide+ water mixtures [J]. J. Colloid Interf. Sci.,2007,307(2):455-468.
    [16]Dong, B.; Li, N.; Zheng, L. Q.; Yu, L.; Inoue, T. Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution [J]. Langmuir,2007, 23(8):41784182.
    [17]Dong, B.; Li, N.; Zheng, L. Q.; Yu, L.; Inoue, T. Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution [J]. Langmuir,2007, 23(8):4178-4182.
    [18]Dong, B.; Zhao, X. Y.; Zheng, L. Q.; Zhang, J.; Li, N.; Inoue, T. Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution: Micellization and characterization of micelle microenvironment [J]. Colloids Surf. A,2008,317(1-3):666-672.
    [19]Singh, T.; Kumar, A. Aggregation behavior of ionic liquids in aqueous solutions: effect of alkyl chain length, cations, and anions [J]. J. Phys. Chem. B,2007, 111(27):7843-7851.
    [20]Soni, S. S.; Sastry, N. V.; Aswal, V. K.; Goyal, P. S. Micellar Structure of Silicone Surfactants in Water from Surface Activity, SANS and Viscosity Studies [J]. J. Phys. Chem. B,2002,106,2606-2617
    [21]Schmaucks, G.; Sonnek, G.; Wustneck, M.; Ramm, M. Effect of siloxanyl groups on the interfacial behavior of quaternary ammonium compounds [J]. Langmuir, 1992,8(7):1724-1730
    [22]Schwarz EG., Reid WG. Surface Active Agents-Their Behavior and Industrial Use [J]. Ind. Eng. Chem.,1964,56(9):26-31.
    [23]Zhang, S. H.; Yan, H.; Zhao, M. W.; Zheng, L. Q. Aggregation behavior of gemini pyrrolidine-based ionic liquids 1, 1'-(butane-1,4-diyl)bis(1-alkylpyrrolidinium) bromide ([Cnpy-4-Cnpy][Br2]) in aqueous solution [J]. J. Colloid Interf. Sci.,2012,372(1):52-57
    [24]Brown, P.; Butts, C.; Dyer, R.; Eastoe, J.; Grill, I.; Guittard, F.; Rogers, S. Anionic Surfactants and Surfactant Ionic Liquids with Quaternary Ammonium Counterions [J]. Langmuir,2011,27(3):4563-4571
    [25]Mata, J.; Varade, D.; Bahadur, P. Aggregation behavior of quaternary salt based cationic surfactants [J]. Thermochim. Acta.,2005,428(1-2):147-155
    [26]Snow, S. A.; Fenton, W. N.; Owen, M. J. Zwitterionic organofunctional siloxanes as aqueous surfactants:synthesis and characterization of betaine functional siloxanes and their comparison to sulfobetaine functional siloxanes [J]. Langmuir,1991,7(5):868-871
    [27]Jaycock, M. J.; Parfitt, G. D. Chemistry of Interfaces [M].1981, John Wiley and Sons:New York
    [28]Shi, L. J.; Li, N.; Yan, H.; Gao, Y. A.; Zheng, L. Q. Aggregation Behavior of Long-Chain N-Aryl Imidazolium Bromide in Aqueous Solution [J]. Langmuir, 2011,27(5):1618-1625
    [29]Rosen, M. J. Surfactants and Interfacial Phenomena [M].1989, New York
    [30]Rao, K. S.; Singh, T.; Trivedi, T. J.; Kumar, A. Aggregation Behavior of Amino Acid Ionic Liquid Surfactants in Aqueous Media [J]. J Phys. Chem. B,2011, 115(47):13847-13853
    [31]Zhang, Q.; Gao, Z. N.; Xu, F. S.; Tai, X. J. Effect of hydrocarbon structure of the headgroup on the thermodynamic properties of micellization of cationic gemini surfactants:An electrical conductivity study [J].2012, J. Colloid Interf. Sci., 2012,371(1):73-81
    [32]Tsubone, K.; Arakawa, Y.; Rosen, M. J. Structural effects on surface and micellar properties of alkanediyl-alpha, omega-bis(sodium N-acyl-beta-alaninate) gemini surfactants [J]. J. Colloid Interface Sci.,2003,262(2):516-524
    [33]Hang, X.; Peng, Y.; Zhao, K. S.; Xiao, J. X. Effect of Headgroup Size on the Thermodynamic Properties of Micellization of Dodecyltrialkylammonium Bromides[J]. J. Chem. Eng. Data.,2011,56(4):865-873
    [34]Gonzalez-Perez, A.; Ruso, J. M.; Prieto, G.; Sarmiento, F. Self-assembly of sodium heptafluorobutyrate in aqueous solution [J]. Colloids Surf. A,2004, 249(3):41-44
    [35]Shimizu, S.; Pires, P. A. R.; El Seoud, O. A. Thermodynamics of Micellization of Benzyl(2-acylaminoethyl)dimethylammonium Chloride Surfactants in Aqueous Solutions:A Conductivity and Titration Calorimetry Study [J]. Langmuir,2004,20(22):9551-9559
    [36]Olutas, E. B.; Aamis, M. Thermodynamic parameters of some partially fluorinated and hydrogenated amphiphilic enantiomers and their racemates in aqueous solution [J]. J. Chem. Thermodyna.2012,47,144-153
    [37]Tine-Martin, P.; Bester-Rogac, M. J. Thermodynamics of micelle formation of alkyltrimethylammonium chlorides from high performance electric conductivity measurements [J]. J. Colloid Interf. Sci.,2007,313(1):288-295
    [38]Nusselder, J. J. H.; Engerts, J. B. F. N. Toward a better understanding of the driving force for micelle formation and micellar growth [J]. J. Colloid Interface Sci.,1992,148(2):353-361
    [39]Blokzijl, W.; Engberts, J. B. F. N. Hydrophobic Effects. Opinions and Facts [J]. Angew. Chem. Int. Ed.,1993,32(11):1545-1579.
    [40]Frank, H. S.; Evans, M. W. Free Volume and Entropy in Condensed Systems III. Entropy in Binary Liquid Mixtures; Partial Molal Entropy in Dilute Solutions; Structure and Thermodynamics in Aqueous Electrolytes [J]. J. Chem. Phys.1945, 13(11):507-532
    [41]Rozycka-Roszak, B. Micellization of some amphiphilic quaternary ammonium chlorides[J]. J. Colloid Interface Sci.,1990,140(2):538-540
    [42]Connelly, P. R.; Thomson, J. A. Heat capacity changes and hydrophobic interactions in the binding of FK506 and rapamycin to the FK506 binding protein [J]. Proc. Natl. Acad. Sci.,1992,89(11):4781-4785
    [43]Kresheck, G. C. Isothermal titration calorimetry studies of neutral salt effects on the thermodynamics of micelle formation [J]. J. Phys. Chem. B, 113(19):6732-6735
    [44]Chen, L. J.; Sheu, Y. H.; Li, P. J. Heat capacity changes accompanying micelle formation upon burial of hydrophobic tail of nonionic surfactants [J]. J. Phys. Chem. B,2004,108(50):19096-19098
    [45]Varade, D.; Joshi, T.; Aswal, V. K.; Goyal, P. S.; Hassan, P.A.; Bahadur, P. Effect of salt on the micelles of cetylpyridinium chloride[J]. Colloids Surf. A 2005, 259(1-3):95-101.
    [46]Borwankar, R. P.; Wasan, D. T. Equilibrium and dynamics of adsorption of surfactants at fluid-fluid interfaces [J]. Chem. Eng. Sci.,1988,43(6):1323-1337.
    [47]Feitosa, E.; Brazolin, M. R.; Naal, R. M.; Del Lama, M. P.; Lopes, J. R.; Loh, W.; Vasilescu, M. Structural organization of cetyltrimethylammonium sulfate in aqueous solution:The effect of Na2SO4 [J]. J. Colloid Interface. Sci.,2006, 299(2):883-889.
    [48]Benrraou, M.; Bales, B. L.; Zana, R. Effect of the Nature of the Counterion on the Properties of Anionic Surfactants.1. Cmc, Ionization Degree at the Cmc and Aggregation Number of Micelles of Sodium, Cesium, Tetramethylammonium, Tetraethylammonium, Tetrapropylammonium, and Tetrabutylammonium Dodecyl Sulfates [J]. J. Phys. Chem. B,2003,107(48):13432-13440.
    [49]Aswal, V. K.; Goyal, P. S. Counterions in the growth of ionic micelles in aqueous electrolyte solutions:A small-angle neutron scattering study[J]. Phys. Rev. E2000, 61,2947-2953.
    [50]Kumar, B.; Tikariha, D.; Ghosh, K. K. Effects of Electrolytes on Micellar and Surface Properties of Some Monomeric Surfactants[J]. J. Disper. Sci. Technol. 2012,33(2):265-271.
    [51]Prosser, A. J.; Franses, E. I. Adsorption and surface tension of ionic surfactants at the air-water interface:review and evaluation of equilibrium models[J]. Colloids Surf.A.2001,178(1-3):1-40.
    [1]Peter, W.; Thomas, W. Ionic Liquids in Synthesis. John Wiley and Sons:New York, 2008
    [2]李汝雄.绿色溶剂—离子液体的合成与应用[M].北京:化学工业出版社,2004.
    [3]Vestergaard, B.; Bjerrum, N. J.; Pertrushina, I.; Hjuler, H. A.; Berg, R. W.; Begtrup, M. Molten triazolium chloride systems as new aluminum battery electrolytes [J]. J. Electrochem. Soc.,1993,140(11):3108-3113.
    [4]Mamantov, G. J. C.; Dunstan, T. D. J. Low temperature molten salt compositions containing fluoro-pyrazolium salts [P]. US Patent:5552241,1996.
    [5]Yousel, R.; Shreeve, J. M. Syntheses of 1-alkyl-1,2,4-triazoles and the formation of quaternary 1-alkyl-4-polyfluoroalkyl-1,2,4-triazolium salts leading to ionic liquids [J]. J. Org. Chem.,2002,67(26):9340-9345.
    [6]Rogers, R. D.; Seddon, K. R. Ionic liquids--solvents of the future? [J]. Science, 2003,302(5646):792-793.
    [7]Greaves, T. L.; Drummond, C. J. Protic ionic liquids:properties and applications [J]. Chem. Rev.,2008,108(1):206-237.
    [8]Kouwer, P. H. J.; Swager, T. M. Synthesis and mesomorphic properties of rigid-core ionic liquid crystals [J]. J. Am. Chem. Soc.,2007,129(45): 14042-14052.
    [9]Ahrens, S.; Peritz, A.; Strassner, T. Tunable aryl alkyl ionic liquids (TAAILs):the next generation of ionic liquids [J]. Angew. Chem. Int. Ed.,2009,48(42): 7908-7910.
    [10]Bowers, J.; Butts, C. P.; Martin P. J.; Vergara-Gutierrez, M. C. Aggregation Behavior of Aqueous Solutions of Ionic Liquids [J]. Langmuir,2004,20(6): 2191-2198.
    [11]Goodchild, I.; Collier, L.; Millar, S. L.; Prokes, I.; Lord, J. C. D.; Butts, C. P.; Bowers, J.; Webster, J. R. P.; Heenan, R. K. Structural studies of the phase, aggregation and surface behaviour of 1-alkyl-3-methylimidazolium halide+ water mixtures [J]. J. Colloid Interface Sci.,2007,307(2):455-468.
    [12]Wang, J. J.; Wang, H. Y.; Zhang, S. L.; Zhang, H. C.; Zhao, Y. Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C4mim][BF4] and [Cnmim]Br (n= 4,6,8,10,12) in aqueous solutions [J]. J. Phys. Chem. B, 2007,111(22):6181-6188.
    [13]S. Hideaki, W. Edward, J. Castner. Why Are Viscosities Lower for Ionic Liquids with -CH2Si(CH3)3 vs-CH2C(CH3)3 Substitutions on the Imidazolium Cations? [J]. J. Phys. Chem. B 2005,109(46):21576-21585
    [14]Li, H.; Ibrahim, M.; Agneremi, I.; Kobrak, M. N. The relationship between ionic structure and viscosity in room-temperature ionic liquids[J]. J. Chem. Phys., 2008,129(12):124507-124518
    [15]Chung, S. H.; Richard, L.; Steven, GG; Shirota, H.; Castner Jr, E. W.; Wishart, J. Nuclear Magnetic Resonance Study of the Dynamics of Imidazolium Ionic Liquids with -CH2Si(CH3)3 vs-CH2C(CH3)3 Substituents[J]. J. Phys. Chem. B, 2007,111(18):4885-4893
    [16]Cao, Y.; Du, Z. P.; Wang, G. Y. Synthesis and surface activity of trisiloxane-based imidazolimn ionic liquid surfactant [J]. China Surfactant Detergent Cosmetics, 2011,41(6):391-394
    [17]Cao, Y.; Du, Z. P.; Wang, G. Y Synthesis and characterization of trisiloxane-based pyridinium ionic Uquid surfactant [J]. Textile Auxiuaries,2012, 29(4):12-15
    [18]Galgano, P. D.; Seoud, O. A. El. Surface active ionic liquids:study of the micellar properties of 1-(1-alkyl)-3-methylimidazolium chlorides and comparison with structurally related surfactants [J]. J. Colloid Interface Sci.,2011, 361(1):186-194.
    [19]Zhao, M. W.; Zheng, L. Q. Micelle formation by N-alkyl-N-methylpyrrolidinium bromide in aqueous solution[J]. Phys. Chem. Chem. Phys.,2011, 13(4):1332-1337.
    [20]Bowers. J.; Butts, P.; Martin, J.; Vergara-Gutierrez, C.; Heenan, K. Aggregation behavior of aqueous solutions of ionic liquids [J]. Langmuir,2004,20(6): 2191-2198.
    [21]Wang, H. Y.; Wang, J. J.; Zhang, S. B.; Xuan, X. P. Structural effects of anions and cations on the aggregation behavior of ionic liquids in aqueous solutions [J]. J. Phys. Chem. B,2008,112(51):16682-16689.
    [22]Perger, T. M.; Bester-Rogac, M. Thermodynamics of micelle formation of alkyltrimethylammonium chlorides from high performance electric conductivity measurements[J]. J. Colloid Interface Sci.2007,313(1):288-295.
    [23]Manet, S.; Karpichev, Y.; Bassani, D.; Kiagus-Ahmad, R.; Oda, R. Counteranion effect on micellization of cationic gemini surfactants 14-2-14:Hofmeister and other counterions [J] Langmuir,2010,26(13):10645-10656.
    [24]Baker, G A.; Pandey, S.; Pandey, S.; Baker, S. N. A new class of cationic surfactants inspired by N-alkyl-N-methyl pyrrolidinium ionic liquids[J]. Analyst, 2004,129(10):890-892.
    [25]Zhang, S. H.; Yan, H.; Zhao, M. W.; Zheng, L. Q. Aggregation behavior of gemini pyrrolidine-based ionic liquids 1,1'-(butane-1,4-diyl)bis(1-alkylpyrrolidinium) bromide ([C(n)py-4-C(n)py] [Br2]) in aqueous solution [J]. J. Colloid Interface Sci.,2012,372(l):52-57.
    [26]Brown, P.; Butts, C.; Dyer, R.; Eastoe, J. I.; Grillo, I.; Rogers, S.; Heenan, R. Anionic surfactants and surfactant ionic liquids with quaternary ammonium counterions [J]. Langmuir,2011,27(8):4563-4571.
    [27]M. J. Rosen, Surfactants and Interfacial Phenomena, New York, Wiley,1989.
    [28]Sastry, N. V.; Vaghela, N. M.; Macwan, P. M.; Soni, S. S.; Aswal, V. K.; Gibaud, A. Aggregation behavior of pyridinium based ionic liquids in water--surface tension,1H NMR chemical shifts, SANS and SAXS measurements[J]. J.Colloid Interface Sci., [J].2012,371(1):52-61.
    [29]Cai, B.; Li, X. F.; Yang, Y.; Dong, J. F. Surface properties of Gemini surfactants with pyrrolidinium head groups [J]. J. Colloid Interface Sci.,2012,370(1): 111-116.
    [30]Singh, T.; Kumar, A. Aggregation behavior of ionic liquids in aqueous solutions: effect of alkyl chain length, cations, and anions [J]. J. Phys. Chem. B,2007, 111(27):7843-7851.
    [31]Anouti, M.; Jones, J.; Boisset, A.; Jacquemin, J.; Caillon-Caravanier, M.; Lemordant, D. J. Aggregation behavior in water of new imidazolium and pyrrolidinium alkycarboxylates protic ionic liquids [J]. J.Colloid Interface Sci., 2009,340(1):104-111.
    [32]Dong, B.; Li, N.; Zheng, L. Q.; Yu, L.; Inoue, T. Surface Adsorption and Micelle Formation of Surface Active Ionic Liquids in Aqueous Solution [J]. Langmuir, 2007,23(8):4178-4182.
    [33]M. J. Jaycock, G. D. Parfitt, Chemistry of Interfaces, John Wiley and Sons:New York,1981.
    [34]Nusselder, J. J. H.; Engerts, J. B. F. N. Toward a better understanding of the driving force for micelle formation and micellar growth[J]. J. Colloid Interface Sci.,1992,148(2):353-361.
    [35]Chen, L. J.; Shen, Y. H.; Li, P. J. Heat Capacity Changes Accompanying Micelle Formation upon Burial of Hydrophobic Tail of Nonionic Surfactants [J]. J. Phys. Chem. B,2004,108(50):19096-19098.
    [36]Miskolczy, Z.; SeboK-Nagy, K.; Biczok, L.; Goktuk, S. Aggregation and micelle formation of ionic liquids in aqueous solution [J]. Chem. Phys. Lett.,2004, 400(4-6):296-300.
    [37]Camboa, C.; Rios, H.;Sepiilveda, L.Effect of the nature of counterions on the sphere-to-rod transition in cetyltrimethylammonium micelles [J]. J. Phys. Chem., 1989,93(14):5540-5543.
    [38]Wang, G Y.; Qu, W. S.; Du, Z. P.; Cao, Q. Y.; Li, Q. X. Adsorption and Aggregation Behavior of Tetrasiloxane-Tailed Surfactants Containing Oligo(ethylene oxide) Methyl Ether and a Sugar Moiety [J]. J Phys Chem B, 2011,115(14):3811-3818.
    [39]王慧勇.离子液体在溶液中的簇集行为研究[D].河南师范大学.2010
    [40]Sonia, S. S.; Panjabi, S. H.; Sastrya, N.V. Effect of non-electrolyte additives on micellization and clouding behavior of silicone surfactant in aqueous solutions [J]. Colloid Surfaces A,2011,377 (1):205-211.
    [41]Vaghelaa, N. M.; Sastrya, N. V.; Aswal, V. K. Effect of additives on the surface active and morphological features of 1-octyl-3-methylimidazolium halide aggregates in aqueous media [J]. Colloid Surfaces A,2011,373 (1-3):101-109.
    [42]Feitosa, E.; Brazolin, M. R.S.; Naal, R. M. Z. G.; Lopes, J. R.; Loh, W.; Vasilescu, M. Structural organization of cetyltrimethylammonium sulfate in aqueous solution:The effect of Na2SO4 [J]. J. Colloid Interface Sci.,2006, 299(2):883-889.
    [43]Aswal, V. K.; Goyal, P. S. Counterions in the growth of ionic micelles in aqueous electrolyte solutions:A small-angle neutron scattering study [J]. Phys. Rev. E, 2000,61(3):2947-2953.
    [44]Kumar, B.; Tikariha, D.; Ghosh, K. K. Effects of Electrolytes on Micellar and Surface Properties of Some Monomeric Surfactants[J]. J. Disper. Sci. Technol. 2012,33(2):265-271.
    [45]Prosser, A. J.; Franses, E. I. Adsorption and surface tension of ionic surfactants at the air-water interface:review and evaluation of equilibrium models[J]. Colloids Surf. A.2001,178(1-3):1-40.
    [46]Dong, B.; Zhao, X. Y.; Zheng, L. Q.; Zhang, J.; Li, N.; Inoue, T. Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution: Micellization and characterization of micelle microenvironment [J]. Colloids Surf. A,2008,317(1-3):666-672.