弹性接触问题的杂交Trefftz有限元解法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
接触问题广泛存在于生产和工程实际中。待定的接触区域和摩擦效应的不可逆性使得接触问题表现出高度的非线性特征。尽管研究者们已经获得了许多接触问题的解析解,但是绝大多数的实际问题都超出了其应用范围。因此,出现了大量的求解接触问题的数值方法,这些数值方法主要是以传统有限元法和传统边界元法为基础的。作为一种高效有力的计算工具,杂交Trefftz有限元法自30年前提出以来,已经受到了愈来愈多的重视。它主要具备两个优点:其一,单元公式中只含有边界积分,这样就可以构造出任意多边形甚至曲边单元,它可以看作是一种特殊的对称形式的边界型求解方法。因此,Trefftz有限元法具备了传统边界元法的优点,而又避免了复杂奇异积分方程的计算。其二,与传统有限元法相比,Trefftz有限元法在处理带有各种因载荷、几何(如角点、孔洞、裂纹、夹杂、集中载荷等)引起的局部效应问题时,不需另外细分网格,就能得到比较理想的精度。到目前为止,Trefftz有限元法已经应用到诸多工程领域。然而,将这种有限元法应用于接触问题尚无先例。本文主要分两部分内容:对于Trefftz有限元方法本身的一些研究和基于这种有限元法开发接触问题的求解算法。
     从弹性平面问题的基本解析解出发,提出了建立普通单元的Trefftz函数的另一种途径。另外,在Piltner工作的基础上,通过旋转映射函数的引入以及Muskhelishvili复变函数法的应用,提出了一种新的Trefftz孔洞单元。这种新单元能够方便地分析含有任意方向椭圆孔的问题,弥补了早期Piltner孔洞单元的不足。
     本文首次将Trefftz有限元法应用于摩擦和无摩擦弹性接触问题。应用静凝聚将原来较大的接触模型缩聚成较小的接触模型,而只保留了可能接触区内的离散节点。缩聚后的模型降低了机时,提高了计算效率。由于接触界面方程的系数矩阵存在零主元,因此采用列主元高斯消去法进行求解。对于无摩擦情况,只需单步加载;而对于摩擦情况,则采用自动载荷增量技术进行加载。在整个应用过程中,本文提出的直接约束-Trefftz有限元法概念简单、物理意义明确、应用方便。
Contact problems arise frequently in industrial processes and engineering applications. The non-linearities appearing in these problems are due to the undetermined size of contact zone and to the irreversible nature of frictional effects. Even though a number of analytical solutions are available, the vast majority of practical problems lie beyond their applicability. Hence a large family of numerical approaches, mainly based on the conventional finite element method (FEM) or boundary element method (BEM), has been developed for treating these problems. As a highly efficient and well established tool, the hybrid-Trefftz (HT) FEM, initiated about three decades ago, has now become more and more popular. There are two main advantages in HT FEM: firstly, the formulation only calls for integration along the element boundary which enables arbitrary polygonal or even curve-sided elements to be generated. As a result, it may be considered as a special, symmetric, substructure-oriented boundary solution approach and thus possesses the advantages of the conventional BEM. In contrast, however, HT FEM avoids the introduction of singular integral equations and, secondly, HT FEM, compared with the conventional FEM, can accurately treat problems with various local effects due to loading and/or geometry (for example, corners, holes, cracks, inclusions, concentrated loads, etc.) without troublesome mesh refinement. Up to now, HT FEM has been thoroughly explored in a number of fields in engineering. However, there are no contributions by HT FEM for contact problems. The main content of this paper is twofold: some research on HT FEM itself and, development of contact solution algorithm based on it. Starting from the fundamental analytical solutions to plane elastic problems, an alternative way to construct Trefftz functions for regular element is presented. Additionally, a novel Trefftz hole element, based on the work of Piltner, is developed with the introduction of rotated mapping function and with the help of Muskhelishvili complex function approach. This element can be easily and conveniently employed to analyze problems with elliptical holes opened in any direction. And thus the shortage of the Piltner hole element has been covered.
     This paper initially applies HT FEM, in conjunction with the direct constraint technique, to elastic contact problems with or without friction. The static condensation is employed to condense a larger model down to a smaller one which involves discrete
引文
[1]Hertz H, Miscellaneous papers on the contact of elastic solids, Translated by Jones D E, McMillan, London, 1896
    [2]Johnson K L, 接触力学(徐秉业等), 北京: 高等教育出版社, 1992
    [3]Gladwell G M L, 经典弹性理论中的接触问题(范天佑), 北京: 北京理工大学出版社, 1991
    [4]Wriggers P, Computational Contact Mechanics, New York: John Wiley & Sons, 2002
    [5]席根喜, 徐国彬, 一种全新大跨桥梁形式—索托桥的静力性能研究, 第九届全国空间结构学术会议, 2000. 373~379
    [6]郭小明, 弹塑性接触问题的研究及其应用: [博士学位论文], 上海; 东南大学,2002
    [7]孙林松, 王德信,谢能刚, 接触问题有限元分析方法综述, 水利水电科技进展, 2001, 21(3): 18~20
    [8]Stader J T, weiss R O, Analysis of contact through finite element gaps, Comput. Struct., 1979, 10(6): 867~973
    [9]Landenberger A,El-Zafrany A. Coupling of gap finite elements and boundary elements for elastic contact problems. In: Proceedings of the World Conference on the Boundary Element Method, BEM, Boundary Elements XVIII, 1996. 373~383
    [10]Landenberger A,El-Zafrany A,Boundary element analysis of elastic contact problems using gap finite elements, Comput. Struct., 1999, 71(6): 651~661
    [11]Choi C K, Chung G T, A gap element for three-dimensional elasto-plastic contact problems, Comput. Struct., 1996, 61(6): 1155~1167
    [12]Bai X L, Zhao X H, Analysis of large deformation elastoplastic contact through finite gap elements, Comput. Struct., 1988, 30(4): 975~978
    [13]钟毅, 贺毓辛, 材料复合接触变形问题的罚函数有限元方程, 昆明理工大学学报, 2000, 25(2): 20~23
    [14]罗继伟, 无摩擦弹性接触问题的罚有限元法, 机械工程学报, 1984, 20(3): 82~86
    [15]Underhill W R L, Dokainis M A, Oravas G E, A method for contact problems using virtual elements, Comput. Meth. Appl. Mech. Engng., 1997, 143(3): 229~ 247
    [16]Katona M G, A simple contact-friction interface element with applications toburied culverts, Int. J. Num. Anal. Meth. Geomech., 1983, (7): 371~384
    [17]雷晓燕, 摩擦接触单元的理论及其应用, 岩土工程学报, 1994, 16(3): 23~32
    [18]Barlam D, Zahavi E, The reliability of solutions in contact problems, Comput. Struct., 1999, 70(1): 35~45
    [19]Hughes T J R, Taylor R L, Sackman J L, et al, A finite element method for a class of contact- impact problems, Comp. Meth. Appl. Mech. Engrg., 1976, 8(3): 249~ 276
    [20]Kalker J J, The principles of virtual work and its dual for contact problems, Archive of Applied Mechanics, 1986, 56(6): 453~467
    [21]Papadopoulos P, Solberg J M, A Lagrange multiplier method for the finite element solution of frictionless contact problems, Math. Comp. Anal. Model., 1998, 28(4-8): 373~384
    [22]Jones R E, Papadopoulos P, A yield-limited Lagrange multiplier formulation for frictional contact, Int. J. Numer. Meth. Engng., 2000, 48(8): 1127~1149
    [23]Rebel G, Park K C, Felippa C A, A contact formulation based on localized Lagrange multipliers: formulation and application to two-dimensional problems, Int. J. Numer. Meth. Engng., 2002, 54(2): 263~297
    [24]孙辉,扶名福,杨国泰,摩擦约束有限变形弹塑性广义变分不等原理, 机械工程学报,2005, 41(3): 38~46
    [25]Simo J C, Wriggers P, Talor R L, A perturbed Lagrangian formulation for the finite element solution of contact problems, Comp. Meth. Appl. Mech. Engrg., 1985, 50(2): 163~180
    [26]Simo J C, Laursen T A, Augmented Lagrangian treatment of contact problems involving friction, Comput. Struct., 1992, 42 (1): 97~116
    [27]Heegaard J H, Curnier A, An augmented Lagrangian method for discrete large-slip contact problems, Int. J. Numer. Meth. Engng., 1993, 36(4): 569~593
    [28]王水林, 邓建辉, 葛修润, 改进的拉氏乘子法在接触摩擦问题中的应用, 岩土工程学报, 1998, 20(5): 64~67
    [29]Wriggers G, Zavarise G, Application of augmented Lagrangian techniques for non-linear constructive laws in contact interfaces, Commu. Num. Meth. Eng., 1993, 9(10): 815~824
    [30]Zavarise G, Wriggers P, Scheffler B A, On augmented Lagrangian algorithm for thermo- mechanical contact problems with friction, Int. J. Numer. Meth. Engng., 1995, 38(17): 2929~2949
    [31]张焱, 孔祥安, 陈平等, 接触力学中的变分原理, 西南石油学院学报, 1998, 20(1): 99~104
    [32]Lundvall1 O, Str?mberg N, Klarbring A, A flexible multi-body approach for frictional contact in spur gears, J. Sound Vib., 2004, 278(3): 479~499
    [33]Yoon K E, Analysis of contact problems by means of an optimization technique, University of Iowa, Department of Mechanics and Hydraulics, Report No. 24, 1970
    [34]Conry T F, The use of mathematical programming in design for uniform load in nonlinear elastic systems: [Ph.D. Dissertation], Madison; University of Wisconsinm, 1970
    [35]Coury T F, Seireg A, A mathematical programming method for design of elastic bodies in contact, ASME J. Appl. Mech., 1971, 38(2): 387~392
    [36]Chand R, Haug E J, Rim K, Analysis of unbounded contact problems by means of quadratic programming, J. Optimiz. Theory App., 1976, 20(2): 171~189
    [37]Panagiopoulos P P, On the unilateral contact problems of structures with a non- quadratic strain energy density, Int. J. Solid. Struct., 1977, 13(3): 253~261
    [38]崔俊芝, 关于有间隙的弹性接触问题, 力学学报, 1980, (3): 261~268
    [39]Oden J T, Pires E B, Numerical analysis of certain contact problems in elasticity with non-classical friction laws, Comput. Struct., 1983, 16(1-4): 481~485
    [40]Haug N D, Saxce G, Frictionless contact of elastic bodies by finite element method and mathematical programming technique, Comput. Struct., 1980, 11(1): 55~67
    [41]宣兆成, 李兴斯, 单侧接触问题的拟有效集方法, 应用数学和力学, 2002, 23(8): 811~817
    [42]李青, 李卫, 求解弹性接触问题余能泛函的Lemke法, 湖南大学学报, 1990, 17(4): 135~141
    [43]冷纪桐, 赵军, 程树珍, 用二次规划方法求解弹性接触问题, 北京化工学院学报(自然科学版), 1994, 21(1): 48~52
    [44]Rao P V M, Dhande S G, Deformation analysis of thin elastic membranes in multiple contact, Adv. Eng. Softw., 1999, 30(3): 177~183
    [45]Dostál Z, Gomes Neto F A M, Santos S A, Solution of contact problems by FETI domain decomposition with natural coarse space projections, Comp. Meth. Appl. Mech. Engrg., 2000, 190(13-14): 1611~1627
    [46]钟万勰, 弹性接触问题的变分原理及参数二次规划求解, 计算结构力学及其应用, 1985, 2(2): 1~10
    [47]钟万勰, 弹性接触问题势能原理及其算法,计算结构力学及其应用, 1985, 2(1): 21~29
    [48]陈国庆, 陈万吉, 冯思民, 摩擦接触问题数学规划法的收敛性和算法的改进, 计算结构力学及其应用, 1994, 11(14): 374~379
    [49]朱昌铭, 基于虚功原理的弹性接触问题的线性互补方法, 力学学报, 1995, 27(2): 189~197
    [50]Mohamed S A, Helal M M, Mahmoud F F, An incremental convex programming model of the elastic frictional contact problems, In: Proceedings of the ASME/STLE International Joint Tribology Conference, 2004. 1307~1326
    [51]陆山, 用边界元-数学规划解弹塑性接触问题, 航空学报, 1985, 6(6): 548~555
    [52]沙德松, 孙焕纯, 徐守泽, 弹性擦接触问题的边界元-线性互补法, 应用数学和力学, 1990, 11(12): 1035~1041
    [53]Dostál Z, Friedlander A, Santos S A, Analysis of semicoercive contact problems using symmetric BEM and augmented Lagrangians, Eng. Anal. Bound. Elem., 1996, 18(3): 195~201
    [54]Gonzalez J A, Abascal R, Solving 2D transient rolling contact problems using the BEM and mathematical programming techniques, Int. J. Numer. Meth. Engng., 2002, 53(4): 843~874
    [55]Yu C X, Shen G X, Liu D Y, Mathematical Programming Solution for the Frictional Contact Multipole BEM, Tsinghua Science & Technology, 2005, 10(1): 51~56
    [56]Chen X M, Shen G X, Liu D Y, Frictional contact multipole-BEM and 3-D analysis of screwpairs, Chinese Journal of Mechanical Engineering (English Edition), 2004, 17(3): 411~414
    [57]刘德义, 申光宪, 肖宏, 三维弹塑性摩擦接触多极边界元法燕山大学学报, 2004, 28(2): 99~102
    [58]Trefftz E. Ein Gegenstück zum Ritz’schen Verfahren. In: Proceedings of the Second International Congress on Applied Mechanics, Zurich, Switzerland, 1926. 131~137
    [59]Stein E, Die Kombination des modifizierten Trefftzschen Verfahrens mit der Methode der finiten Elemente, In Finite Elemente in der Statik, Verlag Ernst+Sohn, Berlin, 1973, 172~185
    [60]Ruoff G, Die praktische Berechnung der Kopplungsmatrizen bei der Kombination der Trefftzschen Methode under Methode der finiten Elemente, In Finite Elemente in der Statik, Verlag Ernst+ Sohn, Berlin, 1973, 242~259
    [61]Zienkiewicz O C, Kelly D W, Bettess P, The coupling of finite element and boundary solution procedures, Int. J. Numer. Meth. Engng., 1977,11(2):355~376
    [62]Jirousek J, Leon N, A powerful finite element for plate bending, Comp. Meth. Appl. Mech. Engrg., 1977, 12(1):77~96
    [63]Herrera I, General variational principles applicable to the hybrid element method, In: Proc. Natl. Acad. Sci. U.S.A., 1977. 2595~2597
    [64]Herrera I. Boundary methods: a criterion for completeness. In: Proc. Natl. Acad. Sci. U.S.A., 1980. 4395~4398
    [65]Herrera I, Ewing R E, Celia M A, et al, Eulerian-Lagrangian localized adjoint method: The theoretical framework, Numer. Methods Partial Differ. Equ., 1993, 9(4): 431~457
    [66]Herrera I, Sabina F J. Connectivity as an alternative to boundary integral equations: construction of bases. In: Proc. Natl. Acad. Sci. U.S.A., 1978. 2059~ 2063
    [67]Zielinski A P, Zienkiewicz O Z, Generalized finite element analysis with T-complete boundary solution functions, Int. J. Numer. Meth. Engng., 1985, 21(3): 509~528
    [68]Jirousek J, Guex L, The hybrid-Trefftz finite element model and its application to plate bending, Int. J. Numer. Meth. Engng., 1986, 23(4): 651~693
    [69]Qin Q H, Hybrid Trefftz finite element approach for plate bending on an elastic foundation, Appl. Math. Model., 1994, 18(6): 334~339
    [70]郑小平, 叶天麒, 薄板弯曲问题的 Trefftz 方法, 航空学报, 1991, 12(9): A444~A451
    [71]金吾根, 张佑启, Trefftz 法中的自锁现象及变量减缩法, 固体力学学报, 2000, 21(4): 290~296
    [72]Piltner R, On the systematic construction of trial functions for hybrid Trefftz shell elements, Comput. Assist. Mech. Eng. Sci., 1997, 4(3-4): 633~644
    [73]Zielinski A P, Zienkiewicz O C, Generalized finite element analysis with T-complete solution functions, Int. J. Numer. Meth. Engng. 1985, 21(3): 509~528
    [74]Kita E, Ikeda Y, Kamiya N, Trefftz solution for boundary value problem of three-dimensional Poisson equation, Eng. Anal. Bound. Elem., 2005, 29(4): 383~390
    [75]Jirousek J, Venkatesh A, Hybrid Trefftz plane elasticity elements with p-method capabilities, Int. J. Numer. Meth. Engng., 1992, 35(7): 1443~1472
    [76]Qin Q H, Dual variational formulation for Trefftz finite element method of elastic materials, Mechanics Research Communications, 2004, 31(3): 321~330
    [77]Freitas J A T, Hybrid-Trefftz displacement and stress elements for elastodynamic analysis in the frequency domain, Comput. Assist. Mech. Eng. Sci.,1997, 4(3-4): 345~368
    [78]Jirousek J, Qin Q H, Application of Hybrid-Trefftz element approach to transient heat conduction analysis, Comput. Struct., 1996, 58(1): 195~201
    [79]金吾根,毛晓春,薛馨,等,压电材料平面问题的一般解及其在 Trefftz 法中的应用,自然科学进展,2002, 12(9): 913~917
    [80]Qin Q H, Variational Formulations for TFEM of Piezoelectricity, Int. J. Solid. Struct., 2003, 40(23): 6335~6346
    [81]Qin Q H, Solving anti-plane problems of piezoelectric materials by the Trefftz finite element approach, Comput. Mech., 2003, 31(6): 461~468.
    [82]薛馨,金吾根,李珏,等, Trefftz直接法解渗流自由面问题, 岩土力学与工程学报, 2005, 24(13): 2322~2326
    [83]李珏,金吾根,薛馨,等, Trefftz间接法解自由面渗流问题, 计算力学学报, 2005, 22(3): 295~298
    [84]Qin Q H, Postbuckling analysis of thin plates by a hybrid Trefftz finite element method, Comp. Meth. Appl. Mech. Engrg., 1995, 128(1): 123~136
    [85]Qin Q H, Nonlinear analysis of thick plates by HT FE approach, Comput. Struct., 1996, 61(2): 271~281
    [86]Qin Q H, Postbuckling analysis of thin plates on an elastic foundation by HT FE approach, Appl. Math. Model., 1997, 21(9): 547~556
    [87]Qin Q H, Diao S, Nonlinear analysis of thick plates on an elastic foundation by HT FE with p-extension capabilities, Int. J. Solid. Struct., 1996, 33(30): 4583~ 4604
    [88]Zieliński A P, Trefftz method: elastic and elasto-plastic problems, Comp. Meth. Appl. Mech. Engrg., 1988, 69(1): 185~204
    [89]Freitas J A T, Formulation of elastostatic hybrid-Trefftz stress elements, Comp. Meth. Appl. Mech. Engrg., 1998, 153(1): 127~151
    [90]Qin Q H, Formulation of hybrid Trefftz finite element method for elastoplasticity, Appl. Math. Model., 2005, 29(3): 235~252
    [91]Lin K Y, Tong P, Singular finite elements for the fracture analysis of V-notched plate, Int. J. Numer. Meth. Engng., 1980, 15(9): 1343~1354
    [92]Tong P, Pian T H H, Lasry S J, A hybrid-element approach to crack problems in plane elasticity, Int. J. Numer. Meth. Engng., 1973, 7(3): 297~308
    [93]Piltner P, Special finite elements with holes and internal cracks, Int. J. Numer. Meth. Engng., 1985, 21(8): 1471~1485
    [94]Zeng D, Kartsube N, Zhang J, A hybrid finite element method for fluid-filled porous materials, Int. J. Numer. Anal. Meth. Geomech., 1999, 23(13): 1521~1534
    [95]Zhang J, A hybrid finite element method for heterogeneous materials with randomly dispersed rigid inclusions, Int. J. Numer. Meth. Engng., 1995, 38(10): 1635~1653
    [96]Zhang J, Katsube N, A hybrid finite element method for heterogeneous materials with randomly dispersed elastic inclusions, Finite Elem. Anal. Des., 1995, 19(1): 45~55
    [97]Zhang J, Katsube N, A polygonal element approach to random heterogeneous media with rigid ellipses or elliptical voids, Comp. Meth. Appl. Mech. Engrg., 1997, 148(3-4): 225~234
    [98]Gyimesi M, Wang J S, Ostergaard D, Hybrid p-element and Trefftz method for capacitance computation, IEEE Transactions on Magnetics, 2001, 37(5): 3680~ 3683
    [99]Shlepnev Y O, Trefftz finite elements for electromagnetics, IEEE Transactions on Microware theory and Techniques, 2002, 50(5): 1328~1339
    [100]Herrera I, Unified approach to numerical methods. I. Green’s formulas for operators in discontinuous Fields, Numer. Methods Partial Differ. Equ., 1985, 1(1): 12~37
    [101]Jirousek J, Variational formulation of two complementary hybrid-Trefftz FE models, Commu. Num. Meth. Eng., 1993, 9(10): 837~845
    [102]Jirousek J, Zielinski A P, Dual hybrid-Trefftz element formulation based on independent boundary traction frame, Int. J. Numer. Meth. Engng., 1993, 36(17): 2955~2980
    [103]Qin Q H, The Trefftz Finite and Boundary Element Method, Southampton: WIT Press, 2000. 73~102
    [104]Kita E, Kamiya N, Trefftz method: an overview, Adv. Eng. Softw., 1995, 24(1): 3~12
    [105]Cheung Y K, Jin W G, Zienkiewicz O C, Direct solution procedure for solution of harmonic problems using complete, non-singular, Trefftz functions, Comm. Appl. Num. Meth., 1989, 5(3): 159~169
    [106]毛晓春, Trefftz法解压电材料平面问题: [硕士学位论文],上海; 复旦大学, 2003
    [107]Kita E, Kamiya N, Lio T, Application of a direct Trefftz method with domain decomposition to 2D potential problems, Eng. Anal. Bound. Elem., 1999, 23(7): 539~548
    [108]Ikeda Y, Sobue M, Kita E, et al, Sensitivity analysis of two-dimensional potential problem based on direct Trefftz formulation, Boundary Elements, 2001, (3): 13~20
    [109]Chang J R, Liu R F, Yeih W, et al, Applications of the direct Trefftz boundary element method to the free-vibration problem of a membrane, The Journal of the Acoustical Society of America, 2002, 112(2): 518~527
    [110]Cheung Y K, Jin W G, Zienkiewicz O C, Solution of Helmholtz equation by Trefftz method, Int. J. Numer. Meth. Engng., 2005, 32(1): 63~78
    [111]Jirousek J, Teodorescu P, Large finite elements method for the solution of problems in the theory of elasticity, Comput. Struct., 1982, 15(5): 575~587
    [112]Choi N, Choo Y S, Lee B C, A hybrid Trefftz plane elasticity element with drilling degrees of freedom, Comp. Meth. Appl. Mech. Engrg., 2006, 195(33-36): 4095~4105
    [113]Choo Y S, Choi N, Lee B C, Quadrilateral and triangular plane elements with rotational degrees of freedom based on the hybrid Trefftz method, Finite Elem. Anal. Des., 2006, 42(11): 1002~1008
    [114]Kompis V, Pavol N, Mariam H, Finite displacements in reciprocity-based FE formulation, Comput. Assist. Mech. Eng. Sci., 2002, 9(4): 469~480
    [115]Sladek J, Sladek V, A Trefftz function approximation in local boundary integral equations, Comput. Mech., 2002, 28(3-4): 212~219
    [116]秦庆华,Hybrid-Trefftz有限元简介和展望,力学与实践,1993, 15(3): 20~22
    [117]秦庆华,Hybrid-Trefftz有限元的研究进展,力学进展,1998, 28(1): 71~82
    [118]Simpson H C, Spector S J. On the positive of the second variation of finite elasticity, Arch. Rational Mech. Anal., 1987, 98(1): 1~30
    [119]Jirousek J, Zielinski A P, Survey of Trefftz-type element formulations, Comput. Struct., 1997, 63(2): 225~242
    [120]Qin Q H, Huang Y Y, BEM of postbuckling analysis of thin plates, Appl. Math. Model., 1990, 14(10): 544~548
    [121]Muskhelishvili N I, Some basic problems of the mathematical theory of elasticity, Noordhoff: Groningen, Holland, 1953.
    [122]傅向荣,龙驭球,袁明武,基于解析试函数的广义协调超基膜元,工程力学,2005, 22(3): 1~4
    [123]龙驭球,龙志飞,岑松,新型有限元论,北京: 清华大学出版社,2003. 383~390
    [124]马书尧,用边界元法解无摩擦二维弹性接触问题,河北工学院学报,1984,2(26): 11~21
    [125]Huesmann A, Kuhn G, Automatic load incrementation technique for plane elastoplastic frictional contact problems using boundary element method, Comput. Struct., 1995, 56(5): 733~744
    [126]Wilson E, The static condensation algorithm, Int. J. Numer. Meth. Engng., 1974, 8(1): 198~203
    [127]París F, Blázquez A, Ca?as J, Contact problems with nonconforming discretizations using boundary element method, Comput. Struct., 1995, 57(5): 829~839
    [128]Blázquez A, París F, Manti? V, BEM solution of two-dimensional contact problems by weak application of contact conditions with nonconforming discretizations, Int. J. Solid. Struct., 1998, 35(24): 3259~3278
    [129]张韵华, 奚梅成, 陈效群. 数值计算方法和算法. 北京: 科学出版社, 2002
    [130]Keer L M, Dundurs J, Tsai K C, Problems involving a receding contact between a layer and a half space, J. Appl. Mech., 1972, 39(4): 1115~1120
    [131]Wang K Y, Qin Q H, Kang Y L, et al, A direct constraint-Trefftz FEM for analyzing elastic contact problems, Int. J. Numer. Meth. Engng., 2005, 63(12): 1694~1718
    [132]Méchain-Renaud C, Cimetière A, BEM solution of two dimensional unilateral contact problems with friction by a new approach, Eng. Anal. Bound. Elem., 2003, 27(3): 269~277
    [133]Okamoto N, Nakazawa M, Finite element incremental contact analysis with various frictional conditions, Int. J. Numer. Meth. Engng., 1979, 14(3): 337~357
    [134]彭迎风,辛勇,多孔结构材料在汽车碰撞安全中的应用研究,中国制造业信息化, 2006, 35(3): 54~58
    [135]徐世浙,王柏钧,保角变换在电法勘探中的应用,北京: 地质出版社,1977. 18~19
    [136]李红, 数值分析, 武汉: 华中科技大学出版社, 2003. 101~111
    [137]Qin Q H, Trefftz finite element method and its applications, Applied Mechanics Reviews, 2005, 58(5): 316~337
    [138]Jirousek J, A T-element approach to forced vibration analysis and its application to thin plates, LSC Internal Report, Switzerland, 1997. 12~15