杭白菊提取物效应成分的吸收、代谢和药物相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菊花为菊科植物菊[Chrysanthemum morifolium Ramat.)的干燥头状花序。具有疏风散热、明目、平肝和清热解毒之功效。现代药理学研究表明,菊花具有抗氧化和治疗心血管疾病等多种药理作用。进一步的研究表明,菊花的功效与其所含黄酮类化合物密切相关。而木犀草素(Luteolin)-7-O-β-D-葡萄糖苷和芹菜素(Apigenin)-7-O-β-D-葡萄糖苷为菊花中主要的黄酮类化合物,可在体内水解生成效应成分木犀草素和芹菜素。
     本课题组已对菊花提取物(CME)中主要黄酮类成分的药代动力学、排泄和组织分布等体内过程进行了一系列的研究,表明口服菊花提取物后,体内主要的效应成分为木犀草素和芹菜素,大鼠药动学结果显示,芹菜素的AUC显著高于木犀草素;木犀草素和芹菜素可经尿液、粪便和胆汁排泄;大鼠灌喂菊花提取物后,木犀草素和芹菜素广泛分布于各组织,二者在健康大鼠及心肌缺血大鼠中的分布存在一定差异(芹菜素在心肌缺血大鼠心肌中的分布显著高于健康大鼠)。但是,菊花中主要黄酮苷类化合物在大鼠体内的水解和吸收部位、水解部位环境的改变对其水解是否存在影响以及造成芹菜素AUC显著高于木犀草素的机制目前尚未阐明。此外,由于菊花药食同源,与许多药物存在伍用的可能,那么它是否会在吸收和代谢水平与伍用药物发生相互作用,也未见报道。为了阐明上述问题,本文采用多种模型,分别在体内、在体和体外水平,研究CME活性成分的吸收、代谢以及药物相互作用,以期为该类药物的体内过程研究提供新的思路和方法,并为临床合理用药和科学评价CME的药效学、药动学和毒理学提供依据。
     1.CME活性成分在大鼠体内的水解和吸收
     目的:评价CME活性成分在大鼠消化道内的脱糖代谢和吸收情况。
     方法:建立大鼠消化道内容物和组织中木犀草素和芹菜素的HPLC分析方法,研究CME效应成分——木犀草素和芹菜素在大鼠消化道的分布规律。
     结果:1)给药5min后,即可在血以及胃、十二指肠和空肠的内容物和组织中检测到木犀草素和芹菜素,表明CME在大鼠消化道内的水解和分布相当迅速。2)二者在胃、十二指肠、空肠、回肠、盲肠和结肠内容物中最高浓度分别出现在5min、5min、2h、5h和8h,消化道总滞留时间超过12h,特别是在大肠内可长时间保持较高浓度。3)木犀草素和芹菜素迅速出现在血液中,但消除相对缓慢,木犀草素和芹菜素的Tmax分别为30min和5h,表明木犀草素的吸收主要在消化道前段,而芹菜素的吸收部位可能更为广泛,芹菜素在12h时仍维持较高血药浓度。4)木犀草素和芹菜素在血、组织和内容物中的相对比例呈现一定特征,血中芹菜素的浓度远远高于木犀草素,在胃和小肠内容物中二者比例相当,但在盲肠和结肠内容物中木犀草素含量显著高于芹菜素。
     结论:CME在大鼠消化道内可发生迅速和广泛的水解代谢,生成效应成分木犀草素和芹菜素,这一过程存在明显的消化道和底物选择性。
     2.应用大鼠消化道原位结扎灌注技术研究CME活性成分的水解和吸收
     目的:分段评价各消化道的水解和吸收能力,以及影响水解和吸收的因素。
     方法:采用原位结扎灌注模型分别将CME与不同消化道进行孵化,同时采集血液、组织和内容物样品,评价不同吸收部位的水解和吸收差异,然后选择空肠测定了其水解和吸收动力学,并对影响其水解和吸收的因素(内容物、肠道菌、长期用药、性别和胃内酸性环境)进行了评价。
     结果:1)不同消化道组织均可水解CME活性成分,原位孵化10min后,各消化道内容物和组织中均可检测到木犀草素和芹菜素,盲肠对木犀草素苷的水解能力显著高于对芹菜素苷的水解能力,其他消化道对二者的水解能力相当,水解率均大于50%。木犀草素和芹菜素可被各消化道组织摄取,但仅在小肠段可以透过消化道进入血液。2)空肠原位孵化实验表明,CME活性成分的水解和吸收均很迅速,在内容物和组织中的最高浓度均为第一个时间点5min。其中芹菜素的吸收强于木犀草素,二者最高血药浓度分别为8.43和5.41μg/mL,AUC0-∞分别为999±100和339.4±49.9mg/L~*min,且水解和吸收过程呈现线性动力学特征。3)除去内容物、应用抗生素以及长期用药均使空肠内容物中木犀草素和芹菜素的含量出现一定程度降低,同时去除内容物使得组织摄取和吸收入血的量大大提高,但不同性别间未发现明显差异,其他因素对组织摄取和血药浓度影响也不大。
     结论:CME活性成分在各消化道均可发生迅速和广泛的水解代谢,但只有小肠段可有效的吸收木犀草素和芹菜素,这一水解和吸收过程具有消化道和底物选择性,并受多种因素影响。
     3.CME活性成分在大鼠组织提取物中的脱糖代谢
     目的:体外评价各消化道以及肝、肺和肾组织提取物对CME活性成分的水解代谢。
     方法:CME与各组织提取物共孵育,测定生成的木犀草素和芹菜素,通过考察底物浓度、孵育时间和酶浓度,确定最佳孵育条件,并在该条件下评价了不同组织提取物的水解代谢能力。采用LC-MS对其代谢产物进行了鉴定。
     结果:最佳孵育条件为:底物浓度18.75mg/mL,酶浓度0.50mg蛋白/mL,孵育时间30min。CME活性成分在各组织提取物中均可发生水解代谢,生成效应成分木犀草素和芹菜素。其中肾组织提取物的水解代谢能力最强,消化道组织中,空肠组织提取物的水解能力最强,胃水解能力最差,其他肠段组织提取物的水解能力介于空肠和胃之间。
     结论:CME活性成分可发生广泛的水解代谢,生成效应成分木犀草素和芹菜素,肾和空肠组织提取物的水解能力最强。
     4.木犀草素和芹菜素在大鼠原代肝细胞中的代谢
     目的:考察CME中效应成分木犀草素和芹菜素在肝脏发生的结合代谢反应。
     方法:采用原代肝细胞模型考察了二者的消除过程以及黄酮类化合物对其消除过程的影响。
     结果:1)木犀草素和芹菜素在原代肝细胞中的消除非常迅速,孵育120min,木犀草素和芹菜素的消除比率分别达到91.9%和86.7%,经二相结合物水解酶水解测得二者的二相代谢产物分别占给药量的54%和73%。2)性别和pH对其消除影响不大。3)少量木犀草素可转化为芹菜素(<5%)。4)二者在消除过程中存在饱和现象,随着浓度增加,消除率下降;二者间同样存在相互抑制作用,木犀草素抑制芹菜素的IC50为17.3gmol/L,而芹菜素抑制木犀草素的IC50为38.2μmol/L,且二者在HCME中消除时所受到的抑制与二者间的相互抑制作用相近,说明二者在提取物中消除所受到的抑制主要来自它们自身的相互作用,与其他成分关系较小。5)多种黄酮苷对二者消除均无明显影响,黄酮苷元中黄酮醇和黄酮类成分对其抑制作用明显,异黄酮苷元和儿茶素类对其消除无明显影响。
     结论:CME效应成分木犀草素、芹菜素在大鼠原代肝细胞中可迅速发生二相代谢,这一过程可能发生药物.药物相互作用。
     5.CME活性成分对大鼠原代肝细胞药物代谢酶的调节
     目的:考察CME及其效应成分木犀草素、芹菜素对肝—相药物代谢酶的调节作用。
     方法:采用大鼠原代肝细胞模型,考察上述成分对各CYP3A探针底物睾酮和硝苯地平以及CYP2E探针底物氯唑沙宗消除的影响。
     结果:孵育1h后,睾酮的代谢分别被木犀草素、芹菜素、CME和HCME抑制了44.0±8.2%、48.5±4.7%、20.1±0.4%和70.5±0.8%;孵育2h后,硝苯地平的代谢分别被四者抑制了79.1±1.3%、80.1±0.2%、60.4±2.6%和92.2±0.4%;孵育2h后,氯唑沙宗的代谢分别被抑制了54.3±0.2%、42.6±0.8%、41.9±2.7%和69.9±1.8%。抑制能力为HCME物>木犀草素≈芹菜素>CME。
     结论:木犀草素、芹菜素、CME和HCME对原代肝细胞CYP3A和CYP2E均有一定抑制作用,水解代谢可激活抑制代谢酶的能力。
     6.CME活性成分对过表达人MDR1细胞中P-gp的调节
     目的:考察CME及其效应成分木犀草素、芹菜素对人P-gp的调节作用
     方法:分别采用Bcap-MDR1和MDCK-MDR1模型,考察木犀草素、芹菜素、CME和HCME对R123在细胞内积聚的影响。
     结果:木犀草素、芹菜素、CME和HCME对人P-gp有明显抑制作用,这一抑制作用呈现剂量依赖性,Bcap-MDR1中,四者的最高剂量可分别使罗丹明的摄取达对照组的2.79±0.063、1.68±0.078、1.15±0.051和5.73±0.073倍;MDCK-MDR1中可达对照组的2.07±0.039、1.44±0.065、1.67±0.091和7.23±0.65。抑制能力为HCME>木犀草素>芹菜素>CME,两种模型得出的结论相似。
     结论:CME及其效应成分木犀草素和芹菜素对人P-gp具有调节作用,水解代谢可激活抑制人P-gp的能力。
Flos Chrysanthemi is the flower of Chrysanthemum morifolium Ramat..It has many beneficial effects such as dispelling wind and heat,improving eyesight,calm the liver and suppress yang,heat-clearing and detoxicating.The pharmacological investigations indicated that CME has antioxidant activity and can be used in the treatment of cardiovascular diseases.And the further researches shows that the flavonoids in CME play an important role in these benefit.The main flavonoids in CM were luteolin-7-O-β-D-glucoside and apigenin-7-O-β-D-glucoside,which can be deglycosidated to their effective aglycone——luteolin and apigenin during absorption.
     The pharmacokinetic,absorption,distribution and excretion of main CM flavonoids have been systematically studied in our lab.After oral administration of CME,the main effective components were luteolin and apigenin.AUC of apigenin was higher than luteolin in pharmacokinetic study,and they can excrete by urine,stool and bile.They can distribute in various tissues and their distribution was different between normal and myocardial ischemia rats.While,the hydrolysis and absorption site of glucosides in CME,the effect of conditions on the hydrolysis and absorption process as well as the reason of the higher AUC of apigenin were still not well elucidated.In addition,CM can be use as food and drug,so there was more chance of drug-drug interactions,which was not reported too.
     In this paper,we will investigate the absorption,metabolism and drug-drug interactions of CME in vivo,in situ and in vitro level to explore new ideas and methods for seeking new drugs,and providing scientifical evidence to scientifically evaluate animal pharmacodynamics,pharmacokinetics and toxicology.
     1.Deglyeosidation and absorption of active flavonoids of CME in rats.
     Objective:To investigate the deglycosidation and absorption of active flavonoids of CME in rat.
     Methods:Established HPLC methods for analyzing luteolin and apigenin in rat gastrointestinal contents and tissues,and then evaluated the distribution of luteolin and apigenin in gastrointestine.
     Results:1 ) The hydrolysis and distribution of CME components in gastrointestine were very fast.Luteolin and apigenin emerged in plasma,the contents and tissues of stomach,duodenum and jejunum at 5min after administration.2) The highest concentration of contents were 5min,5min,2h,5h and 8h for stomach,duodenum, jejunum,ileum,cecum and colon,respectively.The total residence time of luteolin and apigenin in gastrointestinal tract exceeded 12h,and contained high concentration level in large intestine contents for long time.3 ) Luteolin and apigenin were absorbed fast,while the elimination process of them in plasma were relatively slow,Tmax of luteolin and apigenin in plasma were about 30min and 5h,respectively,which implied that luteolin was mainly absorbed in the upper instine while apigenin may be absorbed in wider scope,and the plasma concentration of apigenin was still high at 12h after administration.3 )The ratio of luteolin and apigenin in plasma,tissue and contents was different,such as the concentration of apigenin was far beyond luteolin in plasma,but concentration of luteolin was higher than apigenin in cecum and colon.
     Conclusion:CME components can be hydrolyzed fast in the whole gastrointestine and producted effective components——luteolin and apigenin.This process was site and substrate dependent.
     2.Deglycosylation and absorption of active components of CME in situ perfusing iigated intestinal segment.
     Objective:To assess the hydrolysis and absorption ability of different gastrointestinal parts independently and impact of factors on hydrolysis and absorption.
     Methods:An in situ perfusing ligated intestinal segment model was used.After incubated CME in various gastrointestinal segments,the plasma,tissues and contents sample were collected and evaluated to assess the discrepancy of different parts.In addition,jejunum was selected to investigate the pharmacokinetics of deglycosidation and absorption.Factors affecting hydrolysis and absorption(contents,bacteria,long term administration,gender and acid condition of stomach ) were also evaluated.
     Results:1 ) All parts of gastraintestine could hydrolyze CME,and luteolin and apigenin could be detected after 10min incubation with various parts.The hydrolysis ability of cecum on luteolin glucoside was higher than apigenin glucosides,while other parts had the fair ability of hydrolyzing luteolin and apigenin glucosides,and the hydrolysis rate were all beyond 50%.Luteolin and apigenin could be uptaked by various gastrointestinal tissues,but only small intestine could transport them to blood. 2 ) CME was hydrolyzed and absorpted fast in jejunum,and the highest concentration emerged was 5min after administration.The absorption of apigenin was higher than luteolin with Cmax value 8.43 and 5.41μg/mL,respectively,while AUC_(0-∞)were 999±100 and 339.4±49.9mg/L*min,respectively.The hydrolysis and absorption potential depended on the dosage.3 ) Without contents,using antibiotics as well as long-time administration were all decreased the concentration of luteolin and apigenin in jejunum contents,while gender had no significant effect on it.Without contents,the tissue uptake and plasma concentration of luteolin and apigenin were increased,but other factors have no significant effect on their tissue and plasma concentration.
     Conclusion:CME components can be hydrolyzed fast in the whole gastrointestine and producted effective components——luteolin and apigenin.They can be absorbed in small intestine.This process was site and substrate dependent,and can be influenced by various factors.
     3.Deglycosidation of CME in cell free fractions of different tissues.
     Objective:To investigate the hydroysis ability of cell-free fractions of various tissues in vitro.
     Methods:Determinated the concentration of luteolin and apigenin after incubated CME with various cell free fractions.Investigated the best concentration of substrates, incubation time and protein contents,and compare the hydrolysis ability of various cell free fractions.LC-MS was also used to identify the metabolites.
     Results:The incubation condition selected was:18.75mg/mL of substrates,0.5mg protein/mL,and incubate for 30min.CME can deglycosidated in all investigated cell-free fractions,and produced effective luteolin and apigenin.Kidney cell free fraction can hydrolyze more CME than other tissues during the same time.Jejunum can hydrolyze more CME than other gastrointrestinal tissues,while stomach was the weakest one.
     Conclusion:CME can be hydrolyzed in many tissues,and produce effective lutelin and apigenin.Kidney and jejunum cell free fractions can hydrolyze CME more efficently.
     4.Metabolism of luteolin and apigenin in primary cultured hepatocytes.
     Objective:Investigated the conjugation metabolism of luteolin and apigenin in liver after absorption.
     Methods:Primary cultured rat hepatocytes model was selected.The elimination process of them was evaluated and the effect of other flavonoids on the elimination rate of luteolin and apigenin was also studied.
     Results:1 ) The eliminaton of luteolin and apigenin was very fast.91.9%of luteolin and 86.7%of apigenin disappeared after 120min incubation.The percentage of phaseⅡmetabolites reached 54%and 73%of dose for luteolin and apigenin,respectively. 2 ) Gender and pH have no significant effect on the elimination rate of luteolin and apigenin.3 ) Luteolin can transformed to apigenin to mimor extent(<5%).4 ) When monolayers were exposed to increasing amounts of luteolin and apigenin,a concentration-dependent inhibition were observed;They can inhibit the elimination of each other with the IC_(50) value of 17.3μmol/L and 38.2μmol/L,respectively. Elimination of luteolin and apigenin were also inhibited in HCME.5 ) Other flavonoids glycosides didn't make any difference in elimination rate of luteolin and apigenin.As to flavonoids aglycone,flavonol and flavone can inhibit their elimination effectively,while isoflavone and catechin have no significant effect.
     Conclusion:Metabolism of luteolin and apigenin in hepatocytes was very fast.Drug interactions occured in this process.
     5.Modulation effect of CM flavonoids on metabolizing enzymes of hepatocytes.
     Objective:To investigate the Modulation effect of CM flavonoids on metabolizing enzymes.
     Methods:A rat primary cultured hepatocytes was used.The modulation effect was valued by the elimination of probes.The probes of CYP3A were testosterone and nifedipine and probe of CYP2E was chlorzoxazone.
     Results:Metabolism of testosterone after 1h incubation were inhibited to 44.0±8.2%, 48.5±4.7%,20.1±0.4%and 70.5±0.8%by luteolin,apignein,CME and HCME, respectively.Metabolism of nifedipine after 2h incubation were inhibited to 79.1±1.3%,80.1±0.2%,60.4±2.6%and 92.2±0.4%,respectively.Metabolism of chlorzoxazone after 2h incubation were inhibited to 54.3±0.2%,42.6±0.8%, 41.9±2.7%and 69.9±1.8%,respectively.The inhibition of elimination of probes was HCME>luteolin≈apignein>CME.
     Conclusion:CM fiavonids can inhibit CYP3A and CYP2E enzymes of hepatocytes. Hydrolysis process may bioactivate this inhibition effect.
     6.Modulation effect of CM flavonoids on human P-gp.
     Objective:Investigated the modulation effect of CM flavonoids on human P-gp.
     Methods:Overexpressed MDR1 cell line——MDR1-Bcap and MDR1-MDCK were selected to investigate the inhibition effect of CM flavonoids.The accumulation of rodamine 123 in above cell lines was used to value this inhibition effect.The inhibition of rodamine accumulation was HCME>luteolin>apignein>CME,and the results from different models was equol.
     Results:Luteolin,apignein,CME and HCME can inhibit human P-gp significantly, and this inhibition was dose dependent.The accumulation of rodamine in Bcap-MDR1 can reach 2.79±0.063,1.68±0.078,1.15±0.051 and 5.73±0.073 fold of control for the highest dose of luteolin,apignein,CME and HCME,respectively;The accumulation of R123 in MDCK-MDR1 can reach 2.07±0.039,1.44±0.065, 1.67±0.091 and 7.23±0.65 fold of control for the highest dose of luteolin,apignein, CME and HCME,respectively.
     Conclusion:CM flavonoids can mudulate human P-gp.Hydrolysis process may bioactivate this inhibition effect.
引文
[1]曾苏.药物代谢学[M].杭州:浙江大学出版社,2004.
    [2]Yao LH,Jiang YM,Shi J,Tomás-Barberán FA,Datta N,Singanusong R,Chen SS.Flavonoids in food and their health benefits[J].Plant Foods Hum Nutr,2004,59(3):113-122.
    [3]Ma G,Jiang XH,Chen Z,Ren J,Li CR,Liu TM.Simultaneous determination of vitexin-4"-O-glucoside and vitexin-2"-O-rhamnoside from hawthorn leaves flavonoids in rat plasma by HPLC method and its application to pharmacokinetic studies[J].J Pharm Biomed Anal,2007,44(1):243-249.
    [4]Zhao Y,Wang X,Zhao Y,Gao X,Bi K,Yu Z.HPLC determination and pharmacokinetic study of homoeriodictyol-7-O-beta-D-glucopyranoside in rat plasma and tissues[J].Biol Pharm Bull,2007,30(4):617-20.
    [5]Talbot DC,Ogborne RM,Dadd T,Adlercreutz H,Barnard G,Bugel S,Kohen F,Marlin S,Piron J,Cassidy A,Powell J.Monoclonal antibody-based time-resolved fluorescence immunoassays for daidzein,genistein,and equol in blood and urine:application to the Isoheart intervention study[J].Clin Chem,2007,53(4):748-756.
    [6]Matsumoto H,Ichiyanagi T,Iida H,Ito K,Tsuda T,Hirayama M,Konishi T.Ingested delphinidin-3-rutinoside is primarily excreted to urine as the intact form and to bile as the methylated form in rats[J].J Agric Food Chem,2006,54(2):578-582.
    [7]Chen J,Wang S,Jia X,Bajimaya S,Lin H,Tam VH,Hu M.Disposition of flavonoids via recycling:comparison of intestinal versus hepatic disposition[J].Drug Metab Dispos,2005,33(12):1777-1784.
    [8]Gradolatto A,Canivenc-Lavier MC,Basly JP,Siess MH,Teyssier C.Metabolism of apigenin by rat liver phase I and phase ⅱ enzymes and by isolated perfused rat liver[J].Drug Metab Dispos,2004,32(1):58-65.
    [9]van de Kerkhof EG,de Graaf IA,de Jager MH,Meijer DK,Groothuis GM.Characterization of rat small intestinal and colon precision-cut slices as an in vitro system for drug metabolism and induction studies[J].Drug Metab Dispos,2005,33(11):1613-1620.
    [10]Smith CM,Graham RA,Krol WL,Silver IS,Negishi M,Wang H,Lecluyse EL.Differential UGT1A1 induction by chrysin in primary human hepatocytes and HepG2 Cells[J].J Pharmacol Exp Ther,2005,315(3):1256-1264.
    [11]Ung D,Nagar S.Variable sulfation of dietary polyphenols by recombinant human sulfotransferase(SULT)1A1 genetic variants and SULT1E1[J].Drug Metab Dispos,2007,35(5):740-746.
    [12]Keppler K,Hein EM,Humpf HU.Metabolism of quercetin and rutin by the pig caecal microflora prepared by freeze-preservation[J].Mol Nutr Food Res,2006,50(8):686-695.
    [13]药典委员会,中国药典第一部[M].北京:化学工业出版社,2005.
    [14]林慧彬,钟方晓,王学荣,林建强,林建群.菊花的本草考证[J].中医研究,2005,18(1):27-29.
    [15]Kim HJ,Lee YS.Identification of new dicaffeoylquinic acids from Chrysanthemum morifolium and their antioxidant activities[J].Planta Med,2005,71(9):871-876.
    [16]Jiang H,Xia Q,Xu W,Zheng M.Chrysanthemum morifolium attenuated the reduction of contraction of isolated rat heart and cardiomyocytes induced by ischemia/reperfusion[J].Pharmazie,2004,59(7):565-567.
    [17]彭蕴茹,石磊,罗宇慧,丁永芳.菊花总黄酮提取物对大鼠心肌缺血的保护作用[J].时珍国医国药,2006,17(7):1131-1132.
    [18]Rusu MA,Tamas M,Puica C,Roman I,Sabadas M.The hepatoprotective action of ten herbal extracts in CC14 intoxicated liver[J].Phytother Res,2005,19(9):744-749.
    [19]Ukiya M,Akihisa T,Tokuda H,Suzuki H,Mukainaka T,Ichiishi E,Yasukawa K,Kasahara Y,Nishino H.Constituents of Compositae plants Ⅲ.Anti-tumor promoting effects and cytotoxic activity against human cancer cell lines of triterpene diols and triols from edible chrysanthemum flowers[J].Cancer Lett,2002,177(1):7-12.
    [20]Miyazawa M,Hisama M.Antimutagenic activity of flavonoids from Chrysanthemum morifolium[J].Biosci Biotechnol Biochem,2003,67(10):2091-2099.
    [21]Ukiya M,Akihisa T,Yasukawa K,Kasahara Y,Kimura Y,Koike K,Nikaido T,Takido M.Constituents of compositae plants.2.Triterpene diols,triols,and their 3-o-fatty acid esters from edible chrysanthemum flower extract and their anti-inflammatory effects[J].J Agric Food Chem,2001,49(7):3187-3197.
    [22]Lee JS,Kim HJ,Lee YS.A new anti-HIV flavonoid glucuronide from Chrysanthemum morifolium[J].Planta Med,2003,69(9):859-861.
    [23]蒋惠娣.中药杭白菊心血管系统作用及活性成分研究[M].杭州:浙江大学博士学位论文,2004.
    [24]Moon YJ,Wang X,Morris ME.Dietary flavonoids:Effects on xenobiotic and carcinogen metabolism[J].Toxicology in Vitro,2006,20(2):187-210.
    [25]李丽萍.菊花提取物效应成分的代谢及动力学研究[M].杭州:浙江大学硕士毕业论文,2004.
    [26]Li L,Jiang H,Wu H,Zeng S.Simultaneous determination of luteolin and apigenin in dog plasma by RP-HPLC[J].J Pharm Biomed Anal,2005,37(3):615-620.
    [27]李丽萍,蒋惠娣,吴好好,陈婷.菊花黄酮及其水解产物效应成分在家兔体内动力学研究[J].中国药学杂志,2005,40(24):1884-1887.
    [28]潘兰英,李丽萍,蒋惠娣.大鼠口服菊花提取物后血浆中木犀草素及芹菜素测定方法的研究[J].中国药学杂志,2007,42(5):374-377.
    [29]陈婷.菊花提取物效应成分在大鼠提内的体内的分布和排泄研究[M].杭州:浙江大学硕士毕业论文,2004.
    [30]Chen T,Li LP,Lu XY,Jiang HD,Zeng S.Absorption and excretion of luteolin and apigenin in rats after oral administration of Chrysanthemum morifolium extract[J].J Agric Food Chem,2007,55(2):273-277.
    [31]陈婷,蒋惠娣,鲁鑫焱,曾苏.大鼠胆汁中木犀草素和芹菜素HPLC测定方法的建立及应用[J].药物分析杂志,2007,27(4):490-493.
    [32]Li LP,Jiang HD.Determination and assay validation of luteolin and apigenin in human urine after oral administration of tablet of Chrysanthemum morifolium extract by HPLC[J].J Pharm Biomed Anal,2006,41(1):261-265.
    [33]李丽萍,蒋惠娣.肠道菌群对菊花提取物的代谢作用[J].中草药,2006,37(7):1001-1004.
    [1] Lennernas H. Modeling gastrointestinal drug absorption requires more in vivo biopharmaceutical data: experience from in vivo dissolution and permeability studies in humans[J]. Curr Drug Metab, 2007, 8(7): 645-657.
    
    [2] Fisher MB, Labissiere G. The role of the intestine in drug metabolism and pharmacokinetics: an industry perspective[J]. Curr Drug Metab, 2007, 8(7): 694-699.
    
    [3] Yang J, Jamei M, Yeo KR, Tucker GT, Rostami-Hodjegan A. Prediction of intestinal first-pass drug metabolism[J]. Curr Drug Metab, 2007, 8(7): 676-684.
    
    [4] Fagerholm U. J Pharm Pharmacol. Prediction of human pharmacokinetics -gut-wall metabolism[J]. 2007, 59(10): 1335-1343.
    
    [5] Zhang L, Zuo Z, Lin G. Intestinal and hepatic glucuronidation of flavonoids[J]. Mol Pharm, 2007, 4(6): 833-845.
    
    [6] Borges G, Roowi S, Rouanet JM, Duthie GG, Lean ME, Crozier A. The bioavailability of raspberry anthocyanins and ellagitannins in rats[J]. Mol Nutr Food Res, 2007, 51(6): 714-725.
    
    [7] Graf BA, Ameho C, Dolnikowski GG, Milbury PE, Chen CY, Blumberg JB. Rat gastrointestinal tissues metabolize quercetin[J]. J Nutr, 2006,136(1): 39-44.
    
    [8] Graf BA, Mullen W, Caldwell ST, Hartley RC, Duthie GG, Lean ME, Crozier A, Edwards CA. Disposition and metabolism of [2-14C] quercetin-4'-glucoside in rats[J]. Drug Metab Dispos, 2005, 33(7): 1036-1043.
    
    [9] Swezey RR, Aldridge DE, LeValley SE, Crowell JA, Hara Y, Green CE. Absorption, tissue distribution and elimination of 4-[(3)h]-epigallocatechin gallate in beagle dogs[J]. Int J Toxicol, 2003,22(3): 187-193.
    
    [10] Mullen W, Graf BA, Caldwell ST, Hartley RC, Duthie GG, Edwards CA, Lean ME, Crozier A. Determination of flavonol metabolites in plasma and tissues of rats by HPLC-radiocounting and tandem mass spectrometry following oral ingestion of [2-(14)C]quercetin-4'-glucoside[J]. J Agric Food Chem, 2002, 50(23): 6902-6909.
    
    [11] Chen D, Chen MS, Cui QC, Yang H, Dou QP. Structure-proteasome-inhibitory activity relationships of dietary flavonoids in human cancer cells[J]. Front Biosci, 2007, 12: 1935-1945.
    
    [12] Manju V, Nalini N. Chemopreventive potential of luteolin during colon carcinogenesis induced by l,2-dimethylhydrazine[J]. Ital J Biochem, 2005, 54(3-4):268-275.
    [13]Chung JG,Hsia TC,Kuo HM,Li YC,Lee YM,Lin SS,Hung CF.Inhibitory actions of luteolin on the growth and arylamine N-acetyltransferase activity in strains of Helicobacter pylori from ulcer patients[J].Toxicol In Vitro,2001,15(3):191-198.
    [14]Cai H,Boocock D J,Steward WP,Gescher AJ.Tissue distribution in mice and metabolism in murine and human liver of apigenin and tricin,flavones with putative cancer chemopreventive properties[J].Cancer Chemother Pharmacol,2007,60(2):257-266.
    [15]Wu K,Yuan LH,Xia W.Inhibitory effects of apigenin on the growth of gastric carcinoma SGC-7901 cells[J].World J Gastroenterol,2005,11(29):4461-4464.
    [16]Lohner K,Schna|¨bele K,Daniel H,Oesterle D,Rechkemmer G,Go|¨ttlicher M,Wenzel U.Flavonoids alter P-gp expression in intestinal epithelial cells in vitro and in vivo[J].Mol Nutr Food Res,2007,51(3):293-300.
    [17]Deferme S,Augustijns P.The effect of food components on the absorption of P-gp substrates:a review[J].J Pharm Pharmacol,2003,55(2):153-162.
    [18]Evans AM.Influence of dietary components on the gastrointestinal metabolism and transport of drugs[J].Ther Drug Monit,2000,22(1):131-136.
    [19]van Zanden JJ,Wortelboer HM,Bijlsma S,Punt A,Usta M,Bladeren PJ,Rietjens IM,Cnubben NH.Quantitative structure activity relationship studies on the flavonoid mediated inhibition of multidrug resistance proteins 1 and 2[J].Biochem Pharmacol,2005,69(4):699-670.
    [20]Kim H J,Lee SB,Park SK,Kim HM,Park YI,Dong MS.Effects of hydroxyl group numbers on the B-ring of 5,7-dihydroxyflavones on the differential inhibition of human CYP 1A and CYP1B1 enzymes[J].Arch Pharm Res,2005,28(10):1114-1121.
    [21]Morimitsu Y,Sugihara N,Furuno K.Inhibitory effect of flavonoids on sulfo-and glucurono-conjugation of acetaminophen in rat cultured hepatocytes and liver subcellular preparations[J].Biol Pharm Bull,2004,27(5):714-717.
    [22]李丽萍.菊花提取物效应成分的代谢及动力学研究[M].杭州:浙江大学硕士毕业论文,2004.
    [23]陈婷.菊花提取物效应成分在大鼠提内的体内的分布和排泄研究[M].杭州:浙江大学硕士毕业论文,2004.
    [24] Gradolatto A, Basly JP, Berges R, Teyssier C, Chagnon MC, Siess MH, Canivenc-Lavier MC. Pharmacokinetics and metabolism of apigenin in female and male rats after a single oral administration[J]. Drug Metab Dispos, 2005, 33(1): 49-54.
    
    [25] Romanova D, Grancai D, Jozova B, Bozek P, Vachalkova A. Determination of apigenin in rat plasma by high-performance liquid chromatography[J]. J Chromatogr A, 2000, 870(1-2): 463-467.
    
    [26] Shimoi K, Okada H, Furugori M, Goda T, Takase S, Suzuki M, Hara Y, Yamamoto H, Kinae N. Intestinal absorption of luteolin and luteolin 7-O-beta-glucoside in rats and humans[J]. FEBS Lett, 1998, 438(3): 220-224.
    
    [27] Meyer H, Bolarinwa A, Wolfram G, Linseisen J. Bioavailability of apigenin from apiin-rich parsley in humans[J]. Ann Nutr Metab, 2006, 50(3): 167-172.
    
    [28] Wittemer SM, Ploch M, Windeck T, Muller SC, Drewelow B, Derendorf H, Veit M. Bioavailability and pharmacokinetics of caffeoylquinic acids and flavonoids after oral administration of Artichoke leaf extracts in humans [J]. Phytomedicine, 2005,12(1-2): 28-38.
    
    [29] Wan L, Guo C, Yu Q, Li Y, Wang X, Wang X, Chen C. Quantitative determination of apigenin and its metabolism in rat plasma after intravenous bolus administration by HPLC coupled with tandem mass spectrometry[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2007, 855(2): 286-289.
    
    [30] Nakazawa T, Ohsawa K. Metabolites of orally administered Perilla frutescens extract in rats and humans[J]. Biol Pharm Bull, 2000, 23(1): 122-127.
    
    [31] Gradolatto A, Teyssier C, Stroheker T, Chagnon MC, Canivenc-Lavier MC. Could apigenin metabolism explain the estrogenic effect of this flavonoid in the female immature rat[J]? IARC Sci Publ, 2002,156: 411-2.
    
    [32] Cai H, Boocock DJ, Steward WP, Gescher AJ. Tissue distribution in mice and metabolism in murine and human liver of apigenin and tricin, flavones with putative cancer chemopreventive properties[J]. Cancer Chemother Pharmacol, 2007, 60(2): 257-266.
    
    [33] Pforte H, Hempel J, Jacobasch G. Distribution pattern of a flavonoid extract in the gastrointestinal lumen and wall of rats[J]. Nahrung, 1999, 43(3): 205-208.
    
    [34] Cai H, Raynaud D, Steward WP, Gescher AJ. A simple HPLC method for the determination of apigenin in mouse tissues. Biomed Chromatogr[J]. 2006, 20(10): 1038-1042.
    [35] Nielsen SE, Young JF, Daneshvar B, Lauridsen ST, Knuthsen P, Sandstrom B, Dragsted LO. Effect of parsley(Petroselinum crispum)intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects[J]. Br J Nutr, 1999, 81(6): 447-455.
    
    [36] Beaud D, Tailliez P, Anba-Mondoloni J. Genetic characterization of the beta-glucuronidase enzyme from a human intestinal bacterium, Ruminococcus gnavus[J]. Microbiology, 2005,151(Pt 7): 2323-2330.
    
    [37] Devasena T, Menon VP. Fenugreek affects the activity of beta-glucuronidase and mucinase in the colon[J]. Phytother Res, 2003,17(9): 1088-1091.
    
    [1] Fagerholm U. Prediction of human pharmacokinetics—gastrointestinal absorption[J]. J Pharm Pharmacol, 2007, 59(7): 905-916.
    
    [2] Cao X, Gibbs ST, Fang L, Miller HA, Landowski CP, Shin HC, Lennernas H, Zhong Y, Amidon GL, Yu LX, Sun D. Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model[J]. Pharm Res, 2006,23(8): 1675-1686.
    
    [3] Balimane PV, Chong S. Cell culture-based models for intestinal permeability: a critique[J]. Drug Discov Today, 2005,10(5): 335-343.
    
    [4] Zhou P, Li LP, Luo SQ, Jiang HD, Zeng S. Intestinal Absorption of Luteolin from Peanut Hull Extract Is More Efficient than That from Individual Pure Luteolin[J]. J Agric Food Chem, 2008, 56(1): 296-300
    
    [5] Liu Y, Hu M. Absorption and metabolism of flavonoids in the caco-2 cell culture model and a perused rat intestinal model[J]. Drug Metab Dispos, 2002, 30(4): 370-377.
    
    [6] Liu Y, Liu Y, Dai Y, Xun L, Hu M. Enteric disposition and recycling of flavonoids and ginkgo flavonoids [J]. J Altern Complement Med, 2003,9(5): 631-640.
    
    [7] Chen J, Lin H, Hu M. Metabolism of flavonoids via enteric recycling: role of intestinal disposition[J]. J Pharmacol Exp Ther, 2003, 304(3): 1228-1235.
    
    [8] Chen J, Wang S, Jia X, Bajimaya S, Lin H, Tam VH, Hu M. Disposition of flavonoids via recycling: comparison of intestinal versus hepatic disposition[J]. Drug Metab Dispos, 2005, 33(12): 1777-1784.
    
    [9] Zhang L, Lin G, Chang Q, Zuo Z. Role of intestinal first-pass metabolism of baicalein in its absorption process[J]. Pharm Res, 2005, 22(7): 1050-1058.
    [10]Taiming L,Xuehua J.Investigation of the absorption mechanisms of baicalin and baicalein in rats[J].J Pharm Sci,2006,95(6):1326-1333.
    [11]Andlauer W,Stumpf C,Fu|¨rst P.Intestinal absorption of rutin in free and conjugated forms[J].Biochem Pharmacol,2001,62(3):369-374.
    [12]Akao T,Sakashita Y,Hanada M,Goto H,Shimada Y,Terasawa K.Enteric excretion of baicalein,a flavone of Scutellariae Radix,via glucuronidation in rat:involvement of multidrug resistance-associated protein 2[J].Pharm Res,2004,21(11):2120-2126.
    [13]Lu T,Song J,Huang F,Deng Y,Xie L,Wang G,Liu X.Comparative pharmacokinetics of baicalin after oral administration of pure baicalin,Radix scutellariae extract and Huang-Lian-Jie-Du-Tang to rats[J].J Ethnopharmacol,2007,110(3):412-418.
    [14]李丽萍.菊花提取物效应成分的代谢及动力学研究[M].杭州:浙江大学硕士毕业论文,2004.
    [15]Nielsen IL,Williamson G.Review of the factors affecting bioavailability of soy isoflavones in humans.Nutr Cancer,2007,57(1):1-10.
    [16]Carman RJ,Simon MA,Petzold HE 3rd,Wimmer RF,Batra MR,Fernández AH,Miller MA,Bartholomew M.Antibiotics in the human food chain:establishing no effect levels of tetracycline,neomycin,and erythromycin using a chemostat model of the human colonic microflora[J].Regul Toxicol Pharmacol,2005,43(2):168-180.
    [17]Gamberucci A,Konta L,Colucci A,Giunti R,Magyar JE,Mandl J,Bánhegyi G,Benedetti A,Csala M.Green tea flavonols inhibit glucosidase Ⅱ.Biochem[J].Pharmacol,2006,72(5):640-646.
    [18]Tadera K,Minami Y,Takamatsu K,Matsuoka T.Inhibition of alpha-glucosidase and alpha-amylase by flavonoids[J].J Nutr Sci Vitaminol(Tokyo),2006,52(2):149-153.
    [19]Devasena T,Menon VP.Fenugreek affects the activity of beta-glucuronidase and mucinase in the colon.Phytother Res[J].2003,17(9):1088-1091.
    [1] Nemeth K, Plumb GW, Berrin JG, Juge N, Jacob R, Nairn HY, Williamson G, Swallow DM, Kroon PA. Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans[J]. Eur J Nutr, 2003,42(1): 29-42.
    
    [2] Kano M, Takayanagi T, Harada K, Sawada S, Ishikawa F. Bioavailability of isoflavones after ingestion of soy beverages in healthy adults[J]. J Nutr, 2006, 136(9): 2291-2296.
    
    [3] Boyer J, Brown D, Liu RH. In vitro digestion and lactase treatment influence uptake of quercetin and quercetin glucoside by the Caco-2 cell monolayer[J], Nutr J, 2005,4:1.
    
    [4] Boyer J, Brown D, Liu RH. Uptake of quercetin and quercetin 3-glucoside from whole onion and apple peel extracts by Caco-2 cell monolayers[J]. J Agric Food Chem, 2004, 52(23): 7172-7179.
    
    [5] Pinelo M, Landbo AK, Vikbjerg AF, Meyer AS. Effect of clarification techniques and rat intestinal extract incubation on phenolic composition and antioxidant activity of black currant juice[J]. J Agric Food Chem, 2006, 54(18): 6564-6571.
    
    [6] Tribolo S, Berrin JG, Kroon PA, Czjzek M, Juge N. The crystal structure of human cytosolic beta-glucosidase unravels the substrate aglycone specificity of a family 1 glycoside hydrolase[J]. J Mol Biol, 2007,370(5): 964-975.
    
    [7] Day AJ, DuPont MS, Ridley S, Rhodes M, Rhodes MJ, Morgan MR, Williamson G. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity[J]. FEBS Lett, 1998, 436(1): 71-75.
    
    [8] Lambert N, Kroon PA, Faulds CB, Plumb GW, McLauchlan WR, Day AJ, Williamson G. Purification of cytosolic beta-glucosidase from pig liver and its reactivity towards flavonoid glycosides[J]. Biochim Biophys Acta, 1999, 1435(1-2): 110-116.
    
    [9] Berrin JG, McLauchlan WR, Needs P, Williamson G, Puigserver A, Kroon PA, Juge N. Functional expression of human liver cytosolic beta-glucosidase in Pichia pastoris. Insights into its role in the metabolism of dietary glucosides[J]. Eur J Biochem, 2002,269(1): 249-258.
    
    [10] Ioku K, Pongpiriyadacha Y, Konishi Y, Takei Y, Nakatani N, Terao J. beta-Glucosidase activity in the rat small intestine toward quercetin monoglucosides[J]. Biosci Biotechnol Biochem, 1998, 62(7): 1428-1431.
    [11]Day AJ, Gee JM, DuPont MS, Johnson IT, Williamson G. Absorption of quercetin-3-glucoside and quercetin-4'-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter[J]. Biochem Pharmacol, 2003,65(7): 1199-1206.
    
    [12] Sesink AL, Arts IC, Faassen-Peters M, Hollman PC. Intestinal uptake of quercetin-3-glucoside in rats involves hydrolysis by lactase phlorizin hydrolase[J]. J Nutr, 2003,133(3): 773-776.
    
    [13] Day AJ, Canada FJ, Diaz JC, Kroon PA, Mclauchlan R, Faulds CB, Plumb GW, Morgan MR, Williamson G. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase[J]. FEBS Lett, 2000, 468(2-3): 166-70.
    
    [14] Chun J, Kim GM, Lee KW, Choi ID, Kwon GH, Park JY, Jeong SJ, Kim JS, Kim JH. Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria[J]. J Food Sci, 2007,72(2): M39-44.
    
    [15] Otieno DO, Shah NP. A comparison of changes in the transformation of isoflavones in soymilk using varying concentrations of exogenous and probiotic-derived endogenous beta-glucosidases[J]. J Appl Microbiol, 2007, 103(3): 601-612.
    
    [16] Marotti I, Bonetti A, Biavati B, Catizone P, Dinelli G. Biotransformation of common bean (Phaseolus vulgaris L.) flavonoid glycosides by bifidobacterium species from human intestinal origin[J]. J Agric Food Chem, 2007, 55(10): 3913-3919.
    
    [17] Chien HL, Huang HY, Chou CC.Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria[J]. Food Microbiol, 2006,23(8): 772-778.
    
    [18] Liu Y, Liu Y, Dai Y, Xun L, Hu M. Enteric disposition and recycling of flavonoids and ginkgo flavonoids[J]. J Altern Complement Med, 2003, 9(5): 631-640.
    
    [19] Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent[J]. Biol Chem, 1951, 193(1): 265-275.
    
    [20] Arts IC, Sesink AL, Hollman PC. Quercetin-3-glucoside is transported by the glucose carrier SGLT1 across the brush border membrane of rat small intestine[J]. J Nutr, 2002, 132(9): 2823.
    
    [21] 李丽萍,蒋惠娣.肠道菌群对菊花提取物的代谢作用[J].中草药,2006,
    [1]Brandon EF,Raap CD,Meijerman I,Beijnen JH,Schellens JH.An update on in vitro test methods in human hepatic drug biotransformation research:pros and cons[J].Toxicol Appl Pharmacol,2003,189(3):233-246.
    [2]Department of Health and Human Services,FDA.Drug interaction studies-study design,data analysis,and implications for dosing and labeling(draft)[M].Rockville:The Drug Information Branch(HFD-210),MD.
    [3]Li AP.Human hepatocytes:isolation,cryopreservation and applications in drug development[J].Chem Biol Interact,2007,168(1):16-29.
    [4]徐淑云,卞如濂,陈修.现代药理实验方法[M].北京:人民卫生出版社,2002.
    [5]曾苏.药物代谢学[M].杭州:浙江大学出版社,2004.
    [6]Schlupper D,Giesa S,Gebhardt R.Influence of biotransformation of luteolin,luteolin 7-O-glucoside,3',4'-dihydroxyflavone and apigenin by cultured rat hepatocytes on antioxidative capacity and inhibition of EGF receptor tyrosine kinase activity[J].Planta Med,2006,72(7):596-603.
    [7]Tsuji PA,Walle T.Cytotoxic effects of the dietary flavones chrysin and apigenin in a normal trout liver cell line[J].Chem Biol Interact,2007[Epub ahead of print]
    [8]Moridani MY,Scobie H,Salehi P,O'Brien PJ.Catechin metabolism:glutathione conjugate formation catalyzed by tyrosinase,peroxidase,and cytochrome p450[J].Chem Res Toxicol,2001,14(7):841-848.
    [9]Berry MN,Friend DS.High-yield preparation of isolated rat liver parenchymal cells:a biochemical and fine structural study[J].J Cell Biol,1969,43(3):506-520.
    [10]Schmidt M,Schmitz HJ,Baumgart A,Guédon D,Netsch MI,Kreuter MH,Schmidlin CB,Schrenk D.Toxicity of green tea extracts and their constituents in rat hepatocytes in primary culture[J].Food Chem Toxicol,2005,43(2):307-314.
    [11]Matsuo M,Sasaki N,Saga K,Kaneko T.Cytotoxicity of flavonoids toward cultured normal human cells[J].Biol Pharm Bull,2005,28(2):253-259.
    [12]Ng SP,Wong KY,Zhang L,Zuo Z,Lin G.Evaluation of the first-pass glucuronidation of selected flavones in gut by Caco-2 monolayer model[J].J Pharm Pharm Sci,2004,8(1):1-9.
    [13]Xing J,Chen X,Zhong D.Stability of baicalin in biological fluids in vitro[J].J Pharm Biomed Anal,2005,39(3-4):593-600.
    [14]Otake Y,Hsieh F,Walle T.Glucuronidation versus oxidation of the flavonoid galangin by human liver microsomes and hepatocytes[J].Drug Metab Dispos,2002,30(5):576-581.
    [15]Nikolic D,Li Y,Chadwick LR,van Breemen RB.In vitro studies of intestinal permeability and hepatic and intestinal metabolism of 8-prenyl naringenin,a potent phytoestrogen from hops(Humulus lupulus L.)[J].Pharm Res,2006,23(5):864-872.
    [16]van der Woude H,Boersma MG,Vervoort J,Rietjens IM.Identification of 14quercetin phase Ⅱ mono-and mixed conjugates and their formation by rat and human phase Ⅱ in vitro model systems[J].Chem Res Toxicol,2004,17(11):1520-1530.
    [17]Yodogawa S,Arakawa T,Sugihara N,Furuno K.Glucurono-and sulfo-conjugation of kaempferol in rat liver subcellular preparations and cultured hepatocytes[J].Biol Pharm Bull,2003,26(8):1120-1124.
    [18]Oliveira EJ,Watson DG,Grant MH.Metabolism of quercetin and kaempferol by rat hepatocytes and the identification of flavonoid glycosides in human plasma[J].Xenobiotica,2002,32(4):279-287.
    [19]Jemnitz K,Lévai F,Monostory K,Szatmári I,Vereczkey L.The in vitro biosynthesis and stability measurement with agyl-glycuronide isoformes of the main metabolite of ipriflavone[J].Eur J Drug Metab Pharmacokinet,2000,25(3-4):153-160.
    [20]Zhang L,Zuo Z,Lin G.Intestinal and Hepatic Glucuronidation of Flavonoids[J].Mol Pharm,2007,4(6):833-845.
    [21]Zhang L,Lin G,Zuo Z.Involvement of UDP-glucuronosyltransferases in the extensive liver and intestinal first-pass metabolism of flavonoid baicalein[J].Pharm Res,2007,24(1):81-89.
    [22]Xing J,Chen X,Zhong D.Absorption and enterohepatic circulation of baicalin in rats[J].Life Sci,2005,78(2):140-146.
    [23]李丽萍.菊花提取物效应成分的代谢及动力学研究[M].杭州:浙江大学硕士毕业论文,2004.
    [24]Gradolatto A,Canivenc-Lavier MC,Basly JP,Siess MH,Teyssier C.Metabolism of apigenin by rat liver phase Ⅰ and phase ⅱ enzymes and by isolated perfused rat liver[J].Drug Metab Dispos,2004,32(1):58-65.
    [25] Wan L, Guo C, Yu Q, Li Y, Wang X, Wang X, Chen C. Quantitative determination of apigenin and its metabolism in rat plasma after intravenous bolus administration by HPLC coupled with tandem mass spectrometry[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2007, 855(2): 286-289.
    
    [26] Liu X, Tam VH, Hu M. Disposition of flavonoids via enteric recycling: determination of the UDP-glucuronosyltransferase isoforms responsible for the metabolism of flavonoids in intact Caco-2 TC7 cells using siRNA[J]. Mol Pharm, 2007, 4(6): 873-882.
    
    [27] Vaidyanathan JB, Walle T. Glucuronidation and sulfation of the tea flavonoid (-)-epicatechin by the human and rat enzymes[J]. Drug Metab Dispos, 2002 Aug;30(8): 897-903.
    
    [28] Boersma MG, van der Woude H, Bogaards J, Boeren S, Vervoort J, Cnubben NH, van Iersel ML, van Bladeren PJ, Rietjens IM. Regioselectivity of phase II metabolism of luteolin and quercetin by UDP-glucuronosyl transferases[J]. Chem Res Toxicol, 2002,15(5): 662-670.
    
    [29] Morimitsu Y, Sugihara N, Furuno K. Inhibitory effect of flavonoids on sulfo- and glucurono-conjugation of acetaminophen in rat cultured hepatocytes and liver subcellular preparations[J]. Biol Pharm Bull, 2004, 27(5):714-717.
    
    [1] Department of Health and Human Services, FDA. Drug interaction studies—study design, data analysis, and implications for dosing and labeling(draft)[M]. Rockville: The Drug Information Branch(HFD-210), MD. 2006.
    
    [2] Venkataramanan R, Komoroski B, Strom S. In vitro and in vivo assessment of herb drug interactions[J]. Life Sci, 2006, 78(18): 2105-2115.
    
    [3] Raucy JL. Regulation of CYP3A4 expression in human hepatocytes by Pharmaceuticals and natural products[J]. Drug Metab Dispos, 2003, 31(5): 533-539.
    
    [4] Kadowaki M, Ootani E, Sugihara N, Furuno K. Inhibitory effects of catechin gallates on o-methyltranslation of protocatechuic acid in rat liver cytosolic preparations and cultured hepatocytes [J]. Biol Pharm Bull, 2005, 28(8): 1509-1513.
    
    [5] Mizoyama Y, Takaki H, Sugihara N, Furuno K. Inhibitory effect of flavonoids on N-acetylation of 5-aminosalicylic acid in cultured rat hepatocytes[J]. Biol Pharm Bull, 2004, 27(9): 1455-1458.
    [6] Morimitsu Y, Sugihara N, Furuno K. Inhibitory effect of flavonoids on sulfo- and glucurono-conjugation of acetaminophen in rat cultured hepatocytes and liver subcellular preparations[J]. Biol Pharm Bull, 2004, 27(5): 714-717.
    
    [7] Moon YJ, Wang X, Morris ME. Dietary flavonoids: effects on xenobiotic and carcinogen metabolism[J]. Toxicol In Vitro, 2006, 20(2): 187-210.
    
    [8] Liu YT, Hao HP, Liu CX, Wang GJ, Xie HG. Drugs as CYP3A probes, inducers, and inhibitors[J]. Drug Metab Rev, 2007, 39(4): 699-721.
    
    [9] Rodriguez-Antona C, Ingelman-Sundberg M. Cytochrome P450 pharmaco- genetics and cancer[J]. Oncogene, 2006, 25(11): 1679-1691.
    
    [10] Chlouchi A, Girard C, Bonet A, Viollon-Abadie C, Heyd B, Mantion G, Martin H, Richert L. Effect of chrysin and natural coumarins on UGT1A1 and 1A6 activities in rat and human hepatocytes in primary culture[J]. Planta Med, 2007, 73(8):742-747.
    
    [11] Li Y, Mezei O, Shay NF. Human and murine hepatic sterol-12-alpha-hydroxylase and other xenobiotic metabolism mRNA are upregulated by soy isoflavones[J]. J Nutr,2007,137(7):1705-1712.
    
    [12] He N, Cai HB, Xie HG, Collins X, Edeki TI, Strom SC. Induction of cyp3a in primary cultures of human hepatocytes by ginkgolides a and B [J]. Clin Exp Pharmacol Physiol, 2007, 34(7): 632-635.
    
    [13] Kaviarasan S, Anuradha CV. Fenugreek (Trigonella foenum graecum) seed polyphenols protect liver from alcohol toxicity: a role on hepatic detoxification system and apoptosis[J]. Pharmazie, 2007, 62(4): 299-304.
    
    [14] Moon YJ, Zhang S, Brazeau DA, Morris ME. Effects of the flavonoid biochanin A on gene expression in primary human hepatocytes and human intestinal cells[J]. Mol Nutr Food Res, 2007, 51(3): 317-323.
    
    [15] Zatloukalova J, Svihalkova-Sindlerova L, Kozubik A, Krcmar P, Machala M, Vondracek J. beta-Naphthoflavone and 3'-methoxy-4'-nitroflavone exert ambiguous effects on Ah receptor-dependent cell proliferation and gene expression in rat liver 'stem-like' cells[J]. Biochem Pharmacol, 2007, 73(10): 1622-1634.
    
    [16] Mirkov S, Komoroski BJ, Ramirez J, Graber AY, Ratain MJ, Strom SC, Innocenti F. Effects of green tea compounds on irinotecan metabolism[J]. Drug Metab Dispos, 2007, 35(2): 228-233.
    
    [17] Aluru N, Vijayan MM. Resveratrol affects CYP1A expression in rainbow trout hepatocytes[J]. Aquat Toxicol, 2006, 77(3): 291-297.
    
    [18] Smith CM, Graham RA, Krol WL, Silver IS, Negishi M, Wang H, Lecluyse EL. Differential UGT1A1 induction by chrysin in primary human hepatocytes and HepG2 Cells[J]. J Pharmacol Exp Ther, 2005, 315(3): 1256-64.
    
    [19] Aluru N, Vuori K, Vijayan MM. Modulation of Ah receptor and CYP1A1 expression by alpha-naphthoflavone in rainbow trout hepatocytes [J]. Comp Biochem Physiol C Toxicol Pharmacol, 2005,141(1): 40-49.
    
    [20] Schaeffner I, Petters J, Aurich H, Frohberg P, Christ B. A microtiterplate-based screening assay to assess diverse effects on cytochrome P450 enzyme activities in primary rat hepatocytes by various compounds[J]. Assay Drug Dev Technol, 2005, 3(1): 27-38.
    
    [21] Lahouel M, Boulkour S, Segueni N, Fillastre JP. The flavonoids effect against vinblastine, cyclophosphamide and paracetamol toxicity by inhibition of lipid-peroxydation and increasing liver glutathione concentration[J]. Pathol Biol (Paris), 2004, 52(6): 314-322.
    
    [22] Runge D, Kohler C, Kostrubsky VE, Jager D, Lehmann T, Runge DM, May U, Stolz DB, Strom SC, Fleig WE, Michalopoulos GK. Induction of cytochrome P450 (CYP)1A1, CYP1A2, and CYP3A4 but not of CYP2C9, CYP2C19, multidrug resistance(MDR-l)and multidrug resistance associated protein(MRP-l)by prototypical inducers in human hepatocytes[J]. Biochem Biophys Res Commun, 2000,273(1): 333-341.
    
    [23] Tsuji PA, Walle T. Benzo[a]pyrene-induced cytochrome P450 1A and DNA binding in cultured trouthepatocytes-inhibition by plant polyphenols[J]. Chem Biol Interact, 2007, 169(1): 25-31.
    
    [24] Zhang FF, Zheng YF, Zhu HJ, Shen XY, Zhu XQ. Effects of kaempferol and quercetin on cytochrome 450 activities in primarily cultured rat hepatocytes [J]. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2006, 35(1): 18-22.
    
    [25] Shin SM, Cho IJ, Kim SG. CCAAT/enhancer binding protein activation by PD98059 contributes to the inhibition of AhR-mediated 3-methylcholanthrene induction of CYP1A1[J]. Xenobiotica, 2005, 35(10-11): 975-987.
    
    [26] Williams SN, Pickwell GV, Quattrochi LC. A combination of tea(Camellia senensis)catechins is required for optimal inhibition of induced CYP1A expression by green tea extract[J]. J Agric Food Chem, 2003, 51(22): 6627-6634.
    
    [27] Le Goff N, Koffel JC, Vandenschrieck S, Jung L, Ubeaud G. Comparison of in vitro hepatic models for the prediction of metabolic interaction between simvastatin and naringenin[J]. Eur J Drug Metab Pharmacokinet, 2002, 27(4): 233-241.
    [28] Le Goff-Klein N, Koffel JC, Jung L, Ubeaud G. In vitro inhibition of simvastatin metabolism, a HMG-CoA reductase inhibitor in human and rat liver by bergamottin, a component of grapefruit juice[J]. Eur J Pharm Sci, 2003, 18(1): 31-35.
    [29] Venkataramanan R, Ramachandran V, Komoroski BJ, Zhang S, Schiff PL, Strom SC. Milk thistle, a herbal supplement, decreases the activity of CYP3A4 and uridine diphosphoglucuronosyl transferase in human hepatocyte cultures[J]. Drug Metab Dispos, 2000,28(11): 1270-1273.
    [30] Jiang H, Xia Q, Xu W, Zheng M. Chrysanthemum morifolium attenuated the reduction of contraction of isolated rat heart and cardiomyocytes induced by ischemia/reperfusion[J]. Pharmazie, 2004, 59(7): 565-567.
    [1] Department of Health and Human Services, FDA. Drug interaction studies——
    study design, data analysis, and implications for dosing and labeling(draft)[M]. Rockville: The Drug Information Branch(HFD-210), MD. 2006.
    [2] Kitagawa S. Inhibitory effects of polyphenols on p-glycoprotein-mediated transport[J]. Biol Pharm Bull, 2006, 29(1): 1-6.
    [3] Lohner K, Schnabele K, Daniel H, Oesterle D, Rechkemmer G, Gottlicher M, Wenzel U. Flavonoids alter P-gp expression in intestinal epithelial cells in vitro and in vivo[J]. Mol Nutr Food Res, 2007, 51(3): 293-300.
    [4] Ji BS, He L. CYJ, an isoflavone, reverses P-glycoprotein-mediated multidrug-resistance in doxorubicin-resistant human myelogenous leukaemia (K562/DOX)cells[J]. J Pharm Pharmacol, 2007, 59(7): 1011-1015.
    [5] Limtrakul P, Khantamat O, Pintha K. Inhibition of P-glycoprotein function and expression by kaempferol and quercetin[J]. J Chemother, 2005, 17(1): 86-95.
    [6] Mei Y, Qian F, Wei D, Liu J. Reversal of cancer multidrug resistance by green tea polyphenols[J]. J Pharm Pharmacol, 2004, 56(10): 1307-1314.
    [7] de Castro WV, Mertens-Talcott S, Derendorf H, Butterweck V. Grapefruit juice-drug interactions: Grapefruit juice and its components inhibit P-glycoprotein (ABCB1) mediated transport of talinolol in Caco-2 cells[J]. J
    91
    Pharm Sci, 2007,96(10): 2808-2817.
    
    [9] Weber CC, Kressmann S, Fricker G, M(u|¨)ller WE. Modulation of P-glycoprotein function by St John's wort extract and its major constituents [J]. Pharmacopsychiatry, 2004, 37(6): 292-298.
    
    [10] Wang YH, Chao PD, Hsiu SL, Wen KC, Hou YC. Lethal quercetin-digoxin interaction in pigs[J]. Life Sci, 2004, 74(10): 1191-1197.
    
    [11] Schutte ME, Freidig AP, van de Sandt JJ, Alink GM, Rietjens IM, Groten JP. An in vitro and in silico study on the flavonoid-mediated modulation of the transport of 2-amino-l-methyl-6-phenylimidazo [4,5-b]pyridine(PhIP)through Caco-2 mono- layers[J]. Toxicol Appl Pharmacol, 2006,217(2): 204-215.
    
    [12] Annaert PP, Brouwer KL. Assessment of drug interactions in hepatobiliary transport using rhodamine 123 in sandwich-cultured rat hepatocytes[J]. Drug Metab Dispos, 2005, 33(3): 388-394.
    
    [13] Nissler L, Gebhardt R, Berger S. Flavonoid binding to a multi-drug-resistance transporter protein: an STD-NMR study [J]. Anal Bioanal Chem, 2004, 379(7-8): 1045-1049.
    
    [14] Zhang S, Yang X, Morris ME. Flavonoids are inhibitors of breast cancer resistance protein(ABCG2)-mediated transport[J]. Mol Pharmacol, 2004b, 65(5): 1208-1216.
    
    [15] van Zanden JJ, Wortelboer HM, Bijlsma S, Punt A, Usta M, Bladeren PJ, Rietjens IM, Cnubben NH. Quantitative structure activity relationship studies on the flavonoid mediated inhibition of multidrug resistance proteins 1 and 2[J], Biochem Pharmacol, 2005, 69(4): 699-70.
    
    [16] Zhang S, Yang X, Morris ME. Combined effects of multiple flavonoids on breast cancer resistance protein(ABCG2)-mediated transport[J]. Pharm Res, 2004, 21(7): 1263-1273.
    
    [17] Lania-Pietrzak B, Michalak K, Hendrich AB, Mosiadz D, Grynkiewicz G, Motohashi N, Shirataki Y. Modulation of MRP 1 protein transport by plant, and synthetically modified flavonoids[J]. Life Sci, 2005, 77(15): 1879-1891.
    
    [18] Leslie EM, Deeley RG, Cole SP. Bioflavonoid stimulation of glutathione transport by the 190-kDa multidrug resistance protein 1(MRP1)[J]. Drug Metab Dispos, 2003, 31(1): 11-15.
    
    [19] Leslie EM, Mao Q, Oleschuk CJ, Deeley RG, Cole SP. Modulation of multidrug resistance protein l(MRPl/ABCCl)transport and atpase activities by interaction with dietary flavonoids[J]. Mol Pharmacol, 2001, 59(5): 1171-1180.
    [20] Schutte ME, Boersma MG, Verhallen DA, Groten JP, Rietjens IM. Effects of flavonoid mixtures on the transport of 2-amino-l-methyl-6-phenylimidazo [4,5-b]pyridine(PhIP)through Caco-2 monolayers: An in vitro and kinetic modeling approach to predict the combined effects on transporter inhibition[J]. Food Chem Toxicol, 2008,46(2): 557-566.
    
    [21] Wang Y, Cao J, Zeng S. Involvement of P-glycoprotein in regulating cellular levels of Ginkgo flavonols: quercetin, kaempferol, and isorhamnetin. J Pharm Pharmacol, 2005, 57(6): 751-758.
    
    [22] Chang C, Bahadduri PM, Polli JE, Swaan PW, Ekins S. Rapid identification of P-glycoprotein substrates and inhibitors[J]. Drug Metab Dispos, 2006, 34(12): 1976-1984.
    
    [23] Feng B, Mills J, Davidson R, Mireles R, Janiszewski J, Troutman M, de Morais S.In Vitro P-glycoprotein Assays to Predict the in Vivo Interactions of P-glycoprotein with Drugs in the Central Nervous System[J].Drug Metab Dispos, 2007 [Epub ahead of print]
    
    [24] Katayama K, Masuyama K, Yoshioka S, Hasegawa H, Mitsuhashi J, Sugimoto Y. Flavonoids inhibit breast cancer resistance protein-mediated drug resistance:transporter specificity and structure-activity relationship[J]. Cancer Chemother Pharmacol, 2007, 60(6): 789-797.
    
    [25] Chung SY, Sung MK, Kim NH, Jang JO, Go EJ, Lee HJ. Inhibition of P-glycoprotein by natural products in human breast cancer cells[J]. Arch Pharm Res, 2005, 28(7): 823-828.
    
    [26] Yang CY, Chao PD, Hou YC, Tsai SY, Wen KC, Hsiu SL. Marked decrease of cyclosporin bioavailability caused by coadministration of ginkgo and onion in rats[J]. Food Chem Toxicol, 2006, 44(9): 1572-1578.
    [1]Ross JA,Kasum CM.Dietary flavonoids:bioavailability,metabolic effects,and safety[J].Annu Rev Nutr,2002,22:19-34.
    [2]吴立军.天然药物化学[M].北京:人民卫生出版社,2004.
    [3]Kitagawa S.Inhibitory effects of polyphenols on p-glycoprotein-mediated transport[J].Biol Pharm Bull,2006,29(1):1-6.
    [4]Yao LH,Jiang YM,Shi J,Tomás-Barberán FA,Datta N,Singanusong R,Chen SS.Flavonoids in food and their health benefits[J].Plant Foods Hum Nutr,2004,59(3):113-122.
    [5]Schaeffner I,Petters J,Aurich H,Frohberg P,Christ B.A microtiterplate-based screening assay to assess diverse effects on cytochrome P450 enzyme activities in primary rat hepatocytes by various compounds[J].Assay Drug Dev Technol,2005,3(1):27-38.
    [6]Chen J,Wang S,Jia X,Bajimaya S,Lin H,Tam VH,Hu M.Disposition of flavonoids via recycling:comparison of intestinal versus hepatic disposition[J].Drug Metab Dispos,2005,33(12):1777-1784.
    [7]Gradolatto A,Canivenc-Lavier MC,Basly JP,Siess MH,Teyssier C.Metabolism of apigenin by rat liver phase Ⅰ and phase ⅱ enzymes and by isolated perfused rat liver[J].Drug Metab Dispos,2004,32(1):58-65.
    [8]van de Kerkhof EG,de Graaf IA,de Jager MH,Meijer DK,Groothuis GM.Characterization of rat small intestinal and colon precision-cut slices as an in vitro system for drug metabolism and induction studies[J].Drug Metab Dispos,2005,33(11):1613-1620.
    [9]Smith CM,Graham RA,Krol WL,Silver IS,Negishi M,Wang H,Lecluyse EL.Differential UGT1A1 induction by chrysin in primary human hepatocytes and HepG2 Cells[J].J Pharmacol Exp Ther,2005,315(3):1256-1264.
    [10]Ung D,Nagar S.Variable sulfation of dietary polyphenols by recombinant human sulfotransferase(SULT) 1A1 genetic variants and SULT1E1[J].Drug Metab Dispos,2007,35(5):740-746.
    [11]Keppler K,Hein EM,Humpf HU.Metabolism of quercetin and rutin by the pig caecal microflora prepared by freeze-preservation[J].Mol Nutr Food Res,2006, 50(8): 686-695.
    [12] Walle T, Walgren RA, Walle UK, Galijatovic A, and Vaidyanathan JB. Understanding the bioavailability of flavonoids through studies in Caco-2 cells[J]. Oxidative Stress Dis, 2003, 9(Flavonoids in Health and Disease(2nd Edition)): 351-361.
    [13] Murota K, Shimizu S, Miyamoto S, Izumi T, Obata A, Kikuchi M, Terao J. Unique uptake and transport of isoflavone aglycones by human intestinal Caco-2 cells: comparison of isoflavonoids and flavonoids [J]. J Nutr, 2002, 132(7): 1956-1961.
    [14] Steensma A, Noteborn H, Kuiper HA. Comparison of Caco-2, IEC-18 and HCEC cell lines as a model for intestinal absorption of genistein, daidzein and their glycosides[J]. Environ Toxicol Pharmacol, 2004,16(3): 131-139.
    [15] Vaidyanathan JB, Walle T. Transport and metabolism of the tea flavonoid(-)-epicatechin by the human intestinal cell line Caco-2 [J]. Pharm Res, 2001,18(10): 1420-1425.
    [16] Liu Y, Hu M. Absorption and metabolism of flavonoids in the Caco-2 cell culture model and a perfused rat intestinal model[J]. Drug Metab Dispos, 2002, 30(4): 370-377.
    [17] Tammela P, Laitinen L, Galkin A, Wennberg T, Heczko R, Vuorela H, Slotte JP, Vuorela P. Permeability characteristics and membrane affinity of flavonoids and alkyl gallates in Caco-2 cells and in phospholipid vesicles[J]. Arch Biochem Biophys, 2004, 425(2): 193-199.
    [18] Laurent C, Besancon P, Auger C, Rouanet JM, Caporiccio B. Grape Seed Extract Affects Proliferation and Differentiation of Human Intestinal Caco-2 Cells[J]. J Agric Food Chem, 2004, 52(11): 3301-3308.
    [19] Salucci M, Stivala LA, Maiani G, Bugianesi R, Vannini V. Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells(Caco-2)[J]. Br J Cancer, 2002, 86(10): 1645-1651.
    [20] Wang W, VanAlstyne PC, Irons KA, Chen S, Stewart JW, Birt DF. Individual and interactive effects of apigenin analogs on G2/M cell-cycle arrest in human colon carcinoma cell lines[J]. Nutr Cancer, 2004, 48(1): 106-114.
    [21] Xu JG, Go ML, Lim L. Modulation of digoxin transport across Caco-2 cell monolayers by citrus fruit juices: lime, lemon, grapefruit, and pummelo[J]. Pharm Res,2003,20(2),169-176.
    [22]Zhang SZ,Morris ME.Effect of the Flavonoids Biochanin A and Silymarin on the P-Glycoprotein-Mediated Transport of Digoxin and Vinblastine in Human Intestinal Caco-2 Cells[J].Pharm Res,2003,20(8):1184-1191.
    [23]Wenzel U,Kuntz S,Daniel H.Flavonoids with epidermal growth factor-receptor tyrosine kinase inhibitory activity stimulate PEPT1-mediated cefixime uptake into human intestinal epithelial cells[J].J Pharmacol Exp Ther,2001,299(1):351-357.
    [24]Polli JW,Wring SA,Humphreys JE,Huang L,Morgan LB,Webster LO,Serabjit-Singh CS.Rational use of in vitro P-glycoprotein assays in drug discovery[J].J Pharmacol Exp Ther,2001,299(2):620-628.
    [25]Wang Y,Cao J,Zeng S.Involvement of P-glycoprotein in regulating cellular levels of Ginkgo flavonols:quercetin,kaempferol and isorhamnetin[J].J Pharm Pharmacol,2005(57):751-758.
    [26]Oitate M,Nakaki R,Koyabu N,Takanaga H,Matsuo H,Ohtani H,Sawada Y.Transcellular transport of genistein,a soybean-derived isoflavone,across human colon carcinoma cell line(Caeo-2)[J].Biopharm Drug Dispos,2001,22(1):23-29.
    [27]Vaidyanathan JB,Walle T.Cellular uptake and effiux of the tea flavonoid(-)-epicatechin-3-gallate in the human intestinal cell line caco-2[J].J Pharmacol Exp Ther,2003,307(2):745-752.
    [28]Hu M,Chen J,Lin HM.Metabolism of flavonoids via enteric recycling:mechanistic studies of disposition of apigenin in the Caco-2 cell culture model[J].J Pharmacol Exp Ther,2003,307(1):314-21.
    [29]Walgren RA,Lin JT,Kinne RK,Walle T.Cellular uptake of dietary flavonoid quercetin 4'-β-glucoside by sodium-dependent glucose transporter SGLT1[J].J Pharmacol Exp Ther,2000,294(3):837-843.
    [30]徐亚萍.中药指纹图谱及其在中药质量控制和体外吸收代谢研究中的应用[M].杭州:浙江大学硕士学位论文,2005.
    [31]Chen J,Lin HM,Hu M.Absorption and metabolism of genistein and its five isoflavone analogs in the human intestinal Caco-2 model[J].Cancer Chemother Pharmacol,2005,55(2):159-169.
    [32]O'Leary KA,de Pascual-Tereasa S,Needs PW,Bao YP,O'Brien NM,Williamson G.Effect of flavonoids and vitamin E on cyclooxygenase-2(COX-2)transcription[J].Mutat Res,2004,551(1-2):245-254.
    [33]Galijatovic A,Otake Y,Walle UK,Walle T.Induction of UDP glucuronosyltransferase UGT1A1 by the flavonoid chrysin in caco-2cells-potential role in carcinogen bioinactivation[J].Pharm Res,2001,18(3):374-379.
    [34]Svehlíková V,Wang S,Jakubíková J,Williamson G,Mithen R,Bao Y.Interactions between sulforaphane and apigenin in the induction of UGT1A1 and GSTA1 in CaCo-2 cells[J].Carcinogenesis,2004,25(9):1629-1637.
    [35]Petri N,Tannergren C,Holst B,Mellon FA,Bao Y,Plumb GW,Bacon J,O'Leary KA,Kroon PA,Knutson L,Forsell P,Eriksson T,Lennernas H,Williamson G.Absorption/metabolism of sulforaphane and quercetin,and regulation of phase Ⅱenzymes,in human jejunum in vivo[J].Drug Metab Dispos,2003,31(6):805-813
    [36]Steensma A,Mengelers MB,Noteborn H,Kuiper HA.Kinetic models describing in vitro transport and metabolism of isoflavones and their glycosides in human Caco-2 cells[J].Spec Publ R Soc Chem,2000,255(Dietary Anticarcinogens and Antimutagens):58-63.
    [37]Jia X,Chen J,Lin H,Hu M.Disposition of flavonoids via enteric recycling:Enzyme-transporter coupling affects metabolism of biochanin A and formononetin and excretion of their phase Ⅱ conjugates[J].J Pharmacol Exp Ther,2004,310(3):1103-1113.
    [38]Department of Health and Human Services,FDA.Drug interaction studies-study design,data analysis,and implications for dosing and labeling(draft)[M].Rockville:The Drug Information Branch(HFD-210),MD.2006.
    [39]Hirsch-Ernst KI,Ziemann C,Rustenbeck I,Kahl GF.Inhibitors of mdrl-dependent transport activity delay accumulation of the mdrl substrate rhodamine 123 in primary rat hepatocyte cultures[J].Toxicology,2001,167(1):47-57.
    [40]曾苏.药物代谢学[M].杭州:浙江大学出版社,2004:9.
    [41]van der Woude H,Boersma MG,Vervoort J,Rietjens IM.Identification of 14quercetin phase Ⅱ mono- and mixed conjugates and their formation by rat and human phase II in vitro model systems[J]. Chem Res Toxicol, 2004, 17(11): 1520-1530.
    [42] Li Y, Grubjesic S, Nikolic D, Zhu D, Kosmeder JW, Moriarty RM, Pezzuto JM, Van Breemen RB. In vitro assessment of intestinal permeability and hepatic metabolism of 4'-bromoflavone, a promising cancer chemopreventive agent[J]. Xenobiotica, 2004, 34(6): 535-547.
    [43] Otake Y, Hsieh F, Walle T. Glucuronidation versus oxidation of the flavonoid galangin by human livermicrosomes and hepatocytes[J]. Drug Metab Dispos, 2002, 30(5): 576-581.
    [44] Oliveira EJ, Watson DG, Grant MH. Metabolism of quercetin and kaempferol by rat hepatocytes and the identification of flavonoid glycosides in human plasma[J]. Xenobiotica, 2002, 32(4): 279-287.
    [45] Yodogawa S, Arakawa T, Sugihara N, Furuno K. Glucurono- and sulfo-conjugation of kaempferol in rat liver subcellular preparations and cultured hepatocytes[J]. Biol Pharm Bull, 2003, 26(8): 1120-1124.
    [46] Woodman OL, Meeker WF, Boujaoude M. Vasorelaxant and antioxidant activity of flavonols and flavones: structure-activity relationships[J]. J Cardiovasc Pharmacol, 2005,46(3): 302-309.
    [47] Venkataramanan R, Komoroski B, Strom S. In vitro and in vivo assessment of herb drug interactions [J]. Life Sci, 2006, 78(18): 2105-2115.
    [48] Williams SN, Pickwell GV, Quattrochi LC. A combination of tea(Camellia senensis)catechins is required for optimal inhibition of induced CYP1A expression by green tea extract[J]. J Agric Food Chem, 2003, 51(22): 6627-6634.
    [49] Madan A, Graham RA, Carroll KM, Mudra DR, Burton LA, Krueger LA, Downey AD, Czerwinski M, Forster J, Ribadeneira MD, Gan LS, LeCluyse EL, Zech K, Robertson P Jr, Koch P, Antonian L, Wagner G, Yu L, Parkinson A. Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes[J]. Drug Metab Dispos, 2003, 31(4): 421-431.
    [50] Aluru N, Vuori K, Vijayan MM. Modulation of Ah receptor and CYP1A1 expression by alpha-naphthoflavone in rainbow trout hepatocytes[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2005, 141(1): 40-49.
    [51] Williams SN, Shih H, Guenette DK, Brackney W, Denison MS, Pickwell GV, Quattrochi LC. Comparative studies on the effects of green tea extracts and individual tea catechins on human CYP1A gene expression[J]. Chem-Biol Interact, 2000,128(3): 211-229.
    [52] Gibson GG, Plant NJ, Swales KE, Ayrton A, El-Sankary W. Receptor-dependent transcriptional activation of cytochrome P4503A genes: induction mechanisms, species differences and interindividual variation in man[J]. Xenobiotica, 2002, 32(3):165-206.
    [53] Raucy JL. Regulation of CYP3A4 expression in human hepatocytes by Pharmaceuticals and natural products[J]. Drug Metab Dispos, 2003, 31(5): 533-539.
    [54] Arayne MS, Sultana N, Bibi Z. Grape fruit juice-drug interactions[J]. Pak J Pharm Sci, 2005, 18(4): 45-57.
    [55] Le Goff-Klein N, Koffel JC, Jung L, Ubeaud G. In vitro inhibition of simvastatin metabolism, a HMG-CoA reductase inhibitor in human and rat liver by bergamottin, a component of grapefruit juice[J]. Eur J Pharm Sci, 2003, 18(1): 31-35.
    [56] Morimitsu Y, Sugihara N, Furuno K. Inhibitory effect of flavonoids on sulfo- and glucurono-conjugation of acetaminophen in rat cultured hepatocytes and liver subcellular preparations [J]. Biol Pharm Bull, 2004, 27(5): 714-717.
    [57] Mizoyama Y, Takaki H, Sugihara N, Furuno K. Inhibitory effect of flavonoids on N-acetylation of 5-aminosalicylic acid in cultured rat hepatocytes[J]. Biol Pharm Bull, 2004, 27(9): 1455-1458.
    [58] Kadowaki M, Ootani E, Sugihara N, Furuno K. Inhibitory effects of catechin gallates on o-methyltranslation of protocatechuic acid in rat liver cytosolic preparations and cultured hepatocytes[J]. Biol Pharm Bull, 2005, 28(8): 1509-1513.
    [59] Kuo WH, Wang CJ, Young SC, Sun YC, Chen YJ, Chou FP. Differential induction of the expression of GST subunits by geniposide in rat hepatocytes [J]. Pharmacology, 2004, 70(1): 15-22.
    [60] Wang Y, Cao J, Zeng S. Establishment of a P-glycoprotein substrate screening model and its preliminary application[J]. World J Gastroenterol, 2004, 10(9): 1365-1368.
    [61] He Y, Zeng S. Transport characteristics of rutin deca(H-)sulfonate sodium across Caco-2 cell monolayers[J]. J Pharm Pharmacol, 2005, 57(10): 1297-1303.
    [62] van Zanden JJ, Wortelboer HM, Bijlsma S, Punt A, Usta M, Bladeren PJ, Rietjens IM, Cnubben NH. Quantitative structure activity relationship studies on the flavonoid mediated inhibition of multidrug resistance proteins 1 and 2[J], Biochem Pharmacol, 2005, 69(4): 699-708.
    [63] Zhang S, Yang X, Morris ME. Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport[J]. Mol Pharmacol, 2004, 65(5): 1208-1216.
    [64] Dupuy J, Larrieu G, Sutra JF, Lespine A, Alvinerie M. Enhancement of moxidectin bioavailability in lamb by a natural flavonoid: quercetin[J]. Vet Parasitol, 2003, 112(4): 337-347.
    [65] Liu X, Chism JP, LeCluyse EL, Brouwer KR, Brouwer KL. Correlation of biliary excretion in sandwich-cultured rat hepatocytes and in vivo in rats[J]. Drug Metab Dispos, 1999, 27(6): 637-644.
    [66] Annaert PP, Brouwer KL. Assessment of drug interactions in hepatobiliary transport using rhodamine 123 in sandwich-cultured rat hepatocytes [J]. Drug Metab Dispos, 2005, 33(3): 388-394.