新型能量变换与控制技术在高功率微波系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电源(初级能源系统)是高功率微波系统的必备环节,能量变换与控制技术是电源的核心技术,为了满足高功率微波系统朝着高功率,小型化和轻量化方向发展的需求,开展新型能量变换与控制技术的研究是必要的。
     目前普遍使用的电源一般采用存在中间直流储能环节(DC-Link)的电源技术,中间储能环节的存在必然会增加电源系统的体积和重量,降低了电源的功率密度;另外这种供电系统的供电质量不高,其功率因数较低、谐波含量较大,为了进行校正或抑制,必然需要引入额外的电力电子器件,这样又进一步降低了供电系统的功率密度。为了解决这一问题,研究基于新型能量变换与控制技术的电源,提高高功率微波系统供电电源的功率密度和降低谐波就变得尤为重要。国外提出了基于AC-Link技术的能量变换与控制技术,AC-Link技术在结构上省去了直流储能环节,减少了能量变换的过程和整流部分无源器件的数量,有效提高了开关电源的功率密度和效率。因此AC-Link技术在开关电源中的应用是一项非常有潜力的电源技术,具有较好的应用前景,必将推动电源技术的进一步的发展。
     本文综述了能量变换与控制技术研究现状和发展趋势,详细分析了能量变换与控制技术的发展历程,重点分析了AC-LinkTM技术和矩阵变换器(Matrix converter)相关技术的发展。
     围绕应用于高功率微波系统中的高压充电电源系统展开工作,首先对AC-LinkTM串联谐振交-直(AC-DC)变换器和AC-DC巨阵变换器的拓扑结构及控制技术进行了详细的分析。AC-LinkTM串联谐振AC-DC变换器由三相输入滤波器、开关矩阵、电感和电容(LC)谐振充电和放电、续流开关、输出滤波器和负载组成。该拓扑结构具有故障免疫的功能。变换器在一个工作周期包含谐振充电和谐振放电两个工作环节,整个工作过程中关键是控制开关自然换流时间。可以通过调节中心电容器的残压和频率来调节输出功率。由于负载为电容,该电路结构在工作时存在一些缺陷,对该电路拓扑结构进行了优化,使得其更适用于电容负载场合。充电初期,为恒流充电模式,在充电后期可以采用恒功率充电模式,降低了电源对供电系统功率容量的要求。但无论改进前还是改进后的拓扑结构都存在输出放电开关和续流开关电压应力大的问题。
     AC-DC矩阵变换器采用双向开关和并联谐振拓扑结构,实现零电流开关,采用输入预测控制和谐振电路预测控制两种控制方式。输入预测控制维持输入功率恒定,在低Q值时,预测值不再精确且控制策略的性能降低。谐振电路预测控制根据谐振电路运行的结果来选择开关状态,基本的控制策略会导致输入电流低频畸变非常严重,改进的控制策略通过存储以前的开关状态,且分配不同的开关状态来实现。输入预测控制需要采集三相交流相电压,输入线电流和谐振电流的大小,而谐振电路预测控制需要采集三相交流相电压,谐振电流和谐振电容器电压,为了维持输出电压的稳定,需要采集负载电压。两种控制需采集的变量较多,数据处理量较大,需要使用FPGA+DSP两种处理器相结合方式,使得控制器设计和算法较复杂。
     鉴于以上两种拓扑结构和控制技术的优点和不足,根据负载为容性的应用需求,提出一种基于AC-Link技术的新型电路拓扑结构。采用了电荷(电流)分配的控制策略,减少了电源产生的谐波,降低了滤波器设计的难度。根据该电源的特性,提出了4工作过程和3工作过程2种工作模式,对2种工作模式建立分析模型,并给出2种工作模式下控制方程,分析表明:4工作过程,滤波电容器上纹波电压小,但在高输出电压时,不能对电源实现有效的控制;3工作过程简化了一个工作过程,但滤波电容器电压纹波较大。针对3工作过程提出了一种简化的控制方程。对两种控制方法进行了比较,简化的控制方程简单而有效。最后对两种工作模式的优缺点进行了定性的比较,最后选定3工作过程的工作模式。
     首次利用状态平面分析法(State-plane analysis)对基于AC-Link技术串联谐振充电电源两种工作模式进行了详细的分析。画出了两种工作模式的状态平面图,在状态平面图上,标出各个量的几何关系,利用几何关系,并结合控制策略,求解出工作时控制量的关系,给出了切换相位、充电周期、续流周期和谐振电容器电压随输出电压和三相电网相位变化的关系。对于4工作过程,分析了输出电压的限制条件并给出限制条件的表达式。相对于基于表达式的稳态分析方法,状态平面分析法在分析基于AC-Link技术串联谐振充电电源的特性时,分析结果一致,各个量在图上都用几何关系表示,非常直观。整个分析过程没有复杂的表达式,求解简单,效率高。
     应用Matlab中的Simulink电路仿真软件,根据实际线路的参数,建立了基于AC-Link技术串联谐振充电电源的仿真模型,采用3过程的工作模式。给出了主要元器件和端口的波形图,并进行了简要的分析。重点研究了“Y”型LC滤波器,给出电压纹波和电流纹波的表达式,分析了L和C参数的变化对电压纹波、电流纹波、电流谐波和功率因数等影响。最后分析C型吸收电路设计原则和对基于AC-Link技术串联谐振充电电源工作的影响。
     根据对基于AC-Link技术充电电源理论分析、建模仿真的基础上,设计了一台充电速率为60kJ/s,输出电压为50kV的样机。在控制系统中包括硬件设计和软件设计,在硬件设计中,分析了以FPGA为核心的控制方案,由于电源的功率大,且布局非常紧凑,使得控制系统的电磁兼容环境差,因而详细论述整个控制系统的各个部分的抗干扰设计。在软件设计中,提出了相位检测实现电压采集的方法,详细讨论相位检测的方法,减小处理器的存储空间,加快了处理的速度。
     论文最后利用设计的高压充电电源开展实验研究,验证理论分析和仿真研究的正确性。分别对三相电网电压数字化信号,IGBT驱动信号,输入线电流,开关电流,谐振电流和输出电压等进行了测试和分析。实验结果表明:控制系统能够在该电磁环境中可靠稳定地运行。电源平均充电速率为65kJ/s,功率密度为0.6W/cm3;电流波形能够很好地跟随电压波形,实现高的功率因数,功率因数测量平均值为0.99,每相总的电压谐波含量小于2%,总电流谐波含量小于10%;矩阵开关工作在软开关条件下,且实现软切换过程,能够实现高的效率,在阻性测试条件下,效率为90%。分析了线电流波形顶部坍塌及交界点跳变的原因,通过线性补偿的算法,明显改善了线电流波形,但同时也降低了电源输出功率。
Power supply is the basic element of high power microwave systems, and power conversion and control method is what lies at the heart of power supply technology. Investigations of novel power conversion and control method are necessary to meet the developments of high power microwave systems towards high power, compact volume and light weight direction.
     Power supplies have DC-Link in general use, which consists of bulky electrolytic capacitors with heavy weight and great volume. Power density of supplies reduces due to these capacitors. In addition, input power quality of power condition systems is low with high harmonic current. Power factor correction circuit must be inserted to overcome the problem. This reduces the power density furthermore. Therefore, the significance of research on the supplies basing novel power conversion and control method to improve the power density become obvious. AC-Link based converter has high efficiency, high power density, and high reliability without bulky DC-Link component. It can provide high input power quality with sinusoidal input current, adjustable input power factor, and regeneration capability, and it's very attractive in areas where volume, efficiency and reliability are of importance.
     This paper summarizes the present status and trend in development of power conversion and control method analysis the power conversion and control method process history in detail. Drawbacks of DC-Link technology are generalized, and the focal point is the technology related to AC-LinkTM and matrix converter.
     The study work is undertaken around high voltage capacitor charging power supply (CCPS). First, Topological structure and control method related to AC-LinkTM series resonant AC-DC converter and AC-DC matrix converter are discussed in detail. AC-LinkTM series resonant AC-DC converter made up of AC input filter, switch matrix, LC resonant charge and discharge circuit, free-wheel switch and output filter. Fault-immune operation and natural fault current limiting (zero-current turn off, no PWM shoot-through) can be achieved. In the AC-LinkTM converter, current is moved from the input to the output by rapidly transferring small packets of charge, one at a time. This transfer is accomplished by charging up a central capacitor with current from the input phases, then fully discharging the central capacitor into the output phases. By controlling the amounts of charge taken from each phase, the current on each of the three inputs can be precisely controlled. The power throughput can be controlled in two ways, through the adjustment of the inverter frequency and through the residual voltage control. The shortage is exposed when charging capacitive load, so development of structure is processed to meet the capacitive load. Using new structure, constant current mode will be chosen when load voltage is low, and constant power mode is inserted when load voltage exceeds a level. Power capacitance delivered to CCPS can be reduced with this mode, but high voltage stress of output and free-wheel switch can not neglected.
     Bidirectional switch and parallel resonant structure are adopted in the studied AC-DC matrix converter, and zero-current switch is achieved. Two control approaches are applied, the first control approach considered was the use of a predictive input controller, such as that to control, directly, the real and reactive components of the input filter variables (voltage/current). This is achieved by predicting the effect that the application of each switching state will have on the input filter variables for each half cycle of resonant operation. However, it was found that this control approach could not maintain sufficient control of the resonant tank to produce the required specification of output voltage unless the Q factor of the resonant circuit was high. Consequently, a new predictive control approach was required. The principle of the predictive tank controller is to switch the converter to maintain a closely regulated operation of the resonant tank, rather than maintain the input power quality, as was the case with the predictive input controller. Unfortunately, this basic algorithm leads to a poor input current waveform with low frequency distortion. The proposed solution to improve the input line current is to prevent the controller from applying the same line voltage for more than one cycle at a time. This can be achieved by storing the previous switching state of the converter in the controller, and assigning its opposing state a high error in the cost function. The predictive input controller is implemented by sampling the sign of voltage across input filter capacitor, input line current and resonant inductor current, and the predictive tank controller is based on the sign of the voltage across the input filter capacitor, resonant inductor current and voltage across the resonant capacitor, moreover, to keep output constant load voltage must be detected. More variables lead to complex data-processing. An FPGA together with DSP platform is used to execute real time data processing. This leads to complex design of controller.
     Taking capacitor load into account, a novel AC-Link topological structure is proposed considering the shortages and merits of these two structures as before stated. By controlling the amounts of charge taken from each phase, the current on each of the three inputs can be precisely controlled. Four process mode and three process mode are presented according to the characteristic of the power supply. These expressions of inductor current, the voltage across resonant capacitor and charge from input phases in every process are solved by analytic model building, and controller equation is presented also. The research results indicate that effective control can not be implemented when load voltage goes high, even though low ripple arcoss the input filter capacitor is get in four process mode. The controlling complexity will be dropped in three process mode, but higher ripple arcoss the input filter capacitor happens. We choose three process modes in response to qualitative comparison result. A simplified controlling equation is put forward, and it is effective after compared with mentioned modes before.
     State-plane analysis is first introduced into the analysis of series resonant AC-Link CCPS. State-plane diagram shows the geometrical relationship between different variables depicted in the paper. Controlled variable can be solved making use of the corresponding control strategy in the state-plane diagram, and the relationships between switch phase, charging period, free-wheel period, voltage across the resonant capacitor and output voltage, input AC voltage show. Limit terms of the output voltage is analysed at the end of the chapter, and corresponding expressions are deduced. State-plane analysis was found to be a simple, yet powerful method which can clearly portray the steady-state and transient operation of resonant converters. The anomalous sequences of conduction observed often in practical systems can be easily explained with the aid of the state plane. Also, the properties of control of resonant converters can be better understood and their relative merits and demerits assessed. Significantly the state plane directly indicates the resonant tank energy level at which the system is operating. Hence, the ability of a control method to keep tank energy levels within bounds under transient conditions can be evaluated with state-plane analysis.
     Simulation model of series resonant AC-Link CCPS with simulink is established. Firstly, waveforms of major devices and ports show with three process mode, and analysis project are done. Secondly, this chapter is focus on the "Y" model LC filter. Voltage ripple across the filter capacitors and ripple of input line current are got. It have an effect on voltage ripple, current ripple, current harmonic and power factor when parameters L and C change, and the influence is studied. In the end, design principle and influence of "C" model snubber circuit on the performance of the series resonant AC-Link CCPS are analyzed.
     Design and implementation of a60kJ/s capacitor charging power supply with output voltage50kV is described, basing on the theoretical, simulating and experimental research of AC-Link technology. Designing details of the power supply were reported, which consists of EMI filter, matrix switch, LC resonant bank and high frequency transformer. To take FPGA control chip as the core, hardware and software part of the controller has developed. In the hardware design part, electro-magnetic compatible problems happen because of high output power and compact packaging, so interference-free design of different parts is represented in detail. In the software design, a new phase voltage detecting method using phase measuring is put forward, and phase measuring technique is discussed in detail, which reduces the storage memory and accelerates the process speed of controller.
     Experiments are implemented, digital signal of grid voltages, IGBT driver signal, input line current, switch current, resonant current and output voltage were tested. The experiment results show:reliability and stabilization of control systems are performed in the working electro-magnetic compatible environment.The average charging rate is60kJ/s, and a higher power density of above0.60W/cm3is achieved with the CCPS, by utilizing various technologies on AC-Link topology and proper packaging. Power factor is0.99with input line current waveforms following the input phase voltage. Total voltage harmonic is below2%, and total current harmonic is below10%. High efficiency can be achieved with soft switch and natural commutation utilized, which is0.90with resistive load. By analyzing the reason that input line current waveforms distort, a linear compensation algorithm is proposed. It improves the distortion of the input line current waveform obviously, but output power drops at the same time.
引文
[1]James Benford and John Swgle. High power microwave [M], Artech House, Inc., Norwood,1992.
    [2]J.B.Robert, S.Edl. High-power microwave sources and technologies. New York:The Institute of Electrical and Electronics Engineer, Inc.,2001.
    [3]Robert J. Barker and Edl Schamiloglu. High-power microwave sources and technologies [M]. IEEE press series on RF and microwave technology,2001.
    [4]S.T.Pai and Q.Zhang. Introduction to high power pulse technology. Singapore:World Scientific Publishing Co.Ltd,1995.
    [5]刘盛纲.相对论电子学.北京:科学出版社,1987.
    [6]H.Mark and B.Chakraborty. Principles of plasma mechanics. Wiley Eastern Limited,1978.
    [7]J.A.Swegle, J.W. Poukey and G.T.Leifeste. Backward wave oscillators with rippled wall resonators: analytic theory and numerical simulation. Phys. Fluids.1985,28(9):2882.
    [8]L.Baruch, M.A.Thomas, N.V.Alexander, et al. High-efficiency relativistic BWO:theory and design. IEEE Trans. Plasma Sci.1996,24(3):843.
    [9]D.Shiffler, J.A.Nation, G.S.Kerslick. A high-power traveling wave tube amplifier, IEEE Trans. Plasma Sci.1990,18(3):546.
    [10]舒挺.多波切伦柯夫振荡器的研究.博士学位论文,长沙:国防科技大学,1998.
    [11]Lemake R W, Calio S E, Clark M C. Investigation of a load-limited, magnetically insulated transmission line oscillator (MILO) [J]. IEEE Trans Plasma Sci,1997,25:364-374.
    [12]H.Mark. Beam Weapons Revolution-Directed-Energy Weapons Point the Way for Battlefield Technology. Janes International Defense Review,2000(8):34.
    [13]G Cooperstein. Status of particle beam and pulsed power research in the US. Proceeding of Beams 2002. Edited by T.A. Mehlhorn and M.A.Sweeney, Albuquerque UM USA,2002,3.
    [14]M. Gundersen, J. Dickens, W. Nunnally. Compact, portable pulsed power:Physics and applications[C]. IEEE Pulsed Power Conf.2003:9-12.
    [15]M. Kristiansen. Pulsed power applications[C]. IEEE Pulsed Power Conf.1993:6-10.
    [16]M. Souda, F. Endo, C. Yamazaki, et al. Development of high power capacitor charging power supply for pulsed power applications[C]. IEEE Pulsed Power Conf.1999:1414-1416.
    [17]M. M. McQuage, V. P. McDowell, F.E. Peterkin, et al. High power density capacitor charging power supply development for repetitive pulsed power[C].Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium.2006:368-371.
    [18]M. V. Fazio and H. C. Kirbie.Ultra-compact pulsed power [J]. Proc. IEEE.2004,92(7):1197-1204.
    [19]H. Akiyama, T. Sakugawa, T. Namihira, et al. Industrial applications of pulsed power technology [J]. IEEE Trans.2007,14(5):1051-1064.
    [20]J. Weihua, K. Yatsui, K. Takayama, et al. Compact solid-state switched pulsed power and its applications [J]. Proc.IEEE.2004,92(7):1180-1196.
    [21]H. G. Wisken, T. H. G. G. Weise. Capacitive pulsed power supply systems for ETC guns [J].IEEE Trans. Magn.2003,39(1):501-504.
    [22]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2000.
    [23]赵良炳.现代电力电子技术技术[M].北京:清华大学出版社,1995.
    [24]丁道宏主编.电力电子技术[M].北京:航天工业出版社,1992.
    [25]林渭勋主编.电力电子技术基础[M].北京:机械工业出版社,1992.
    [26]A.Schonung, H.Stemmler. Static Frequency changer with subharmonies control in conjunction with reversible variable speed AC driver. BBCRev.1964.
    [27]F. G. Turnbull. Selected harmonic reduction in static AC-AC inverters[J]. AIEE Trans.1964,83(7).
    [28]H. S. Patel, R.G.Hoft.Generalized Techniques of harmonic elimination and voltage control in thyristor inverter [J]. Part A, B IEEE Trans.1973, IA-9.
    [29]J. Sun, H.Grotstollen. Pulsewidth modulation based on Real-time solution of Algebraic Harmonic Elimination Equations[C].IECON Proc.1994:79-84.
    [30]A. M. Trzynadlowsky, J. K. Pedersen, S. Legowoki. Random Pulsewidth modulation techniques for converter-fed drive systems-a review [J].IEEE Trans.1994,30(5).
    [31]V. G. Agelidis, D. Vineenti. Optimum non-deterministic PWM for three-phase inverters.IEEE IE Conf.Rec.1993.
    [32]K. H. Liu, F. C. Lee. Resonant switch-a unified approach to improve performance of switching converters. IEEE Int. Telecommun Energy Conf. Proc.1984:334-341.
    [33]G. Hua, F. C. Lee. Evaluations of switch-mode power conversion technologies. Proceedings of IPEMC.1994:12-26.
    [34]齐群,张波.软开关PWM变换器发展综述.电路与系统学报[J].2000,5(3):50-56.
    [35]刘育伶.非浮接开关之零电流零电压转移柔切式升压型电力转换器之分析研制及控制设计[D].硕士学位论文,台湾:国立成功大学,2002.
    [36]G. Hua, C. Leu, F. C. Lee. Novel zero-voltage-transiton PWM converters [J]. IEEE Trans on Power Electronics.1994,9(6):601-606.
    [37]G. Hua, C. Leu, F. C. Lee. Novel zero-current-transiton PWM converters [J]. IEEE Trans on PowerElectronics.1994,9(2):213-219.
    [38]H. Mao, F. C. Lee, X. Zhou. Improved zero-current transiton converters for high power application [J]. IEEE Trans. on Industry Application.1997,33(5):1220-1231.
    [39]C. Jung, C. L. Chen. Novel ZVT-PWM converters with active snubbers. IEEE Trans. on Power Electronis.1998, 1(13):861-869.
    [40]C. Evans, R. Limpaecher, R.Rodriguez. Resonant link PFN charger and modulator power supply[C].16th IEEE International Power Modulator Symposium.2007:1495-1499.
    [41]E. Limpaecher, M. Holveck, D. Hammell. New AC-Link variable speed drive solves power quality problems in textile manufacturing[C].Power Systems World Conference.2003.
    [42]K.Hubble, E.Limpaecher, M. Hyde. Application of AC-link power control technology in variable dpeed drivecontrollers (VSDs) in sensitive shipboard electro magneticinterference (EMI) environments[C]. ASNE Fleet Maintenance and ModernizationSymposium.2009.
    [43]E.Limpaecher, M.Holveck, B.J.Ryder. Development of a low-EMI advanced variable speed drive for shipboard applications[C]. ASNE Electronic Ship and Technologies Symposium.2007.
    [44]R. Limpaecher, R. Rodriguez, J. Loughlin. Harmonic free new inverter topology for high voltage, high power applications[C]. Conference Record of the 2000 Twenty-Fourth International Power Modulator Symposium.2000:101-106.
    [45]R. Limpaecher, R. Rodriguez. Harmonic free rectification with unity power factor for multi-megawatt applications[C]. Conf. Record of Twenty-Third Int. Modulator Symposium, 1998:42-47.
    [46]R. Limpaecher, R. Rodriguez, M. Bush, et al. High power harmonic-free AC to DC rectification[C]. Twenty-Second International Power Modulator Symposium,2000:101-106.
    [47]R. Limpaecher. Novel converter for electric ship propulsion system and shipboard power distribution[C]. Record of the 2000 Twenty-Fourth Internation Power Modulator Symposium.2000: 89-96.
    [48]R. Rodriguez. AC-Link converter topology for high voltage directed energy application[C]. Eighth Annual Directed Energy Symposium.2005.
    [49]C. Evans, R. Limpaecher, A. Dillon,et al. Powering the way-A paper on AC-LinkTM technology for 21th century HVDC transmission[C].IEEE Energy 2030.2008.
    [50]C. Evans, R. Limpaecher. High power clean BUS generation using AC-Link AC to DC power voltage conversion, DC Regulation, and galvanic isolation[C]. Electric Ship Technologies Symposium.2009:290-301.
    [51]张政权,刘庆想,向欣,等.高频整流谐振变换电源[J].强激光与粒子束,2010,22(2):721-724.(张政权,刘庆想,Xiang X, et al. The research of high-frequency rectifying resonant converter[J].High Power Laser and Particle Beams,2010,22 (2):721-724).
    [52]佘宏武.矩阵变换器控制技术研究及其应用.博士学位论文,武汉:华中科技大学,2011.
    [53]L. Gyugyi. Generalized theory of statie Power frequeney changers [D]. Ph.D.dissertation.Manehester. U.K.:SalfordUniversity,1970.
    [54]M.Venturini. A new sine wave in, sine wave out, conversion technique eliminates reactive elements[C]. in Proc.IEEE POWERCON'80,1980:E3-1-E3-15.
    [55]P. D. Ziogas, S.l.Khan, M. H. Rashid. Some improved forced commutated cycloconverte structures [J]. IEEE Trans.Ind.Appl.1985, IA-21(5):1242-1253.
    [56]D. H. Shin, G. H. Cho, S.B.Park. Improved PWM method of forced commutated cycloconvertors[C]. IEEE Proc.-Eleetr.powerAppl..1989,136(3):121-126.
    [57]T.A.LIPo. Recent progress in the development in solid-state AC motor drives[J]. IEEE Trans.Power Elctron.,1988, (3)2:105-117.
    [58]A.Alesina, M.Venturini. Solid-state power conversion:A fourier analysis approach to generalized transformer synthesis [J]. IEEE Trans.Circuits.Syst..1981,28(4):319-330.
    [59]A. Alesina, M. G. B. Venturini. Analysis and design of optimum-amplitude nine-switch direct AC-AC converters [J].IEEE Trans.Power Electron..1989,4(l):101-112.
    [60]P.W.Wheeler, J.C.Clare, L.EmPringham. A vector controlled MCT matrix converter induction motor drive with minimized commutation times and enhanced waveform quality[C].in Proc.IEEEIAS,02,2002:466-472.
    [61]T. EPodlesak, D.C.Katsis, P.W.Wheeler, et al. A 150-kVA vector-controlled matrix converter induction motor drive [J]. IEEE Trans.Ind.Appl..2005,41(3):841-847
    [62]A.Ishiguro, T.Furuhashi, S.okuma. A novel control method for forced commutated cycloconverters using instantaneous values of input line-to-line voltages[J].IEEE Trans.Ind.Eleetron..1991, 38(3):166-172.
    [63]穆新华,庄心复.交—交型矩阵变换器的双电压控制原理及波形合成[]J.南京航空航天大学学报.1997,29(2):151-157.
    [64]穆新华,庄心复,陈怀亚.双电压控制的矩阵变换器的开关状态与仿真分析[J].电工技术学报.1998,13(1):46-50.
    [65]J.Oyama, X.Xia, T.Higuchi, et al. Displacement angle control of matrix converter[C].in Proc.IEEE PESC,97,1997:1033-1039.
    [66]J. K. Kang, H. Hara, A. M. Hava, et al. The matrix converter drive performance under abnormal input voltage conditions [J].IEEE Trans.Power Electron..2002m 17(5):721-730.
    [67]J.K.Kang,H.Hara,E.yamamoto,et al.Input harmonics damping for high power quality applications of matrix converter[C].in Proc.IEEE IAS'03,2003:1498-1503.
    [68]H.Hara, E.yamamoto, K.Jun-Koo, et al.Improvement of output voltage control performance for low-speed operation of matrix converter [J].IEEE Trans.Power Electron.2005,20(6):1372-1378
    [69]H.Hara, E.yamamoto T.Yamada, et al.Analysis of control performance of matrix converter in a high-speed region using cireuit simulator[C].in Power Conversion Conference.2007:1072-1077.
    [70]陈希有,丛树久,陈学允.双电压合成矩阵变换器特性与电压扇区的关系析[J].中国电机工程学报.2001.21(9):63-67.
    [71]王毅,陈希有,徐殿国.双电压合成矩阵变换器闭环控制的研究[J].中国电机工程学报.2002,22(1):74-79.
    [72]刘洪臣,陈希有,冯勇,等.双电压合成矩阵变换器共模电压的研究[J].中国电机工程学报.2004,24(12):152-186.
    [73]J.Holtz, P.Lamrnert. W.LotZkat.High-speed drive system with ultrasonic MOSFET PWM inverter and single-chip microprocessor control [J]. IEEE Trans.Ind.Appl..1987, IA-23(6):1010-1015.
    [74]G. Pfaff, A. Wesehta, A. F. Wick. Design and experimental results of abrushless AC servo drive [J].IEEE Trans.Ind.Appl.1984, IA-20(4):814-821.
    [75]P.D.Ziogas, S.I.Khan, M.H.Rashid.Analysis and design of forced commutated cycloconverter structures with improved transfer charaeteristies[J]. IEEE Trans.Ind.Electron..1986, IE-33(3):271-280.
    [76]G.Kastner, J.Rodriguez. A forced commutated cycloconverter with control of the source and load currents[C].in Proc.EPE'85,1985:1141-1146.
    [77]L.Huber, D.Borojevie. Space vector modulator for forced commutated cycloconverters[C].in Proc.IEEE IAS,89,1989:871-876.
    [78]L.Huber, D.Borojevie, N.Burany.Voltage space vector based PWM control of forced commutated cycloconverters [C].inProc.IEEE IECON,89,1989:871-876.
    [79]L.Huber, D.Borojevie. Space vector modulation with unity input power factor for forced commutated cycloconverters[C].inProe.IEEE IAS'91,1991:1032-1041.
    [80]L.Huber, D.Borojevie, X.F.Zhuang, et al. Design and implemeniation of a three-phase to three-phase matrix converter with input power factor correetion.in Proc.IEEE APEC'93, 1993:860-865.
    [81]L. Hube, D. Borojevie. Space vector modulated three-phase to three-phase matrix converter with input power factor correction [J].IEEE Trans.Ind.Appl..1995,31(6):1234-1246.
    [82]P.Nielsen, F.Blaabjerg, J.K.Pedersen. Space vector modulated matrix converterwith minimized number of switechings and a feedforward compensation of input voltage unbalance.in Proceedings of the International Conference on PowerElectronics, Drives and Energy Systems for Industrial Growth,1996:833-839.
    [83]H.J.Cha, P.N.Enjeti. An approach to reduce common-mode voltage in matrix converter [J]. IEEE Trans.Ind.Appl..2003,39(4):1151-1159.
    [84]D. Casadei, G.Serra, A.Tani, et al. Optimal use of zero vectors for minimizing the output current distortion in matrix converters [J].IEEE Trans.Ind.Electron..2009,56(2):326-336.
    [85]陈希有.矩阵式电力变换器在非对称输入条件下的原理与仿真[D].哈尔滨:哈尔滨工业大学,1999.
    [86]陈希有,陈学允.矩阵式电力变换器的无功功率分析[J].中国电机工程学报.1999,19(11):5-9.
    [87]陈学允,陈希有.一般矩阵式电力变换器的等效电路及其应用[J].电工技术学报.1999,14(5):31-34.
    [88]陈希有,陈学允.基于PARK变换的空间矢量调制矩阵变换器的暂态分析[J].中国电机工程学报.2000,20(5):50-54.
    [89]王毅,陈希有,徐殿国.空间矢量调制矩阵变换器闭环控制的研究[J].中国电机工程学报.2003,23(6):164-169.
    [90]张华强,王新生,徐殿国.空间矢量调制矩阵变换器闭环控制的研究.电机与控制学报.2006,10(3):242-246.
    [91]孙凯,黄立培,松獭贡规.基于矩阵式变换器的异步电动机矢量控制[J].清华大学学报(自然科学版).2004,44(7):909-912.
    [92]孙凯,黄立培,梅杨.矩阵式变换器驱动异步电机调速系统的非线性自抗扰控制[J].电工技术学报.2007,22(12):39-45.
    [93]梅杨,孙凯,黄立培.矩阵式变换器的空间矢量脉宽调制优化方法.电机与控制学报.2009,13(6):556-590.
    [94]梅杨,孙凯,黄立培.矩阵式变换器的输入功率因数控制.清华大学学报(自然科学版).2009,49(4):469-472.
    [95]R.R.Beasant, W.C.Beattie, A.Refsum. An approach to the realization of ahigh-power Venturini converter[C].in Proc.IEEE PESC'90,1990:291-297.
    [96]C.T.Pan, T.C.Chen, J.J.Shieh. A zero switching loss matrix converter[C].in Proc.IEEE PESC'93, 1993:545-550.
    [97]H.L.Hey, H.Pinheiro, J.R.Pinheiro.A new soft-switching AC-AC matrix converter,with a single actived commutation auxiliary circuit[C]. in Proc.IEEE PESC'95,1995:965-970.
    [98]M.VM.Villaca, A.J.Perin.A soft switched direct frequency changer[C].in Proc. IEEE IAS'95, 1995:2321-2326.
    [99]N. Burany. Safe control of four-quadrant switches[C].in Proc.IEEE IAS'89,1989:1190-1194.
    [100]RW.Wheeler, D.A.Grant. Reducing the semiconduetor losses in a matrix converter[C].in Variable Speed Drives and Motion Control, IEE Colloquium on,1992:14/1-14/5.
    [101]P.W.Wheeler, D.A.Grant.A low loss matrix converter for AC variable-speed drives[C].in Proc.EPE'93,1993:27-32.
    [102]L.Zhang, C.Watthanasarn, W.Shepherd. Analysis and comparison of control techniques for AC-AC matrix converters[J]. IEE Proc.-Eleetr.Power Appl:1998,145(4):284-294.
    [103]L.EmPringham, P.W.Wheeler, J.C.Clare. Intelligent commutation of matrix converter bi-directional switch cells using novel gate drive techniques[C].in Proc.IEEE PESC'98, 1998:707-713.
    [104]L.Empringham, RWheeler, J.Clare.A matrix converter induction motor drive using ntelligent gate drive level current commutation techniques[C].in Proc.IEEE IAS'00,2000:1936-1941.
    [105]P.W.Wheeler, J.C.Clare, L.Empringham. A MCT based matrix converter with minimized commutation times and enhanced waveform quality[C]. in Power Eleetronies,Machines and Drives, 2002. International Conferenee on(Conf.Publ.No.487),2002:206-210.
    [106]P. W. Wheeler, J. Clare, L. EmPringham. Enhancement of matrix converter output waveform quality using minimized commutation times [J]. IEEE Trans. Ind. Electron..2004,51(1):240-244.
    [107]M.Ziegler, W.Hofmann. Semi natural two steps commutation strategy for matrix converters [J].In Proc.IEEE PESC'98,1998:727-731.
    [108]B. H. Kwon, B. D. Min, J. H. Kim. Novel commutation technique of AC-AC converters [J]. IEE Proc-Eleetr.Power Appl..1998,145(4):295-300.
    [109]J.H.Youm, B.H.Kwon. Switching technique for current-controlled AC-to-AC converters [J]. IEEE Trans.Ind.Eleetron..1999,46(2):309-318.
    [110]L.wei, T.A.Lipo, H.Chan. Robust voltage commutation of the conventionalmatrix converter[C].in Proc.IEEE PESC'03,2003:717-722.
    [111]J. Malilein, J. Igney, J. Weigold, et al. Matrix converter commutation strategies with and without explicit input voltage sign measurement [J]. IEEE Trans.Ind.Eleetron..2002,49(2):407-414.
    [112]M.Ziegler, W.Hofmann. Implementation of a two steps commutated matrix converter[C].in Proc.IEEE PESC'99,1999:175-180.
    [113]A.Eeldebe, S.Sehulz, A.Lindemann. Investigation of two-step commutated resonant matrix converter supplying a contactless energy transmission system[C].in Proc.IEEE PESC'08, 2008:22-28.
    [114]A. Eeklebe, A. Lindemann, S. Sehulz. Bidirectional switch commutation for a matrix converter supplying a series resonant load [J]. IEEE Trans.Power Electron..2009,24(5):1173-1181.
    [115]O.Simon, J, Mahlein, M.N.Muenzer, et al.Modem solutions for industrial matrix-converter applications [J].IEEE TranS.Ind.Electron..2002,49(2):401-406.
    [116]M.Ziegler, W. Hofmann. New one-step commutation strategies in matrix converters[C].in Proc.IEEE PEDS'01,2001:560-564.
    [117]J. Adamek, W-Hofmann, M. Ziegler. Fast commutation process and demand of bidirectional switches in matrix converters[C].in Proc.IEEE PESC'03,2003:1281-1286.
    [118]周大宁,刘亚东,黄立培.RB-IGBT矩阵变换器传动系统中的一种新颖两步换流策略[J].电工能量新技术.2006.25(3):1-4.
    [119]K. Sun, D. Zhou, L. Huang, et al. A novel commutation method of matrix converter fed induction motor drive using RB-IGBT.IEEE Trans.Ind.Appl..2007,43(3):777-786.
    [120]P.Wheeler, D.Grant. Optimised input filter design and low-loss switching tec-hniques for a practical matrix converter [J].IEE Proc.-Electr. Power Appl..1997,144(1):53-60.
    [121]T.Kume, K.Yamada, T.Higuehi, et al. Integrated filters and their combined effeets in matrix converter[J].IEEE Trans.Ind.Appl..2007,43(2):571-551.
    [122]粟梅,孙尧,覃恒思,等.矩阵变换器输入滤波器的多目标优化设计[J].中国电机工程学报.2007,27(1):70-75.
    [123]P.W.Wheeler, J.C.Clare, D.Katsis,et al.Design and construetion of a 150 KVA matrix converter induction motor drive[C].in Power Electronies, Maehines and Drives,2004.(PEMD2004).Seeond International Conference on(Conf Publ.No.498),2004:719-723.
    [124]D.Casadei, J.Clare, E.Lee, et al.Large-signal model for the stability analysis of matrix converters [J].IEEE Trans.Ind.Elecetron.2007,54(2):939-950.
    [125]C.L.Neft, C.D.Schauder. Theory and design of a 30-hp matrix converter [J].IEEE.Trans.Ind.Appl..1992,28(3):546-551.
    [126]庄心复.交-交型矩阵变换器的控制原理与试验研究[J].电力电子技术.1994,28(2):1-6.
    [127]陆海慧,陈伯时,夏承光.矩阵式交-交变换器[J].电力电子技术.1997,31(1):105-108.
    [128]陈伯时,陆海慧.矩阵式交-交变换器及其控制.电力电子技术[J].1999,33(1):8-11.
    [129]朱贤龙,黄海俊,陆海慧,等.基于空间矢量调制的三相交-交矩阵式变换器的研制与研究方向[J].电气传动.1999,29(2):11-14.
    [130]D. J. Cook, M.Catucci, J. C. Clare, et al. Development of a 25kV 1 amp direct conversion power supply for high power RF applications[C]. EPE Conference CD.2005.
    [131]Jun-ichi Itoh, Daisuke Matsumura, Seiji Kondo. Novel control strategy for high-frequency AC-link AC/AC direct converter based on virtual converter system[C]. European Conference on Power Electronics.2005.
    [132]A. Balakrishnan, H.A. Toliyat, and W. Alexander.A novel high frequency AC-Link soft-switched buck-boost converter[C].Applied Power Electronics Conference and Exhibition(APEC'08).2008.
    [133]A. Balakrishnan, H.A. Toliyat, W. Alexander. Soft switched AC-Link wind power converter.
    [134]A. Balakrishnan, H.A. Toliyat, W. Alexander. Battery-utility interface using soft switched AC-Link supporting low voltage ride through.
    [135]E.Yamamoto, H.HaraT.Uehino, et al.Development of MCs and its applications in industry [J].IEEE Ind. Electron.Mag.,2011,5(1):4-12.
    [136]Fuji. Next generation matrix Converter FRENIC-MX series. Fuji Electric FA Component &Systems Co., Ltd.. [Release], Tokyo, JaPan,2006.
    [137]D.Zhou,K.P.PhilliPs,G.L.Skibinski,et al. Evaluation of AC-AC matrix converter,a manufacturer's perspective[C].in Proc. IEEE IAS'02,2002:1558-1563.
    [138]Heqing Zhong, Zhixin Xu, Xudong Zou, et al. Current characteristic of high voltage capacitor charging power supply using a series resonant topology[C]. The 29th Annual Conference of Industrial Electronics Society [C].2003,1 (2):373-377.
    [139]A.C.Lippincott, R.M.Nelms, M.Garbi, et al. A series resonant converter with constant on-time control for capacitor charging applications [C]. Applied Power Electronics Conference and Exposition (APEC'90).1990:147-154.
    [140]I.W. Jeong, J.S. Kim, G.I.Gusev, et al. Design of35 kJ/s 25 kV capacitor charging power supply for pulsed power systems[C]. Industrial Electronics Society,2004. IECON 2004.30th Annual Conference of IEEE.2004,3(2):2860-2863.
    [141]R. M. Nelms, J. E. Schatz. A capacitor charging power supply utilizing a ward converter [J]. IEEE Trans. Ind. Electron.1992,39(5):421-428.
    [142]M. Giesselmann, T. Heeren, T. Helle. Compact, high power capacitor charger[C]. in Proc. IEEE Pulsed Power Conf.2003:707-710.
    [143]M. Giesselmann, B. McHale, T. Heeren. New developments in high power capacitor charging technology [C]. In Proc. Power Modulator Symp.2004:395-398.
    [144]吴志鹏.基于高频交流链接的充电技术研究及其控制器的设计.硕士学位论文,成都:西南交通大学,2011.
    [145]张政权,刘庆想,吴志鹏,等.基于高频交流链接技术的串联谐振变换器[J].强激光与粒子束,2011,23(11):2915-2918.
    [146]Zhengquan Zhang, Qingxiang Liu, Zhipeng Wu, et al. Design and Implementation of a HF AC-Link Capacitor Charging Power Supply[C].2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce, AIMSEC.2011,3856-3859.
    [147]张政权,刘庆想,李相强,等.高频交流链接技术的充电电源[J].强激光与粒子束,2012,24(03):719-722.
    [148]张政权,刘庆想,李相强,等.基于高频交流链接技术充电电源研究[J].电力电子技术,2012,46(06):53-55.
    [149]F. C. Schwarz.An improved method of resonant current pulse modulation for power converters[C]. IEEE Power Electronics Specialists Conf..1975:194-204.
    [150]V. Vorperian, S. Cuk. A complete dc analysis of the series resonant converter[C]. IEEE Power Electronics Specialists Conf..1982:85-100.
    [151]R. J. King, T. A. Stuart.A normalized model for the half-bridge series resonant converter [J]. IEEE Trans. Aerosp. Electron. Syst.1981, AES-17,190-198.
    [152]V. T. Ranganathan, P. D. Ziogas, V. R. Stefanovic. A regulated dc-dc voltage source converter using a high frequency link [J]. IEEE Trans. Ind. Appl.1982, IA-18(3):279-287.
    [153]M. M. Jovanovic, K. Liu, R. Oruganti, et al. State-plane analysis of quasi-resonant convencrs [J]. IEEE Transactions otl Power Electronics.1987:36-44.
    [154]D. P. Atherton, Nonlinear Control Engineering. London:Van Nostrand Reinhold,1982, Ch.2.
    [155]M.K. Kazimicrczuk, K.Puczko, Feedback control of zero-voltage-switching resonant dc/dc converters [C].In Proceedings of the Second high Frequency Power Conversion Conference.1987:98-115.
    [156]W. W.Bums, T. G. Wilson. State-plane trajectories used to olxrve and control the behavior of a voltage step-up converter[C].In IEEE Power Electronics Specialists Confererice Record.1976: 212-222.
    [157]R.Oruganti, F. C.Lee.State-plane analysis of parallel resonant converter[C].In IEEE Power Electronics Specialists Conference Record,1985.
    [158]C. Q.Lee, K. Siri. Analysis and design of series resonant converter by state-plane diagram[J]. IEEE Transactions on Aerospace and Elcctronics.1986, AES-22:757-762.
    [159]陆治国.电源的计算机仿真技术[M].北京:科学出版社,2001.
    [160]洪乃刚.电力电子和电力拖动控制系统的Matlab仿真[M].北京:机械工业出版社,2006.
    [161]薛定宇,陈阳泉.基于Matlab/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002.
    [162]陈在平,杜太行.控制系统计算机仿真与CAD-Matlab语言应用[M].天津:天津大学出版社,2001.
    [163]李维波编著.MATLAB在电气工程中的.应用[M).北京:中国电方出饭社,2007.
    [164]黄永安,马路,刘慧敏编著.MA孔AB7.o/simulink6.o 建模仿真开发与高级二工程应用仁[M].北京:清华大学出版社,2005.
    [165]徐德鸿编著.电力电子系统建模及控制[M].北京:机械工业出版社,2002.
    [166]王延安.大功率高频高压ESP电源及其监控系统的研究.博士学位论文,上海:上海交通大学,2010.