日野P系列发动机冷却水泵质量改进与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷却水泵是现代内燃机的重要组成部分,为发动机的正常工作发挥了重要作用,作为冷却系统的动力源,驱动冷却剂在冷却水道及散热器间流动,带走燃料燃烧做功以外的多余热量,使发动机维持在一个合适的温度范围内工作,以达到最佳工况。
     P11C系列是6缸直立、四气门、增压中冷式柴油机。其缸径122mm、排量10.52升,在日本已批量应用于日野大型客车、重型卡车和工程机械等动力装置,功率覆盖范围为240kw~280 kw,而且可以拓展至294 kw。P11C系列还具有日野发动机一系列新的技术,包括HMMS微混合燃烧系统、高强度球墨铸铁活塞、低摩擦传动副和减振等技术,在提高功率、降低废气排放同时,燃油消耗率达到195g/kw·h、噪声小于95db(A)、第一次大修里程突破100万公里。P11C系列发动机有动力强劲、清洁环保、节能耐用、使用成本低等卓越的性能和品质,将为客户和社会提供更大使用价值。
     批量生产以后,P11C系列发动机冷却水泵暴露了许多质量问题,为了更好的满足顾客的需求,将各种故障模式汇总起来,进行分析、研究,并着手解决。冷却水泵的研究重点集中在它的功能部件水泵体上,水泵体的质量对水泵总成起着至关重要的作用。因此,从提高泵体加工的过程能力、改进产品结构等几个方面来改善它的质量。过程能力的提高主要着手工艺调整,同时刀具和夹具需要改进;产品结构的改进以试验为基础,通过试验获得数据,为改进提供依据,使水泵壳体既能刚性加强又不影响水泵流量和扬程,降低故障率,提高耐久性,以提高用户满意度。
The cooling water pump is an important constituent of the modern internal combustion engine, has played the vital role for the engine normal work. As cooling system power supply, the actuation cooling agent in cools between the canal and the radiator flows, Carries off outside the fuel burning acting the unnecessary quantity of heat, causes the engine working to maintain in an appropriate temperature range, to achieve the best operating mode.
     So-called internal combustion engine“moderate”cooling, is refers to the internal combustion engine the main being heated part like piston, the cylinder cover, the cylinder liner and so on, after the cooling medium (water, air or lubricating oil) cools, its temperature maintains at some permission temperature range (the partial shipment truck hypothesis for about 90℃, The partial passenger vehicles are about 120℃). It is not only higher than this temperature range the upper limit, but also cannot be lower than its lower limit, to guarantees the internal combustion engine effective work.
     Cooling water pump prime task principle, is leads the water pump rotation of axis by the engine crank or its transmission part, On water pump shaft impetus axial-tab terminal impeller in snail room internal rotation, The centrifugal force and the entrance produces which through the impeller have the suction, and inbreathe the refrigerant into impeller, to increases the pressure and the current capacity, enters the engine cooling pipeline.
     The modern model cooling water pump consists of the water pump shell, the axis bearing, integral-type seal, water pump impeller, water pump cover, belt pulley etc. Divides into the alone writing style and the mosaic, Mosaic snail room is on the engine liner or front cover.
     A lot of the centrifugal pump article can be found from domestic and overseas. These centrifugal pumps are widespread application in chemical industry, water power, agriculture, transportation, and daily life. Because the limits of the vehicle cooling water pump on its structure, it has these major characteristic, the rotational speed is high, the rotational speed scope is big, the use operating mode is complex, the price is low, production batch, so the vehicle cooling water pump has its own characteristic with the relatively generalized centrifugal pump
     Through the research about quality improvement and analysyis that P11C engine cool water pump, the question of discusstion improved throughput of water pump, and product stucture is improved.
     This research uses the author the newest introduction advanced water pump performance test platform in the author’s unit to carry on the data test and the confirmation. This test platform has the characteristics of the high accuracy; the reproducibility is good; operates simply and so on.
     The flow of APQP is diparted five parts,its last part is“information feedback and put right step”,its input is information of feedback,output is reduced change、client satisfaction、delivery and service,its process is improved process.Betterment approximately is disparted process improvement and product improvement. The topic is from process; hat found problems, rocess improvement, and product improvement.
     Process ability exponent CPK≤1.33,so process ability is not enough,and need improved. The improvement of process mainly starts at man, machine, material, means, ring, measure. The key of p11C engine cooling water pump is technoly adjusting, more concretely , is tools and clamp improvemet. The machining of seal hole and bearing hole is boring at a whack, from turning at a whack.The rigidity of boring machine is better to lath.More important,in process of turing worpiece is going round and round in high speed. On boring machine, the workpiece is immobile, but tooling is going quickly.Locomation will bring quake, and precision wil be reduced greatly.Comparely, tooling turing bring to machine is less to workpiece, so its precision is better to lath. The realization of process needs improvement of the tool and lamp. Produt stucture improvement is extended by process improvement.
     Process ability exponent is low, but we can’t find the problem. So we have to doubt the product itself. For validating this and resolve it, by doing experiment grouping, we last arrived at conclusion that the product needs improved and the result of improvement is satisfying.
引文
1.产品质量先期策划[M].李兆山中智信达东方音像电子出版社
    2.田其铸.汽车构造[M].哈尔滨出版社,1997.5
    3.中华人民共和国机械行业标准.燃机冷却水泵JB/T8126.1~8126.2-1999[S]
    4.李国生,徐饮周,马维洲.画法几何及工程制图[M].黑龙江科学技术出版社
    5.李兴林,王成焘,曹茂来,阮建国.汽车水泵轴连轴承密封性能试验分析[M]
    6.唐建平.汽车发动机冷却水泵用水泵轴连轴承[M]
    7.李维拥.汽车零部件失效分析文集[M].吉林科学技术出版社
    8.中华人民共和国机械行业标准《内燃机冷却水泵台架可靠性考核》JB/T50033-1999[S]
    9.德国DEUTZ公司《开发技术条件冷却水泵性能试验》H-SE 5045 US 8070 C37[S]
    10.德国DEUTZ公司《开发技术条件冷却水泵耐久试验》H-SE 5046 US 8070 Q37[S]
    11.中华人民共和国汽车行业标准《汽车发动机冷却水泵》QC/T288. 1~288.2-2001[S]
    12.毛根海.工程流体力学[M].高等教育出版社,2002.6
    13.徐涛,数值计算方法[M].吉林科学技术出版社1998.7
    14.何希杰.叶片泵汽蚀破坏及预测方法.通用机械2003年11期(52~55)
    15.张仁田.叶片泵汽蚀特性与流量关系的新概念[J].(流体机械1965年3期)(13~18)
    16.黄以良.提高泵汽蚀性能的设计方法探讨[M].排灌机械.1998年第3期(56~58)
    17.杨建国.水泵最佳工况点的分析[J].阜新矿业学院学报(自然科学版),1997年4月(209~212)
    18.朱红耕.泵汽蚀余量及其试验方法浅议[J].排灌机械1995年第1期(23~26)
    19.李文广.离心泵汽蚀余量预测中的插值方法[J].流体机械1998年6月(16~20)
    20.王玉昆.拟合水泵汽蚀试验数据的一种新方法[J].中国农村水利水电(农田水利与小水电) 1998年第6期(20~21)
    21.屠其星. X6130Z柴油机冷却水泵设计[J].重型汽车1997(3)总40期(11)
    22.吴际璋.汽车构造[M].人民交通出版社
    23.白晓宁.矿用离心水泵叶轮的优化设计[J].山东矿业学院学报(自然科学版) 1999年6月第18卷第2期(40~43)
    24.黄建德等.离心泵叶轮形状对汽蚀损伤的影响[J].核心动工程2002年8月第23卷第4期(45~48)
    25.吴仁荣.叶轮的结构形状对离心泵汽蚀性能的影响[J].机电设备1995年第6期(18~21)
    26.马银珍等.离心泵叶轮设计参数对性能的影响[J] (山西水利科技1995年11月)(77~80)
    27.王幼民等.中低比转速离心泵叶轮多目标优化设计[J(]机械传动2003年第27卷第2期)(27~29)
    28.李爱珍.叶片式水泵的几个比值及其应用[J].村镇建设1998年第3期(17~18)
    29.毕乾邦等.发动机冷却水泵的汽蚀研究[J].兵工学报坦克装甲车与发动机分册1994年第3期(54~58)
    30.李志鹏.离心泵兼顾效率和汽蚀性能的理论分析与设计[J].中国农村水利水电1999年第4期(31~32)
    31.李安虎等.泵CAD发展和展望[J].水泵技术2003年第5期
    32.薛宗柏.泵浦[M],科技卫生出版社. 1958年10月
    33.张及瑞.离心泵叶轮直径确定方法的讨论[J] .水泵技术,2003年第6期(19~22)
    34.高章发等.离心泵设计新思路[J].通用机械,2004年第10期(78~80)
    35.高章发等.设计参数对泵性能曲线形状的影响分析[J].流体机械,2002年第8期(23~25)
    36.范宗霖等.改变叶轮出口宽度扩大离心泵性能范围[J].水泵技术,2004年第2期(3~7)
    37.李文广等.叶片出口角对离心油泵性能的影响[J]. (水泵技术,2001年第2期)(14~17)
    38.刘厚林.泵水力设计软件PCAD2004的开发[J]. (水泵技术,2005年第1期)
    39.中华人民共和国国家标准《离心泵混流泵和轴流泵汽蚀余量》GB/T13006-91[S]
    40.西北工业大学,王三民,西安交通大学,诸文俊.机械原理与设计[M]
    41.奥地利AVL公司标准《水泵性能台架试验》F04N0010[S],1998年2月25日
    42.奥地利AVL公司标准《发动机冷却回路试验》F04N0030[S],1998年2月9日
    43.德国VOLKSSWAGEN公司标准《水泵功能要求》TL82165[S]
    44.《上海通用轿车JB(SGM)02型水泵标准》Q/JQBA29-2000[S]
    45.李世煌.叶片泵的非设计工况及其优化设计[M].机械工业出版社2006年1月第1版
    46.姚仲鹏,王新国.车辆冷却传热[M].北京理工大学出版社, 2006年6月第1版
    47.工程流体力学[M]. (吉林大学内部教材)
    48.内燃机离心式冷却水泵系列工作组.内燃机离心式冷却水泵主要尺寸估算方法[初稿][M]. 1977年9月
    49.内燃机离心式冷却水泵系列工作组.《卅一台内燃机离心式冷却水泵试验报告》[R]. 1977年9月
    50.胡琪.493Q冷却水泵校核计算说明书[M].南通江华机械厂. 1992年10月
    51.《机械设计手册》(第3篇机械工程材料)[M].机械工业出版社.2004年8月第3版