新型跳频多址接入系统及其在智能电网中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
跳频是一种扩频通信技术(FHSS),频点的随机跳变使得整个系统工作在较宽频带内;跳频也可以作为一种码分多址接入方式(FH-CDMA或FHMA),多个用户按照预先分配的跳频序列共享这个频带。跳频系统具有抵抗干扰、抵抗多径衰落和多址接入能力强等优点。基于这些优点,跳频系统可以方便地与现有通信系统相结合,实现高保密性、较好通信性能的混合通信系统。设计适合未来高速无线通信需求的跳频多址接入系统是本文研究重点之一。多用户干扰(MAI)是影响码分多址系统性能的主要因素,如何消除多用户干扰并提高跳频系统误码率性能是本文研究另一重点。最后,本文将传统的跳频技术应用于一类新型的能源网络——智能电网,设计出适合智能电网通信需求的跳频通信网络结构和跳频序列。
     在高速无线通信系统中,以OFDM为代表的多载波技术能有效地抵抗信道衰落和符号间干扰。基于OFDM和FH两种通信技术的优势,本文提出一种新型的跳频多址接入方式——OFDM-FHMA通信系统。为了降低频带占用宽度并提高误码率性能,该混合通信系统采用相位调制(PSK)和相干解调方式。另外,为进一步消除多径衰落对系统的影响,在OFDM-FHMA系统中设计了分集发送方式和合并接收机。对OFDM-FHMA的研究主要分成三个部分:第一部分,研究随机跳频方式下同步接入OFDM-FHMA系统在AWGN信道和平坦Rayleigh慢衰落信道时的理论误码率性能;建立误码率与跳频频点个数、用户数、分集级数和信道等参数之间的数值关系。这部分研究对OFDM-FHMA系统的设计具有普遍的指导意义。第二部分,由于在跳频频点的随机跳动,很难保证系统接收端完全实现相位相干解调,不可避免地会产生相位误差。因此,进而研究相位误差对部分相干OFDM-FHMA系统性能的影响,并提出采用最大比值合并接收(MRC)方法减少相位误差对系统性能影响。最后,研究准同步接入方式的OFDM-FHMA通信系统误码率性能。为了降低多用户干扰,提出将一类新型的无碰撞区(NHZ)跳频序列应用于该系统。通过仿真分析给出三种典型跳频序列——完全随机跳频方式、NHZ序列和RS码,在不同接入时延下的误码率性能。通过这三个部分的研究,比较全面地解决了基于相位调制OFDM-FHMA系统的一系列问题。
     目前,大多数对跳频系统性能的理论研究均采用完全随机跳频方式。然而,采用随机跳频方式的FHMA系统的多址干扰(MAI)完全受到跳频频点集合大小限制,只有增加跳频频点个数才能从根本上提高系统性能。在无线通信系统中无限地增加频点个数是不现实的,因此采用具有较好汉明相关特性的伪随机跳频序列是提高系统性能最有效的方法之一。本文在准同步接入的频率调制跳频多址接入系统(FSK/FHMA)中采用无碰撞区跳频序列(NHZ)。着重分析了特定NHZ跳频序列在无碰撞区内和略超过无碰撞区时多用户干扰模型,并给出MFSK/FHMA-NHZ系统判决变量表达式。采用特征函数方法推导了基于NHZ跳频序列的准同步接入BFSK/FHMA系统误码率性能。本文结论充分体现了相对接入时延、跳频序列汉明互相关特性和系统误码率之间的数值关系。
     智能电网是下一代电力传输网络的发展方向。它通过融合当今先进的传感器技术、控制理论和无线通信技术,以提高现有电网中电能使用率,减小断电率并使其具有自动检测等功能。智能电网中通信网络的安全性和多级QoS传输保障是两大主要问题。基于跳频技术安全性高等优势,本文设计出基于跳频技术的智能电网无线通信物理层结构,并从通信需求、数据传输方式、序列构造、系统性能分析等方面系统地阐述了该新型通信网络结构。首先,根据智能电网中有用信息的产生特点,提出了一种传输效率高、频带占用少的智能电网数据发送模型。通过对电能消耗的实地测量,该数据发送模型可以近似建模为Poisson过程。另外,为实现智能电网中多级QoS要求,本文提出一种具有多级汉明互相关值的新型跳频序列,并基于NHZ序列的构造思路给出一类具有两级汉明互相关值的跳频序列构造算法。基于该新型跳频序列和数据模型,推导了采用BFSK调制时智能电网跳频通信网络的误码率性能。为了简化计算复杂度,利用平均碰撞概率近似伪随机跳频序列的实际碰撞概率。通过数值计算与仿真分析可以看出,该新型跳频系统可以为用户提供多级的误码率性能,即实现了智能电网通信系统多级QoS传输要求;同时也证实了本文提出的跳频技术通信网络与智能电网能够平滑融合。
Frequency-hopping (FH) is one kind of spreading spectrum (SS) communication technologies, where the frequency is hopped randomly from one slot to another within a wide range of spectrum. FH is also considered as a code devision multiple access (FH-CDMA, or FHMA) technology, in which the entire spectrum is seprated and assigned to the different users by using their presigned hopping codes. Due to the inherent advantages of FH technology, such as anti-fading, anti-jamming, multiple-access capacity and so forth, it is desired to combining the FH technology with the exisiting communication system to form novel hybrid communication systems with high security and good performance. One of main insterets in our paper is to design a novel hybrid FH system which could meet the demands in future communication systems. It it well known that multiple-access interference (MAI) is the predominant factor reducing the CDMA system performance. Thus, another interest of our paper is to analysis the performance improvement of FHMA systems with a general orthogonal hoppin sequence. Finally, based on security and QoS requirements, the FH technology is firstly proposed for the wireless transmission scheme in a promising power grid——smart grid. The infrastuacture of the proposed network and the specific FH sequence code, which are suitable to the smart grid, are designed in our paper.
     In high-speed wireless communication systems, the orthogonal frequency devision multiplex (OFDM) is considered as one of most promisisng technologies due to its advantages of anti-fading and compressing inter-symbol interference. Based on the advantages of FH and OFDM, a novel FHMA system named OFDM-FHMA system is proposed in our paper. The phase shift keying (PSK) modulation and coherent demodulation scheme are usually adopted in this system for the small spectrum width and the low error probability.
     The study of OFDM-FHMA system in this paper includes the following three sub-parts. Firstly, the theoretical performance of synchronous OFDM-FHMA system with maximum ratio combining (MRC) diversity technique is analysed over AWGN and slow Rayleigh channels. The theoretical results show the relationship between the error rate and other parameters, such as the number of users, the order of diversity, the number of frequency slots and so forth. Our results provide the performance criteria for designing the OFDM-FHMA system. Secondly, due to the presence of AWGN in carrier recovery loop (e.g., phase-locked loop) and the random hopping of the frequency, the resulting steady-state phase error is appreared definitely. The effect of phase error on the OFDM-FHMA system is analysed. MRC diversity technique is proposed in this system to compress the effect of phase error. Finally, the theoretical performance of OFDM-FHMA system with quasi-synchronization multiple-access scheme and random hopping pattern is studied. In order to reduce the MAI effectively, a novel general orthogonal hopping sequence, e.g. no-hit zone (NHZ) code, is proposed into the system. The error probability of the system with the following three classic hopping sequences, i.e., random pattern, NHZ code and Reed-Solomen code, are presented respectively for various multiple-access delays by using the simulation method. Through above three parts of research, the related issues of OFDM-FHMA system have been addressed throughoutly.
     Most of researches on the theoretical performance of FHMA systems employ the completely random hopping pattern; however, the performances (or MAI) of such systems are uniquely restricted by the size of the frequency slots, which imply that more slots, better performance. It should be noted that the frequency slots could not be incresead without any limitation in wireless communications. Thus, to employing the hopping sequence with the idea Hamming properties in the FHMA system is one of most effective methods to reduce the MAI. In our paper, we propose the NHZ code for the MFSK/FHMA system. Based on the specific NHZ properties, the MAI of MFSK/FHMA-NHZ systems are derived detailedly when the delay is restricted within or slight-outside the no-hit zone. Then the decision variable of the non-coherent MFSK/FHMA-NHZ system is presented, which is utilized to estimate the error probability through semi-analytic Mente Carlo simulations. Subsequently, the theoretical bit error rate (BER) of quasi-synchronous BFSK/FHMA-NHZ system is derived by characteristic function method. The BER expression is the function of cross-correlation value of NHZ code, the relative delay and other system parameters. For comparison, the performance of MFSK/FHMA system with Markov hopping pattern is analyzed as well.
     Smart grid has been considered as a promising technology in the next generation electric power system, which can smoothly integrate advanced sensing technologies, automated control methods and modern communication technologies into the power grid to address the issues introduced in the exiting power grid. Security and quality-of-service (QoS) are two critical issues in smart grid communication networks. Considering the security in FH technology, we design a novel physical-layer infrasctructure of smart grid communication, which is named the FH-based smart grid communication system. Based on the characteritics of useful data in smart grid, the specific transmission scheme, which occupies small portion spectrum, is proposed in our paper. By using the real measurement, the statistic characteristics of the data collected from power grid is modeled as a general Poisson process. In addtion, to realize the multi-level QoS requirement, we propose a new hopping sequence set, which has multi-level of cross-correlation properties. A design algorithm of sequence set with two-level cross-correlation properties is presented. Finally, by using the proposed sequence set and data model, the theoretical BER of the FH-based smart grid communication system with BFSK modulation over slow Rayleigh fading channel is derived. For reducing the complexity of computation, we use the note of the average hit rate to approximate the real hit rate of the specific sequences. In a word, some critical issues in FH-based smart grid communication network, such as, communication requirements, transmission scheme, sequence design, system performance and so forth are throughoutly analyzed. Moreover, the real simulation and numerical results verify that the FH technology could smoothly integrate with smart grid.
引文
[1]Simon M K, Omura J K, Scholtz R A, et al. Spread specturm communications hand-book[M]. Posts and Telecommunications Press.2002.
    [2]Viterbi A J. CDMA Principles of Spread Spectrum Communications [M].1996.
    [3]Pursley M B. Performance evaluation for phase-coded spread-spectrum multiple-access communication-part Ⅰ:system analysis [J]. IEEE Trans. Commun,1977, COM-25: 795-799.
    [4]Pursley M B and Sarwate D V. Performance evaluation for evaluation for phase-coded spread-spectrum multiple-access communication-part Ⅱ:code sequency analysis [J]. IEEE Trans. Commun.,1977, COM-25:800-803.
    [5]Kondo S, and Milstein B. Performance of multicarrier DS-CDMA systems [J]. IEEE Trans. Commun.1996,44(2):238-246.
    [6]Simon M K and Plydoros A. Coherent detection of frequency-hopped quadrature modulations in the presence of jamming:part Ⅰ. QPSK and QASK; Part Ⅱ. QpR class Ⅰ modulation [J]. IEEE Trans. Commun.1982, COM-29:1644-1668.
    [7]梅文华, 王淑波,邱永红等.跳频通信[M].北京:国防工业出版社,2005.
    [8]Lee W. Overview of celluar cdma [J]. IEEE Trans. Veh. Technol.1991,40(2):209-302.
    [9]Pickholtz R L, Milstein L B, Schilling D L. Spread spectrum for mobile communications [J]. IEEE Trans. Veh. Technol.1991,40(2):313-322.
    [10]Gilhousen R P K S, Jacobs I M, and Weaver L. Increased capacity using cdma for mobile satellite communications [J]. IEEE J. Sel. Areas Commun.1990,9(4):503-514
    [11]Nee R V and Prasad R. OFDM wireless multimedia communications [M]. Boston, Mass:Artech House Pulisher,2000.
    [12]佟学俭,罗涛OFDM移动通信技术原理与应用[M].北京:人民邮电出版社,2003.
    [13]Gihousen K S. On the capacity of a cellular CDMA system [J]. IEEE Trans. Veh Technol.1991,40:303-312.
    [14]Geraniotis E A, Pursley M B. Error probabilities for slow frequency-hopped spread-spectrum multiple-access communications over fading channels [J]. IEEE Trans. Commun.,1982,30(5):996-1010.
    [15]Agusti R. On the performance analysis of asynchronous FH-SSMA communications [J]. IEEE Trans. Commun.1989,37(5):488-499.
    [16]Cheun K, Stark W E. Probability of error in frequency-hop spread spectrum multiple-access communication systems with noncoherent reception [J]. IEEE Trans. Commun.,1991,39(9):1400-1410.
    [17]Geraniotis E A, Pursley M B. Error probabilities for slow frequency-hopped spread-spectrum multiple-access communications over fading channels [J]. IEEE Trans. Commun.,1982,30(5):996-1010.
    [18]Chang C-Y, Wang C-C, Yang G-Y and et al. Frequency-hopping CDMA wireless communication systems using prime code [C]. IEEE 63rd Vehicular Technology Conference (VTC-2006 spring),2006:1753-1757.
    [19]Lin M-F, Yang G-C, Chang C-Y and et al. Frequency-hopping CDMA with Reed-Solomon code sequence in wireless communications [J]. IEEE Trans. Commun., 2007,55(11):2052-2055.
    [20]Massoud A S. Toward a smart grid:power delivery for the 21st century [J]. IEEE Power and Energy Mag.2005,3(5):34-41.
    [21]Chen K-C, Yeh P-C, Hsieh H-Y, and Chang S-C. Communication infrastructure of smart grid [C]. IEEE 4th International Symposium on Communications, Control and Signal Processing (ISCCSP 2010), Limassol, Cyprus,2010:1-5.
    [22]Gungor V C, Sahin D, Kocak T and et al. Smart grid technologies:communication technologies and standards [J]. IEEE Trans. Ind. Informatics.2011,7(4):529-538.
    [23]Wang X and Yi P. Security framework for wireless communications in smart distribution grid [J]. IEEE Trans. Smart grid,2011,2(4):809-818.
    [24]Ericsson G N. Cyber security and power system communicationessential parts of a smart grid infrastructure [J]. IEEE Trans. Power Delivery,2010,25(3):1501-1507.
    [25]Sun W, Yuan X, Wang J and et al. Quality of service networking for smart grid distribution monitoring [C]. IEEE Proc. of Smart grid Communications (SmartGridComm), Maryland, USA,2010:373-378.
    [26]Li H and Zhang W. QoS routing in smart grid [C]. IEEE Proc. of Smart grid Communications (SmartGridComm), Maryland, USA,2010,1-6.
    [27]Choi K, Cheun K. Performance of asynchronous slow frequency-hop multiple-access networks with MFSK modulation [J]. IEEE Trans. Commun.,2000,48(2):298-307.
    [28]Hamdi K A, and Barton S K. Exact closed form expressions for error probabilities in M-ary FSK frequency hopping multiple-access communications over Rayleigh fading channel [C]. IEEE Vehcular Technology Conference,2000,1160-1164.
    [29]Choi K, Cheun K. Optimum parameters for maximum throughput of FHMA system with multilevel FSK [J]. IEEE Trans. Veh. Technol.,2006,55(5):1485-1491.
    [30]Al-Dweik A and Sharif B S. Exact performance analysis of synchronous FH-MFSK wireless networks [J], IEEE Trans. Veh. Technol.,2009,58(7):3771-3776.
    [31]Maghsoodi Y and Al-Dweik A. Error-rate analysis of FHSS networks using exact envelope characteristic functions of sums of stochastic signals [J]. IEEE Trans. Veh. Technol.,2008,57(2):974-985.
    [32]Shin O-S and Bok K. Performance comparison of FFH and MCFH spread-spectrum systems with optimum diversity combining in frequency-selective Rayleigh fading channels [J]. IEEE Trans. Commun.2001,49(3):409-416.
    [33]Han Y and Teh K C. Maximum-likelihood receiver with side information for asynchronous FFH-MA/MFSK systems over Rayleigh fading channels [J]. IEEE Commun. Letters,2006,10(6):435-437.
    [34]Han Y and Teh K C. Performance study of linear and nonlinear diversity-combining techniques in synchronous FFH/MA communication systems over fading channels [J]. IET Commun.,2007,1(1):1-6.
    [35]Han Y and Teh K.C. Performance study of asynchronous FFH/MFSK communications using various diversity combining techniques with MAI modeled as alpha-stable process [J]. IEEE Trans. Commun.2007,6(5):1615-1618.
    [36]Joo J, Kang H, Kim K and et al. Analysis of asynchronous FFH-MA systems with a hard-limited combining in Rayleigh fading [J]. IEEE Commun. Letters,2005,9(4): 295-297.
    [37]Yu-Sun L. Bit-interleaving in fast FH/SSMA systems with M-FSK modulation [J]. IEEE Trans. Wireless Commun.2007,6(9):3154-3158.
    [38]Hao L and Fan P Z. Performance evaluation for a new quasi-synchronous CDMA system employing generalized orthogonal sequences [J]. IEICE Trans. Info. and System,2003, E86-D:1-10.
    [39]Hao L and Fan P Z. On the performance of synchronous DS-CDMA systems with generalized orthogonal spreading codes [J]. Chinese Journal of Electronics (English version),2003,12(2):219-224.
    [40]Wang X N and Fan P Z. A class of frequency hopping sequences with no hit zone [C]. IEEE 4th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT'2003), Chengdu, China,2003:27-29.
    [41]Ye W X, Fan P Z, and Gabidulin E M. Construction of non-repeating frequency-hopping sequences with no-hit zone [J]. Electronics letters,2006,42(12):681-682.
    [42]Niu X H, Peng D Y, and Zhou Z C. New classes of optimal LHZ FHS with new parameters [C]. The Sixth International Workshop on Signal Design and Its Applications in Communications (IWSDA'11). Guilin, China.2011:10-14.
    [43]冯莉芳,汪晓宁,叶文霞,彭代渊.基于无碰撞区跳频码的准同步组网方案[J].西南交通大学学报,2004,4:776-779.
    [44]叶文霞,范平志,郝莉.基于无碰撞区跳频序列的两级FFH/MFSK系统[J].西南交通大学学报,2010,45(2):268-272.
    [45]汪晓宁,范平志.无碰撞区准同步跳频通信系统多址干扰性能分析[J].铁道学报,2008,30(5):125-129.
    [46]Elsner J, Tanbourgi R, and Jondral F K. Multiple access interference mitigation through multi-level locally orthogonal FH-CDMA [C]. IEEE Military Communications Conference (IEEE MilCom),2011,378-383.
    [47]Ebrahimi M, Nasiri-Kenari M. Performance analysis of multi-carrier frequency-hopping (MC-FH) code-division multiple-access systems:uncoded and coded schemes [J]. IEEE Trans. Veh. Technol.,2004,53(4):968-981.
    [48]Shayesteh M G, Nasiri-Kenari M. Internally coded multicarrier frequency-hopping CDMA communication system and its performance analysis [J]. IET Commun.,2008, 2(2):255-265.
    [49]Berens F, Ruegg A. Schol T and and et al. Fast frequency hopping diversity scheme for OFDM-based UWB systems [J]. Electron. Lett.,2007,43(1):41-42.
    [50]Scholand T, Faber T, Seebens and et al. Fast frequency hopping OFDM concept [J]. Electronics Lett.2005,41 (13):1-2.
    [51]Kim S H, Kim S W. Frequency-hopped multiple-access communications with multicarrier on-off keying in Rayleigh fading channels [J]. IEEE Trans. Commun., 2000,48(10):1692-1701.
    [52]Al-Dweik A, Xiong F. Frequency-hopped multiple-access communications with noncoherent M-ary OFDM-ASK [J]. IEEE Trans. Commun.,2003,51(1):33-36.
    [53]Maghsoodi Y and Al-Dweik A. Error-rate analysis of FHSS networks using exact envelope characteristic functions of sums of stochastic signals [J]. IEEE Trans. Veh. Technol.,2008,57(2):974-985.
    [54]Sharma S, Yadav G, and Chaturvedi A K. Multicarrier on-off keying for fast freqeucny-hopping multiple access systems in Rayleigh fading channels [J]. IEEE Trans. Wireless Commun.,2007,6(3):769-774.
    [55]Beaulieu N C. An infinite series for the computation of the complementary probability distribution function of a sum of independent random variables and its application to the sum of Rayleigh random variable [J]. IEEE Trans. Commun.,1990,38(9): 1463-1474.
    [56]Tellambura C and Annamalai A. Further results on the Beaulieu series [J]. IEEE Trans. Commun.,2000,48(11):1774-1777.
    [57]徐斌,毕光国.UWB-OFDM系统的实现结构[J].电子学报,2004,32(12):157-160.
    [58]刘琛,张兴,王文博.资源规划的OFDM跳频系统性能分析[J].北京邮电大学学报,2006(4):6-9.
    [59]Najib M A, and Prabhu V K. Analysis of equal-gain diversity with partially coherent fading signals [J]. IEEE Trans. Veh. Technol.2000,49(3):783-791.
    [60]Smadi M A and Prabhu V K. Performance analysis of generalized-faded coherent PSK channels with equal-gain combining and carrier phase error [J]. IEEE Trans. Wireless Commun.,2006,5(3):509-513.
    [61]Kiyani N F, Weber J H. Performance analysis of a partially coherent system using constellation rotation and coordinate interleaving [C]. IEEE Global Telecommunications Conference (IEEE GlobeCom),2008:1-5.
    [62]赵丹,方继承,张世杰等.频率合成器对跳频OFDM系统的性能影响分析[J].系统仿真学报,2006,18(12):3486-3490.
    [63]Li T T, Ling Q and Ren J. A spectrally efficient frequency hopping system [C]. IEEE Global Telecommunications Conference (IEEE GlobeCom),2007:2997-3001.
    [64]Yi P, Iwayemi A, Zhou C. Developing ZigBee deployment guideline under WiFi interference for smart grid applications [J]. IEEE Trans. Smart Grid,2011,2(1): 110-120.
    [65]Bluetooth Specification Version 4.0, Bluetooth Special Interest Group (SIG),2009. [Online]. Availiable:http://www.bluetooth.org.
    [66]Qiu R C, Hu Z, Chen Z and et al. Cognitive radio network for the smart grid: experimental system architecture, control algorithm, security, and microgrid testbed [J]. IEEE Trans. Smart Grid,2011,2(4):724-740.
    [67]Lichtensteiger B, Bjelajac B, Muller C and et al. RF Mesh system for smart metering: system architecture and performance [C]. IEEE Proc. of IEEE Smart grid Communications, Mayland, USA,2010:1-3.
    [68]Anderson M, WiMax for smart grid [J]. IEEE Spectrum Mag.2010,6(1):14-15.
    [69]Gungor V C, Lu B, and Hancke G P. Opportunities and challenges of wireless sensor networks in smart grid [J]. IEEE Trans. Ind. Electron.,2010,7(10):3557-3564.
    [70]Viterbi A J. Principles of Coherernt Communication [M].New York:McGraw-Hill, 1966, Chapter 7.
    [71]Piazzo L and Mandarini P. Analysis of phase noise effects in OFDM modems [J]. IEEE Trans. Commun.2002,50(10):1696-1705.
    [72]Zhou Q, Tarighat A and Sayed A H. Compensation of phase niose in OFDM wireless systems [J]. IEEE Trans Signal Proc,2007,55(11):5407-5424.
    [73]Zeng Q, Peng D Y, and Chen D. Performance of quasi-synchronous frequency-hopping multiple-access system with OFDM scheme and application of the no-hit-zone codes [J]. Studies in Computational Intelligence,2009,208:239-248.
    [74]Peng D Y and Fang P Z. Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences [J]. IEEE Trans. Inf. Theory,2004,50(9):2149-2153.
    [75]Ge G, Miao Y, and Yao Z. Optimal frequency hopping sequences:auto- and cross-correlation properties [J]. IEEE Trans. Inf. Theory,2009,55(2):867-879.
    [76]Rohde U L. Digital PLL frequency synthesizers:Theory and design [M]. Prentice-Hall, 1983.
    [77]Tineney J, Rader C M and Gold B. A digital frequency synthesizer [J]. IEEE Trans. Audio Electroacoust,1971, AU-19:48-57.
    [78]Lance E, and Kaleh G K. A diversity scheme for a phase-coherent frequency-hopping spread-spectrum [J]. IEEE Trans. Commun.,1997,45(9):1123-1129.
    [79]Lempel A, Greenberger H. Families of sequences with optimal Hamming-correlation properties [J]. IEEE Trans. Inf. Theory.1974,20(1):90-94.
    [80]Ge G N, Miao Y, and Yao Z X. Optimal frequency hopping sequences:auto-and cross-correlation properties [J]. IEEE Trans. Inf. Theory,2009,55(2):867-879.
    [81]Ye W X and Fan P Z. Two classes of frequency hopping sequences with no-hit zone [C]. Proc.7th Int. Symp.on Communication Theory and Applications, Ambleside, UK,2003: 304-306.
    [82]彭代渊.新型扩频序列及其理论界研究.西南交通大学博士学位论文,2005.
    [83]Peng D Y, Fan P Z, and Lee M H. Lower bounds on the periodic Hamming correlations of frequency hopping sequences with low hit zone [J]. Science in China, Ser. F.2006, 49(2):208-218.
    [84]Zhang Z Y, Zeng F X, and Ge L J. Family of time-hopping sequences with no-hit and few-hit zone for quasi-synchronous THSS-UWB systems [C]. IEEE International Conference on Ultra-Wideband (ICU'2005),2005:43-48.
    [85]Zhang Z Y, Zeng F X, and Ge L J. Time-hopping sequences construction with few-hit zone for quasi-synchronous THSS-UWB systems [C]. IEEE 61st Vehicular Technology Conference (IEEE VTC 2005-spring),2005,3:1998-2002.
    [86]Jiang X Y, Zhang C, and J Lu H. Sequences with three no hit zones and their applications in time-frequency hopping systems [C]. IEEE 1st International Conference on Communications and Networking in China,2006:1-5.
    [87]Chung J-H, Han Y K, and Yang K. Design of no-hit-zone frequency hopping sequence sets with optimal Hamming autocorrelation [C]. IEEE International Workshop on Signal Design and its Applications in Communications (IWSDA),2009:88-91.
    [88]Niu X H, Peng D Y, and Zhou Z C. New classes of optimal LHZ FHS with new parameters [C]. The Sixth International Workshop on Signal Design and Its Applications in Communications (IWSDA'11). Guilin, China.2011:111-114.
    [89]Krongold B S, and Jones D L. PAR reduction in OFDM via active constellation extension [J]. IEEE Trans. Broadcasting,2003,49(3):258-268.
    [90]Tellambura C. Computaion of the continuous-time PAR of an OFDM signal with BPSK subcarriers[J]. IEEE Commun. Lett.2001,5(5):185-187.
    [91]Ekstrom H, Auruskar A, Karlsson J and et al. Technical solutions for the 3G long-term evolution [J]. IEEE Commun. Mag.2006,44(3):38-45.
    [92]Ghosh A, Ratasuk R, Mondal B, and et al. LTE-advanced:next-generation wireless broadhand technology [J]. IEEE Trans. Wireless Commun.,2010,17(3):10-22.
    [93]Koffman L, and Roman V. Broadband wireless access solutions based on OFDM access in IEEE 802.16 [J]. IEEE Commun. Mag.,2002,40(4):96-103.
    [94]Rohling H, Grunheid R. Performance of an OFDM-TDMA Mobile communication system [C]. IEEE 46th Vehicular Technology Conference,1996,3:1589-1593.
    [95]You Y-H, Jeon W-G, Paik J-H and et al. Performance evaluation of OFDM-CDMA with multiple antennas for broadband wireless access networks [J]. IEEE Trans. Veh. Technol.,2005,54(1):385-398.
    [96]Zeng Q, Peng D Y and Liang H B. Performance analysis of frequency-hopping multiple-access communications with OFDM-BPSK scheme [C]. IEEE 3rd International Conference on Communications and Networking in China,2008, 865-869.
    [97]Yang L-L, Hanzo L. Performance of generalized multicarrier DS-CDMA over Nakagami-m fading chennels [J]. IEEE Trans. Commun.,50(6):956-966.
    [98]Fadlullah Z M, Fouda M M, Kato N and et al. Toward intelligent machine-to-machine communications in smart grid, IEEE Commun. Mag.2011,60-65.
    [99]Lewis R P, Igic P and Zhongfu Z. Assessment of communication methods for smart electricity metering in the U.K.[C]. Proc. IEEE PES/IAS Conf. Sustainable Alternative Energy (SAE),2009, pp.1-4.
    [100]Giingor V C, Sahin D, Kocak T, and Ergut S. Smart grid communications and networking [M], Turk Telekom, Tech. Rep.11316-01, Apr.2011.
    [101]Sklar B. Digital Communications:Fundamentals and Applications (2nd Edition) [M]. New York, Prentice Hall,2001.
    [102]De Abreu G T F. On the generation of Tikhonov variates[J]. IEEE Trans. Commun., 2008,56(7):1157-1168.
    [103]曾琦,彭代渊.基于相位调制的多用户OFDM-FH通信系统分析[J].电子学报,2010,38(4):943-948.
    [104]Zeng Q, Peng D Y, and Chen D. Performance of quasi-synchrononous frequency-hopping multiple-access system with OFDM scheme and application of the no-hit-zone codes [J]. Studies in Compuational Intelligence,2009,208:239-248.
    [105]Wu D and Negi R. Effective cpacity:A wireless link model for support of quality of service. IEEE Trans. Wireless Commun.2003,2(4):630-643.
    [106]Mangold S and Philips R. Analysis of IEEE 802.11e for QoS support in wireless LANs [J]. IEEE Wireless Commun.,2003,10(6):40-50.
    [107]Kopsel A, Wolisz A, Krishnam M and et al. Providing application-level QoS in 3G/4G wireless systems:a comprehensive framework based on multirate CDMA[J]. IEEE Wireless Commun.2002,9(2),42-47.
    [108]Melodia T, Akyildiz I F. Cross-layer QoS-aware communication for ultra wide band wireless multimedia sensor networks [J]. IEEE Select Areas in Commun.,2010,28(5): 653-663.
    [109]Zeng Q, Li H and Peng D. Frequency-hopping based communication network with multi-level QoS's in smart grid:code design and performance analsysis [J]. Accepted by IEEE Trans. Smart Grid.
    [110]Zeng Q, Peng D and Wang X. Performance of a novel MFSK/FHMA system employing no-hit zone sequence set over Rayleigh fading channel [J]. IEICE Trans. Commun.2011, E94-B(2):526-532.
    [111]Peng D, Niu X and Tang X. Average Hamming correlation for the cubic polynomial hopping sequences [J]. IET Commun.2010,4(15):1775-1786.