Ad-HGF基因转染骨髓间充质干细胞移植治疗兔肢体缺血的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     目前治疗性血管新生主要有两种方法,一是局部缺血区域注射外源性血管生长因子蛋白或基因,二是局部缺血组织移植具有多向分化潜能的干细胞,干细胞在缺血缺氧状态下分化为血管内皮细胞并产生促血管生长因子来进一步促进血管新生。
     在基因工程范畴内联合基因治疗和细胞治疗,应用基因修饰的干细胞促进血管新生是一种极具前景的治疗手段。HGF基因修饰的骨髓间充质干细胞可以将治疗性蛋白HGF转入缺血的组织中以满足基因治疗的特定需要,安全性更高;它在体内同时发挥治疗性原材料和持续输送促血管新生的生长因子HGF两种作用,与单纯的干细胞治疗或基因治疗相比更具优越性。本课题分三部分,依次探讨以下问题:(1)研究兔骨髓间充质干细胞的分离、培养及鉴定方法。(2)利用腺病毒载体将肝细胞生长因子转染兔骨髓间充质干细胞,流式细胞仪检测转染效率及转染对细胞生物学特性有无影响,ELISA及免疫组化检测转染后外源基因HGF的表达。(3)制备兔后肢缺血模型,HGF基因修饰的BMSCs移植与单纯BMSCs移植或HGF基因治疗在兔后肢缺血模型中的促血管新生作用及其机制。
     第一部分:兔骨髓间充质干细胞的体外培养及鉴定
     目的:研究兔骨髓间充质干细胞的分离、培养及鉴定方法,观察其生物学特性。
     方法:穿刺股骨采集兔骨髓血,应用淋巴分离液密度梯度离心结合贴壁筛选培养骨髓间充质干细胞。通过观察细胞形态、流式细胞仪检测细胞表面标志物以及对其进行诱导分化培养,对培养的骨髓间充质干细胞进行鉴定。
     结果:应用淋巴分离液密度梯度离心结合贴壁筛选培养法得到纯化的BMSCs。通过本方法培养得到的BMSCs贴壁生长,呈典型的长梭形,漩涡状排列;流式细胞仪检测细胞表面标志物CD29、CD44表达阳性,CDllb、CD45表达阴性;细胞成骨诱导分化后I型胶原免疫细胞化学染色阳性,以上这些结果符合文献报道的BMSCs特征。
     结论:密度梯度离心结合贴壁筛选培养可以有效的体外扩增骨髓间充质干细胞,获得高度纯化的骨髓间充质干细胞。
     第二部分:Ad-HGF转染骨髓间充质干细胞及体外检测
     目的:利用重组腺病毒载体将肝细胞生长因子转染兔骨髓间充质干细胞,用流式细胞术检测基因转染效率,ELISA及免疫组化检测转染后外源基因HGF的表达。
     方法:携带HGF基因和绿色荧光蛋白(green fluorescene protein, GFP)的重组腺病毒(adenovirus)载体Ad-HGF、Ad-GFP,均由兰州军区总医院哈小琴教授提供。以不同MOI值(multiple of infection,感染复数)的Ad-GFP病毒液转染BMSCs,流式细胞检测表达GFP阳性的细胞率。以MOI=150的Ad-HGF转染BMSCs,ELISA检测及免疫细胞化学检测HGF表达;流式细胞仪检测HGF-BMSC细胞表面标志物以及诱导分化培养,以确定基因转染后细胞生物学特性有无变化;同时transwell检测HGF介导BMSCs细胞迁移能力。
     结果:Ad-GFP以不同的MOI转染兔BMSCs48h后,表达GFP的阳性细胞率有显著性差异(P<0.05);MOI=150时表达GFP阳性的细胞率达98%以上,MOI大于150以上时,表达GFP阳性的细胞率无显著性差异(P>0.05);因此选择MOI=150转染BMSCs。将Ad-HGF以MOI=150转染兔BMSCs后,ELISA及免疫细胞化学检测结果显示:细胞培养上清及胞浆内有丰富的HGF蛋白表达,表明Ad-HGF可高效转染BMSCs,BMSCs有HGF蛋白的高表达。流式细胞仪检测及诱导分化培养结果显示:腺病毒感染以及HGF基因修饰不改变BMSC表型和分化潜能。同时实验结果显示HGF对BMSC有极强的趋化作用。
     结论:Ad-GFP可成功转染骨髓间充质干细胞,以MOI=150转染BMSCs,转染效率最高,可达98%以上,转染24h即可见绿色荧光,2-4天转染率最高;表明重组腺病毒作为载体转染BMSCs具有高转染率与稳定表达。肝细胞生长因子腺病毒表达载体Ad-HGF转染骨髓间充质干细胞不改变BMSCs的固有特性;经ELISA及免疫组化检测,BMSCs可高表达HGF蛋白。HGF对BMSC有明显的趋化作用。
     第三部分:肝细胞生长因子基因修饰的骨髓间充质干细胞移植治疗兔肢体缺血
     目的:比较HGF基因修饰的BMSCs移植与单纯BMSCs移植或HGF基因治疗在兔后肢缺血模型中的促血管新生作用及其机制探讨。
     方法:后肢缺血的新西兰大白兔模型随机分为四组,每组10只,治疗方法:a.空腺病毒对照组(Ad-GFP组):缺血部位肌肉多点注射1×109Pfu Ad-GFP。b.骨髓间充质干细胞(BMSC组)组:缺血部位肌肉多点注射1×107个骨髓间充质干细胞。c.HGF基因治疗组(Ad-HGF组):缺血部位肌肉多点注射1×109Pfu Ad-HGF。d.转染HGF的BMSC治疗组(HGF-BMSC组):缺血部位肌肉多点注射1×107个转染HGF的BMSC。移植后28天行动脉造影及侧枝血管计数;免疫组织化学检测缺血区域毛细血管密度;免疫荧光检测BMSCs在体内的分布及分化;Western-blot检测组织中HGF、C-met蛋白的表达;ELISA检测移植前后兔血清中HGF的浓度。
     结果:造影结果显示骨髓干细胞组(BMSC组)、HGF基因治疗组(Ad-HGF组)及HGF-BMSC组血管数明显高于空腺病毒对照组(P0.05)
     结论:与单纯的BMSC细胞移植或HGF基因治疗相比,肝细胞生长因子基因修饰的骨髓间充质干细胞可使HGF获得稳定而有效的表达,具有更强的促进血管新生能力,从而更加有效地改善肢体缺血。
Background
     Therapeutic angiogenesis promotes the formation of both new blood vessels and collateral circulation by means of transferring heterogeneous angiogenesis inducing factors into ischemic tissue. It mainly contains two strategies. One is using cytokines or cytokine gene carriers, the other is transplanting multi-directional differentiation potent stem cells to ischemic tissue, where they would differentiate into vascular endothelium and produce vascular growth factors to achieve angiogenesis.
     Combined gene therapy and stem cell therapy in genetic engineering, the application of genetically modified stem cells to promote angiogenesis is a promising treatment. HGF gene-modified bone marrow mesenchymal stem cells not only transport therapeutic protein HGF to the ischemia organizations but play a important role as therapeutic materials to promote angiogenesis.This study including three parts investigates those questions:(1) To research the separation, in vitro culture and expanding method of mesenchymal stem cells (MSCs) and identifying the MSCs cultured by this mothod.(2) Rabbit bone marrow mesenchymal stem cells (BMSCs) were transduced with hepatocyte growth factor (HGF) by adenovirus vector. Transduction efficiency was detected by flow cytometry, transgene expression of HGF in vitro were evaluated by ELLISA and immunohistochemical methods.(3) To investigate whether a new strategy that combines MSCs transplantation and exvivo hepatocyte growth factor (HGF) gene transferring with adenovirus vector was more therapeutically efficient than MSCs cell therapy alone in a rabbit hindlimb ischemia model.
     Part Ⅰ. In vitro culture and identification of bone marrow mesenchymal stem cells
     Objective:To research the separation, in vitro culture and expanding method of mesenchymal stem cells (MSCs) and identifying the MSCs cultured by this mothod. Study the biological characteristics of MSCs.
     Method:MSCs were isolated and purified from rabbits using density centrifugation and anchoring culture, then cultured in a-MEM supplement with10%fetal bovine serum (FBS) for expanding. Observed the morphous and growth velocity of MSCs, identify the phenotype of MSCs, draw the growth curve of MSCs and determine the mitotic index and cloning efficiency of MSCs. Observed the survival rate and growth state of MSCs underwent freeze thawing. Flow cytometric was used to dentify BMSC.
     Result:The cultured MSCs were typical spindle-shaped, grew in whirlpool anchoring the culture plates, arranged gyrately. Through detection by flow cytometry, the expressions of CD44and CD29were positive; the exprssions of CD11b and CD45were negative, which was in accordance with the phenotype of MSCs. The passage MSCs proliferated fast. MSCs were purified at3rd generation. As the passage increases, the cloning efficiency and proliferative ability of MSCs decrease. The survival rates of MSCs thawed after frozen1month was90%.
     Conclusion:BMSCs can be harvested using density centrifugation and anchoring culture. In vitro expanding of BMSCs is feasible. Freeze thawing has no obvious influence on BMSCs.
     Part Ⅱ. Preparation of BMSCs transduced with Ad-HGF and invitro experiment
     Objective:Rabbit bone marrow mesenchymal stem cells (BMSCs) were transduced with hepatocyte growth factor (HGF) by adenovirus vector.Transduction efficiency was detected by flow cytometry, transgene expression of HGF invitro were evaluated by ELISA and immunohistochemical methods.
     Method:After digested with pancreatic enzyme, BMSCs were plated and cultivated in6holes plate with a density of1.5×105/per hole.50ul Ad-GFP with6different MOI(multiple of infection) was added into each hole for BMSCs transduction, with3duplicated holes for each MOI. BMSCs were transduced with Ad-hgf at MOI=150.After digested with pancreatic enzyme, BMSCs were added to silicificated slice, and cultivated. Then BMSCs were detected with ELISA and immunohistochemical methods.Also, transwell was used to detect the efficiency of BMSC migration mediated by HGF.
     Result:48h after BMSCs transduction with Ad-GFP at different MOI, percentage of GFP-positive cells showed significant difference(P<0.05). Percentage of GFP-positive cells increased as MOI increased, however there was no significant difference (P>0.05) when MOI was bigger than150. When MOI=150, GFP-positive cells were over98%, so MOI=150was optimal for BMSCs transduction. When BMSCs were transduced with Ad-HGF at MOI=150, the results of ELISA and immunohistochemistry showed that Ad-HGF might effectively transducer BMSCs, and that the transduced BMSCs revealed high efficiency of HGF expression.The result also demonstrated HGF promoted the migration of BMSCs.
     Conclusion:Ad-GFP successfully transduced BMSCs. As MOI=150, GFP-positive cells were over98%.There were GFP-positive cells just24h after transduction, with peak percentage from2d to7d. These results indicated that adenovirus vector possessed high effieiency transduction and stable gene expression. Results of ELISA and immunohistochemitry demonstrated that Ad-HGF was capable of effectively transducing BMSCs, and that transduced BMSCs possessed high efficiency of HGF gene expression in vitro.
     Part Ⅲ. The research of bone marrow-derived mesenchymal stem cells transduced with HGF gene transplantation for treatment of rabbit limb ischemia
     Objective:To investigate whether a new strategy that bone marrow-derived mesenchymal stem cells transduced with HGF gene transplantation was more therapeutically efficient than BMSCs transplantation or HGF gene therapy in a rabbit hindlimb ischemia model.
     Methods:New Zealand white rabbits hindlimb ischemia model were randomly divided into four groups:(a) Ad-GFP injection (Ad-GFP group,n=10),(b)BMSCs transplantation (BMSC group, n=10),(c) Ad-HGF injection (Ad-HGF group, n=10),(d)BMSCs transduced with HGF (HGF-BMSCs) transplantation (HGF-BMSC group,n=10). The ischemic thigh muscle were analyzed for arteriography,capillary density, transplanted cell differentiation, the expression of HGF、c-met and VEGF protein after treatment. Serum levels of HGF in HGF-BMSC group after transplantation were determined by ELISA.
     Results:Three weeks after transplantation, angiogenesis was significantly enhanced by b、c and d group, while capillary density was highest in the HGF-BMSC group (P<0.05). The number of transplanted cell-derived endothelia cells was higher in the HGF-BMSC group than in the BMSC group since one week after treatment (P<0.05). In treated ischemic hindlimb muscles, allogeneic HGF-BMSC and BMSC injection were associated with comparatively few T lymphocyte infiltration in Ad-HGF group(P>0.05). The expression of angiogenic growth factors like HGF and VEGF in local ischemic muscles undergoing intramuscular cell transplantation was more abundant in HGF-BMSC group than the other three groups (P<0.05).Serum levels of HGF in HGF-MSC group one week after transplantation have no significant difference(P>0.05).
     Conclusions:The present study shows that BMSC transduced with HGF gene transplantation induced more potent angiogenesis and collateral vessel formation than BMSC transplantation or HGF gene therapy. Stem cell-based angiogenic gene therapy may be a new therapeutic strategy for the treatment of severe ischemic cardiovascular disease.
引文
1. Gu YQ. Determination of amputation level in ischaemic lower limbs[J]. ANZ J Surg,2004,74 (1-2):31-33.
    2. Hockel M., Schlenger K., Doctrow S., et al., Therapeutic angiogenesis[J]. Arch Surg,1993.128(4):423-429.
    3. Buschmann I. and Schaper W., The pathophysiology of the collateral circulation (arteriogenesis)[J]. J Pathol,2000.190(3):338-342.
    4. Al-Khaldi A, Al-Sabti H, Galipeau J, et al. Therapeutic angiogenesis using autologous bone marrow stromal cells:improved blood flow in a chronic limb ischemia model[J]. Ann Thorac Surg,2003,75:204-209.
    5. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis [J]. Science,1997,275(5302):964-967.
    6.Kalka C, Mausuda H, Takahashj T, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization [J]. Proc Natl Acad Sci,
    2000,97(7):3422-3427. 7. Isner JM, Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization [J]. J Clin Invest,1999,103:1231-1236.
    8.Tang J, Xie Q, Pan G, et al. Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion [J]. Eur J Cardiothorac Surg,2006,30:353-361.
    9.Takahashi M, Li TS, Suzuki R, et al. Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury [J]. Am J Physiol Heart Circ Physiol,2006,291: 886-893.
    10.Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells:a pilot study and a randomised controlled trial [J]. Lancet,2002,360(9331):427-435.
    11. Belle EV, Witzenbichler B, Chen D, et al.Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor: the case for paracrine amplification of angiogenesis. Circulation,1998,97:381-390.
    12.Nakamura Y, Morishita R, Higaki J, et al.Hepatocyte growth factor is a novel member of the endothelium-specific growth factors:additive stimulatory effect of hepatocyte growth factor with basic fibroblast growth factor but not with vascular endothelial growth factor. J Hypertens,1996,14:1067-1072.
    B.Nakagami H, Morishita R, Yamamoto K, et al.Mitogenic and antiapoptotic actions of hepatocyte growth factor through ERK, STAT3, and AKT in endothelial cells. Hypertension,2001,37:581-586.
    14.TioRA,TebuchavaT,ScheuermannTH,etal.Intra myocardial gene Therapy with naked DNA encoding vascular endothelial growth Factor improves collateral flow to ischemic myocardium [J].Hum GeneTher,1999,10(18):2953-60.
    15.吴学君,金星,吕晓霞,等.自体骨髓干细胞移植治疗动脉缺血性疾病7例临床观察.中国医师杂志,2006,8(12):1661-1662.
    16.侯向前,吴学君,张精勇,等.自体骨髓干细胞移植治疗下肢动脉缺血性疾病的疗效观察.中国现代普通外科进展,2007,10(4):320-323.
    17.Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res.1988 Nov;254(2):317-30.
    18.Piersma AH, Brockbank KG, Ploemacher RE, van Vliet E, Brakel-van Peer KM, Visser PJ.Characterization of fibroblastic stromal cells from murine bone marrow. ExpHematol.1985 May;13(4):237-43.
    19.Piersma AH, Ploemacher RE, Brockbank KG.Transplantation of bone marrow fibroblastoid stromal cells in mice via the intravenous route. Br J Haematol.1983 Jun;54(2):285-90.
    20.Howlett CR, Cave J, Williamson M, Farmer J, Ali SY, Bab I, Owen ME. Mineralization in vitro cultures of rabbit marrow stromal cells. Clin Orthop Relat Res. 1986 Dec; (213):251-63.
    21.Mardon HJ, Bee J,von der Mark K, Owen ME. Development of osteogenic tissue in diffusion chambers from early precursor cells in bone marrow of adult rats. Cell Tissue Res.1987 Oct;250(1):157-65.
    22.Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci.1992 Jun;102 (Pt 2):341-51.
    23.MorishitaR, Aoki M, Hashiya N, et al.Safety evaluation of clinical gene therapy using hepatocyte growth factor to treat peripheral arterial disease.Hypertension 2004;44:203-9.
    24.DuanHF,WuCT,WuDL,et al.Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor.Mol Ther 2003;8:467-74.
    25.Cho KR,Choi JS,Hahn W,et al.Therapeutic angiogenesis using naked DNA expressing two isoforms of the hepatocyte growth factor in a porcine acute myocardial infarction model.Eur J Cardiothorac Surg 2008:34:857-63.
    26.Zhu XY,Zhang XZ,Xu L,et al.Transplantation of adipose-derived stem cells overexpressing hHGF into cardiac tissue.Biochem Biophys Res Commun 2009;379:1084-90.
    27.Nakamura Y,Morishita R,Nakamura S,et al.A vascular modulator, hepatocyte growth factor,is associated with systolic pressure. Hypertension 1996;28:409-13.
    28.Morishita R,Nakamura,S,Hayashi,S,et al.Therapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hindlimb ischemia model as cytokine supplement therapy. Hypertension 1999;33:1379-84.
    29.Matsuki A,Yamamoto S, Nakagami H,et al. No influence of tumor growth by intramuseular injection of hepatocyte growth factor plasmid DNA:safety evaluation of therapeutic angiogenesis gene therapy in mice. Biochem Biophys Res Commun 2004;315:59-65.
    30.Powell RJ,Simons M, Mendelsohn FO,et al.Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation 2008; 118:58-65.
    31.Forte G, Minieri M, Cossa P, et al.Hepatocyte growth factor effects on mesenchymal stem cells:proliferation, migration, and differentiation.Stem Cells,2006,24(1):23-33.
    32.金丽娟,哈小琴,张诚,等.Ad-HGF修饰MSCs异体移植对烧伤创面愈合的作用.西北国防医学杂志,2007,28(1):12-15.
    1. Stem Cells scientific Progress and Future Research Directions.In commision of the European communities, Brussels,2003
    2. MacKenzie TC, Flake AW. Human mesenchymal stem cells:insights from a surrogate in vivo assay system. Cells Tissues Organs,2002,171:90-95.
    3. Tang J, Xie Q, Pan G, et al. Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. Eur J Cardiothorac Surg,2006,30:353-361.
    4. Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation, 2004,109:1543-1549.
    5.Barry FP, Murphy Jm.Mesenchymal stem cellsxlinical applications and biological characterization!J].The international journal of biochemistry&cell biology 2004, 36(4):568-584.
    6.Friedenstein AJ, Robey PG. Factors required for bone marrow fibroblat colony formation in vitro [J]. British Journal of haemtology.1997,97:561-570.
    7.Owen M, Friedenstein AJ. Stromal stem cells:marrow-derived osteogenic precursors [J]. Ciba Found Symp,1988,136:42-60.
    8.Pittenger FM, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells [J]. Science,1999,284:143-147.
    9.Campagnoli C, Robert IAD, Kumar S, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blool, liver, and bone marrow [JJ.Blood,2001,98(8):2396-2402.
    10.Hung Sc,Chen Nj,Hsieh Sl,et al. Isolation and characterization of size-sieved stem cells from human bone marrow [JJ.2002,20(3):249-258.
    11. Barry F, Boynton R, Murphy M, et al. The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells [J]. Biochem Biophys Res Commun,2001,289(2):519-524.
    12. Inokuchi H,Suzuki Y,Kasagi N, et al.Micro magnetic separator for stem cell sorting system. Proceedings of the 22nd sensor sympsium, Tokyo:2005,125-128.
    13.Manas KM, Mark AJ, JosePh DM, et al.Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells(MSCs)and Stromal cells [J]. Journal of Cellular Physiology.1998,176:57-66.
    14. Temple S. The development of neural stem cells [J]. Nature,2001,414 (6859): 112-117.
    15.Pittenger F, Mackay A, Beck S, et al. Multilineage potential of adult human mensenchymal stem cells [J]. Science,1999,284(2):143-147.
    16.Colter DC, Sekiya I, Prockop DJ. Identification of a subpopulation of rapidly self renewing and multipotential adult stem cells in colonies of human marrow stromal cells [J]. Proc Natl Acad Sci USA,2001,98 (14):7841-845.
    17.Tocci A, Forte L. Mesenchymal stem cell:use and perspectives [J]. Hematol J, 2003,4 (2):92-96.
    18.Pittenger MF, Mackay AM, Beck AC, et al. Multilineage potential of adult human mesenchymal stem cell [J]. Science,1999,284(2):143-147.
    19.Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells [J]. J Cell Physiol,1999,181(1):67-73.
    1.Bussolino F, Di Rnezo MF, Ziche M et al.Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth.J Cell Biol, 1992:119:629-641.
    2 Ma H,Calderon TM, Fallon JT,et al.Hepatocyte growth factor is a survival factor for endothelial cells and is expressed in human atherosclerotic plaques.Atherosclerosis,2002; 164:79-87.
    3 Bardelli A,Longati P, Albero D,et al.HGF receptor associates with the anti-apoptotic protein BAG-1 and prevents cell death. EMBO,1996,15:6205-6212.
    4 Fan S,Ma YX, Mang JA,etal. The cytokine hepatocyte growth factor/scatter factor inhibits apoptosis and enhances DNA repair by a common mechanism involving signaling through phosphatidyl inositol3'kinase. Onocgene,2000; 19:2212-2223.
    5 Ratajczak MZ,Marlicz W,Ratajczak J,et al.Effect of hepatocyte growth factor on early human haemopoietic cell development. Br J Haematol,1997;99:228-236.
    6 Ohmichi H,Matsumoto K,Nakamura T. In vivo mitogenic action of HGF on lung epithelial cells:pulmotrophic role in lung regeneration.Am J Physiol, 1996:270:L1031-1039.
    7 Kato Y, Yu D,Lukish JR,et al.Influence of luminal hepatocyte growth factor on small intestine mucosa in vivo. J Surg Res,1997;71:49-53.
    8 Kawaida K,Matsumoto K,Shimazu H,et al.Hepatocyte growth factor prevents acute renal failure and accelerates renal regeneration in mice.Proc Natl Acad Sci USA,1994;91:4357-4361,
    9Yoshimura R,Watanabe Y, Kasai S,et al.Hepatocyte growth factor (HGF) as a rapid diagnostic marker and its potential in the prevention of acute renal rejection. Transpl Int,2002; 15:156-62.
    10 Ueki T, Kaneda Y,Tsutsui H et al.Hepatoeyte growth factor gene therapy of liver cirrhosis in rats.Nat Med,1999;5:226-230.
    11. Van Belle E, Witzenbichler B, Chen D, et al. Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor:the case for paracrine amplification of angiogenesis. Circulation.1998;97(4):381-90.
    12. Hayashi S, Morishita R, Higaki J, et al. Autocrine-paracrine effects of overexpression of hepatocyte growth factor gene on growth of endothelial cells. Biochem Biophys Res Commun.1996; 220(3):539-45.
    13 Takai K,Hara J,Matsumoto K,et al.Hepatocyte growth factor is constitutively produced by human bone marrow stormal cells and indirectly promotes hematopoiesis.Blood,1997;89:1560-1565.
    14 Neuss S,Becher E,Woltje M,et al.Functional expression of HGF nad HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization,tissue repair, and wound healing.Stme Cells,2004;22:405-414.
    15 Qian LW,Mizumoto K,Maehara N,et al.Co-cultivation of pancreatic cancer cells with orthotopic tumor-derived fibroblasts:fibroblasts stimulate tumor cell invasion via HGF secretion whereas cancer cells exert a minor regulative effect on fibroblasts HGF production. Cancer Lett,2003;190:105-112.
    16Chen X, LiY,Wang L, et al. Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology,2002; 22:275-279.
    17 Chen X, Katakowski M, Li Y, et al. Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts:growth factor production. J Neurosci Res,2002; 69:687-691.
    18.Tarui T, Majumdar M, Miles LA, et al. Plasmin-induced migration of endothelial cells. A potential target for the anti-angiogenic action of angiostatin. J Biol Chem, 2002; 277:33564-70.
    19. Mah C, Byrne BJ, Flotte TR. Virus-based gene delivery systems. Clin Pharmacokinet,2002,41(12):901-911.
    20.Losordo DW, Vale PR, Symes JF, et al. Gene Therapy for Myocardial Angiogenesis:initial clinical results with direct myocardial injection of phVEGF 165 as sole therapy for myocardial ischemia. Circulation.1998; 98:2800-2804.
    21. Rosengart TK, Lee LY, Patek SR, et al.Angiogenesis Gene Therapy:phase I assessment of direct intra myocardial administration of an adenovirus vector expressing VEGF 121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation.1999; 100:468-474.
    22.Mack CA,Patel SR,Schwarz EA,et al. Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart. J Thorac Cardiovasc Surg.1998; 115:168-177.
    1. Gu YQ. Determination of amputation level in ischaemic lower limbs [J]. ANZ J Surg,2004,74 (1-2):31-33.
    2. Koshikawa M, Shimodaira S, Yoshioka T, et al. Therapeutic angiogenesis by bone marrow implantation for critical hand ischemia in patients with peripheral arterial disease:a pilot study[J]. Curr Med Res Opin,2006,22:793-8.
    3. Semenza GL. Therapeutic angiogenesis:another passing phase? [J]. Circ Res, 2006,98:1115-6.
    4. Yamauchi A, Ito Y, Morikawa M, Kobune M, et al. Pre-administration of angiopoietin-1 followed by VEGF induces functional and mature vascular formation in a rabbit ischemic model [J]. J Gene Med,2003,5:994-1004.
    5. Isner JM, Baumgartner I, Rauh G, et al. Treatment of thromboangiitis obliterans (Buerger's disease) by intramuscular gene transfer of vascular endothelial growth factor:preliminary clinical results[J]. J Vasc Surg,1998,28: 964.
    6. MorishitaR, Aoki M, Hashiya N, et al.Safety evaluation of clinical gene therapy using hepatocyte growth factor to treat peripheral arterial disease.Hypertension 2004;44:203-9.
    7. DuanHF,WuCT,WuDL,et al.Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor.Mol Ther 2003;8:467-74.
    8. Cho KR,Choi JS,Hahn W,et al.Therapeutic angiogenesis using naked DNA expressing two isoforms of the hepatocyte growth factor in a porcine acute myocardial infarction model.Eur J Cardiothorac Surg 2008:34:857-63.
    9. Zhu XY,Zhang XZ,Xu L,et al.Transplantation of adipose-derived stem cells overexpressing hHGF into cardiac tissue.Biochem Biophys Res Commun 2009;379:1084-90.
    10. Nakamura Y,Morishita R,Nakamura S,et al.A vascular modulator, hepatocyte growth factor,is associated with systolic pressure. Hypertension 1996;28:409-13.
    11. Morishita R,Nakamura,S,Hayashi,S,et al.Therapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hindlimb ischemia model as cytokine supplement therapy. Hypertension 1999;33:1379-84.
    12. Matsuki A,Yamamoto S, Nakagami H,et al. No influence of tumor growth by intramuseular injection of hepatocyte growth factor plasmid DNA:safety evaluation of therapeutic angiogenesis gene therapy in mice. Biochem Biophys Res Commun 2004;315:59-65.
    13. Powell RJ,Simons M, Mendelsohn FO,et al.Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation 2008; 118:58-65.
    14. Isner JM, Kalka C,Kawamoto A, et al. Bone marrow as a source of endothelial cells for natural and iatrogenic vascular repair[J]. Ann NYAS,2001,9531:75-84.
    15. Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res.1988 Nov;254(2):317-30.
    16. Piersma AH, Brockbank KG, Ploemacher RE, van Vliet E, Brakel-van Peer KM, Visser PJ.Characterization of fibroblastic stromal cells from murine bone marrow. Exp Hematol.1985 May;13(4):237-43.
    17. Piersma AH, Ploemacher RE, Brockbank KG.Transplantation of bone marrow fibroblastoid stromal cells in mice via the intravenous route. Br J Haematol. 1983 Jun;54(2):285-90.
    18. Howlett CR, Cave J, Williamson M, Farmer J, Ali SY, Bab I, Owen ME. Mineralization in vitro cultures of rabbit marrow stromal cells. Clin Orthop Relat Res.1986 Dec; (213):251-63.
    19. Mardon HJ, Bee J,von der Mark K, Owen ME. Development of osteogenic tissue in diffusion chambers from early precursor cells in bone marrow of adult rats. Cell Tissue Res.1987 Oct;250(1):157-65.
    20. Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci.1992 Jun;102 (Pt 2):341-51.
    21. Yla-Herttuala S, Alitalo K. Gene transfer as a tool to induce therapeutic vascular growth[J]. Nat Med,2003,9:694-701.
    22. Shintani S, Murohara T, Ikeda H, et al. Augmentation of postnatal neovascularization with autologous bone marrow transplantation[J]. Circulation,2001,103:897-903.
    23. Al-Khaldi A, Al-Sabti H, Galipeau J, et al. Therapeutic angiogenesis using autologous bone marrow stromal cells:improved blood flow in a chronic limb ischemia model[J]. Ann Thorac Surg,2003,75:204-9.
    24. Forte G, Minieri M, Cossa P, et al.Hepatocyte growth factor effects on mesenchymal stem cells:proliferation, migration, and differentiation.Stem Cells,2006,24(1):23-33.
    25.金丽娟,哈小琴,张诚,等Ad-HGF修饰MSCs异体移植对烧伤创面愈合的作用.西北国防医学杂志,2007,28(1):12-15.
    26. Pu LQ, Jackson S, Lachapelle KJ, et al. A persistent hindlimb ischemia model in the rabbit [J]. Invest Surg,1994,7:49-60.
    27. Willersor JT, Cohn JN. Cardiovascular Medicine.2nd, [M], Churchill Livingston,2000:1417-1424.
    28. Carmeliet P. Angiogenesis in health and disease [J]. Nat Med.2003; 9:653-660.
    29. Risau W. Machanisms of angiogenesis [J]. Nature,1997,386:671-674.
    30. MacKenzie TC,Flake AW.Human mesenchymal stem cells:insights from a surrogate in vivo assay system. Cells Tissues Organs,2002,171:90-95.
    31. Tang J,Xie Q,Pan G,et al. Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion.Eur J Cardiothorac Surg,2006,30:353-361.
    32. Kinnaird T, Stabile E, Burnett MS, et al.Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms.Circulation,2004,109:1543-1549.
    33. Tateishi-Yuyama E,Matsubara H,Murohara T,et al.Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells:a pilot study and a randomized controlled trial.Lancet,2002,360(9331):427-435.
    34.吕晓霞,尹至,金星,等.自体骨髓干细胞移植治疗下肢缺血性疾病60例.中国组织工程研究与临床康复,2008,12(29):5653-5657.
    35.侯向前,吴学君,金星,等.自体骨髓干细胞移植治疗下肢动脉缺血性疾病的疗效观察.中国现代普通外科进展,2007,10(4):320-323.
    36. Nakamura Y, Morishita R, Higaki J, et al.Hepatocyte growth factor is a novel member of the endothelium-specific growth factors:additive stimulatory effect of hepatocyte growth factor with basic fibroblast growth factor but not with vascular endothelial growth factor. J Hypertens,1996,14:1067-1072.
    37. Nakagami H, Morishita R, Yamamoto K, et al.Mitogenic and antiapoptotic actions of hepatocyte growth factor through ERK, STAT3, and AKT in endothelial cells. Hypertension,2001,37:581-586.
    38. Morrishita R,Nakamura S,Hayashi S,et al.Therapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hind limb ischemia model as cytokine supplement therapy.Hypertension,1999,33(6):1379-1384
    39. Aoki M,Morishita R,Taniyama Y,et al.Therapeutic angiogenesis induced by hepatocyte growth factor:potential gene therapy for ischemic disease.J Atheroscler Thromb,2000,7(2):71-76
    40. Neuss S,Becher E,Woltje M,et al.Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cellmobilization,tissue repair,and wound healing.Stem Cells.2004;22(3):405-414.
    41. Forte G,Minieri M,Cossa P,et al.Hepatocyte growth factor effects on mesenchymal stem cells:proliferation,migration,and differentiation. Stem Cells.2006;24(1):23-33.
    42. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli.Blood,2002;99:3838-3843.
    43. Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood,2003,101:3722-3729.
    44. Duan HF, Wu CT, Wu DL, et al. Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor. MolTher 2003;8:467-74.
    45. Zhao MZ, Nonoguchi N, Ikeda N, et al. Novel therapeutic strategy for stroke in rats by bone marrow stromal cells and ex vivo HGF gene transfer with HSV-1 vector. J Cereb Blood Flow Metab 2006;26:1176-88.
    46. Guo Y, He J, Wu J, et al. Locally overexpressing hepatocyte growth factor prevents post-ischemic heart failure by inhibition of apoptosis via calcineurin-mediated pathway and angiogenesis. Arch Med Res 2008;39:179-88.
    47. Cai L,Johnstone BH, Cook TG,et al.Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization.Stem Cells2007; 25:3234-43.
    48. Neuss S, Becher E, Woltje M, etal. Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing.Stem Cells2004; 22:405-14.
    49. Kinnaird T, Stabile E, Burnett MS, e tal.Bone-marrow-derived cells for enhancing collateral development:mechanisms, animal data and initial clinical experiences. Circ Res2004; 95:354-63.
    50. Van Belle E, Witzenbichler B,Chen D, e tal.Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor:the case for paracrine amplification ofangiogenesis.Circulation 1998:97:381-90.
    51. Hashiya N, Jo N, Aoki M, et al. In vivo evidence of angiogenesis induced by transcription factor Ets-1:Ets-1 is located upstream of angiogenesis cascade. Circulation 2004;109:3035-41.