河网底泥释放规律及其与模型耦合应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
平原河网地区,水流流速缓慢,河流水质恶化,底泥淤积严重。底泥中的污染物质释放到上覆水体,会造成二次污染。笔者在查阅了大量的底泥释放方面文献后,发现底泥释放的影响因素众多,且较为复杂。鉴于一般水质模型对底泥释放项的模拟,或过于简单,无法体现河道的实际情况;或过于复杂,参数取值困难。笔者提出以底泥释放速率影响较大的水流条件作为研究对象,通过静态和动态相结合的室内底泥释放模拟实验研究不同水动力条件下营养物质在沉积物-水界面上的迁移、转化机制。
     本文选取太湖流域河网的代表性河道底泥作为底泥释放的研究对象,研究指标包括COD、NH_3-N、TN、PO_4~(3-)、TP。室内静态模拟实验采用室内有机玻璃柱柱状实验模拟,研究在静止状态下物质在沉积物-水界面上的交换规律;动态释放模拟实验采用锥形瓶振荡实验研究底泥悬浮状态下物质的迁移规律,实验结果表明底泥的释放速率与流速成指数增长关系。
     另一方面,将WASP5水质模型和三级联解河网水动力模型耦合得到平原河网水量水质模型,并根据WASP5模型的结构特点,基于实验结果改进底泥释放源项,使底泥释放项对河道水质的贡献能够在模型中体现时空的变化。采用张家港原型调水实验进行模型率定分析,结果发现采用动态底泥释放的水质模型的模拟结果明显比无底泥释放和静态释放的模拟效果好,从而验证了改进模型的合理性。
     最后将本文建立的河网水质模型运用于2002年张家港地区的水质模拟,结果令人满意。说明本文建立的平原河网水量水质模型能够运用于平原河网区的水环境模拟。
Rivers in plan river network areas have some characters: velocity of flow is slow, water quality becomes worse, and sedimentation is serious. The contaminant from sediment releasing into water could cause "the second pollution". After consulting plenty of literatures about sediment releasing, the author found that there were complex factors can influence the sediment releasing. But some sediment model is too simple to incarnate the real condition of rivers, and others are too complex so that the parameters are difficult to ascertain. So the author choosed the biggish factor ofsediment releasing------hydrodynamic condition as the study object.This author usedstatic and dynamic experiments to simulate the sediment releasing rules in laboratory, which would be showed the rules of contaminant transference on the sediment-water surface in different hydrodynamic conditions.
     This paper choosed some representative river sediments in Taihu basin as the study objects of sediment releasing.And the targets of study included COD、NH_3-N、TN、PO_4~(3-)、TP. The author used used glass poles simulate sediment static releasing. The relusts of experiment showed the rule of exchange on sediment-water surface in static condition. Dynamic experiments using the taper bottles oscillation to simulate the sediment releasing in different hydrodynamic conditions, which achieved that the sedimenet releasing changed by velocity with exponential growth.
     The author coupled WASP5 water quality model with third-cascade river network hydrodynamic model to created hydraulics-water quality model in plan river network area. According to the configuration characters of WASP5 model, the author improved sediment releasing item, which adopted different forms in different current conditions. So this item can materialize movements at different time and space according to the experimental results. The author used the date of filed scale experiment in Zhang Jiagang area to calibrate the parameters of model. The result of improved model was better than other models. Finally this author used the model simulate water quality in 2002 in Zhang Jiagang river network area. The results achieved showed the coupling model can be used as a tool to simulate water environment in plain network area.
引文
[1] 黄漪平.太湖水环境及其污染控制[M].北京:科学出版社.2001.10
    [2] 黄卫良.太湖流域水资源状况及其保护[J].中国水利.1999.7:7~25.
    [3] 杨桂山,王德健.太湖流域经济发展·水环境·水灾害[M].科学出版社.2003.7.
    [4] 秦伯强,胡维平,陈伟民.太湖流域水环境演化过程与机理[M].北京,科学出版社.2004.2.
    [5] 黄岁樑,Onyx W H.水环境污染物迁移转化研究与泥沙运动[J].水科学进展,1998.99(3):205-211.
    [6] 陈华林,陈英旭.污染底泥修复技术进展[J].农业环境保护.2002.21(2):179-182.
    [7] 陈荷生,石建华.太湖底泥的生态疏浚工程——太湖水污染综合治理措施之一[J].水资源保护.1993,3:11-16.
    [8] Blom C, Winkles H J. Modeling sediment accumulation and dispersion of contaminants in lake Lisslmeer (the Netherlands)[J]. Water Science and Oceanogrsphy. 1992,37(3):510-528.
    [9] 曲久辉.我国水体复合污染与控制[J].科学对社会的影响.2000,5(1):37-39.
    [10] 陈振楼,许世远,徐启新等.长江三角洲地表水环境污染规律初探[J].福建地理.2000,15(3):17~22.
    [11] 陈芳,刘亦梅,潘腊青.1986~1998年运河(杭州段)水质变化趋势分析[J].环境污染与防治.1999,21(增刊):48~50.
    [12] 马梅,童中华等乐安江水和底泥样品的生物毒性评估[J].环境化学.1997,16(2):167~171.
    [13] 韩伟明,张国勋.杭州西湖底泥释磷的模拟研究[J].西湖环境研究论文集,1990:83-89.
    [14] Reddy K R, Fisher M M, and D Ivanoff. Resuspension and Diffusive Flux of Nitrogen an Phosphorus in a Hypereutrophic Lake[J]. Journal of Environmental Qualitv, (1996) 25:363-371.
    [15] Machiwa J F and E Olafsson, Distrbution and remineralization of organic carbon in sediments of a mangrove stand partly contaminated with sewage waste[J], Ambio, 1998,27(8):740~744.
    [16] Morris J T and W B Boeden, A mechanistic, numerical model of sedimentation, mineralization, and decomposition for marsh sedimengs[J],Soil Science Society of Journal, 1986, 50(1): 96~105.
    [17] 应时理,熊健,廖先贵.宁波及其邻近海域底泥释放耗氧有机物(COD)的初步研究[J].东海海洋.1996.14(2):59~63.
    [18] 陈文新.土壤和环境微生物学[M].北京:北京农业人学出版社,1990.
    [19] Gale P M and K R Reddy.Carbon flux between sediment and water colunm of a shallow subtropical, hydro-eutrophic lake[J]. Journal of Environmental Quality, 1994.23(5): 965-972.
    [20] 许世远,陈振楼,俞立中等.苏州河底泥污染与防治[M].北京:科学出版社.2003.9.
    [21] 王雨春,万国江,尹澄清等.红枫湖、百花湖底泥全氮、可交换态氮和固定铵赋存特征[J].湖泊科学,2002,14(4):301-309.
    [22] 吴丰昌.云贵高原湖泊底泥和水体氮磷和硫的生物地球化学作用和生态环境效应[J].地质地球化学,1996,(6):88-89.
    [23] 周灵辉.外秦淮河底泥释放对上覆水水质的影响[J].环境监测管理与技术,2003.15(5):41~42.
    [24] 陈永川,汤利.底泥-水体界面氮磷的迁移转化规律研究进展[J].云南农业大学学报.2005,20(4):527~531.
    [25] Nixon s.w, Oviant c.A. and Hale S.S. Nitrogen regeneration and the metabolism of coastal marine bottom communities[J]. The 17th Symposium of the British Ecological Society (Edited by Anderson j.m. and Mac Fadden A.) 1976,269~283.
    [26] Jensen M.H., E.Lomstrin and J.Sorensen. Behthic NH_4~+ and NO_3~- following sedimentation of a spring phytoplankton bloom in Asrhus Denmark[J]. Marine Ecology Progress Scries, 1990, 61:87~96.
    [27] Sloth N.R, H.Blackburn, Las Stenvang Hansen et al. Nitrogen cycling in sediments with different organic loading [J]. Marine ecology progress series, 1995, 116:163~170.
    [28] Kemp W.M, W.R. boynton. External and internal factors regulating metabolic rates of an estuarine benthic community [J]. Oecologia, 1982.51:19~27.
    [29] Canfield D E Jr, Hoyer M V. The eutrophication of Lake Okeechobee [J]. Lake and Reservoir Management, 1988,4(8) :91~99.
    [30] Henriksen K, M. B. Rasmussen ,Jensen. Effect of bioturbation on microbial nitrogen transformations in the sediment and fluxes of ammonium and nitrate to the overlying water[J]. Ecology Bulletion, 1983,35:193~205.
    [31] 孔健健.福州第二水源山仔水库底泥营养盐——氮污染研究[D].福建师范大学.2005.
    [32] 尹大强,覃秋荣,阎航.环境因子对五里湖沉积物磷释放的影响[J].湖泊科学,1994,6(3):240~244.
    [33] 邹华,阮文权,陈坚.硝酸盐作为生物除磷电子受体的研究[J].环境科学研究,2002,15(3):38~41.
    [34] T. Usui, I. Koike and N. Ogura, N_2O Production, Nitrification and Denitrification in an Estuarine Sediment[J], Estuarine, Coastal and Shelf Science, 2001 , 52:769~781.
    [35] Sondergaard M, Kristensen P ,Jeppesen E. Phosphorus release from sediment in the shallow and wind exposed Lake Arreso, Denmark[J].Hydrobiologia, 1992,228(6): 91~99.
    [36] Chang soils. J., Soil SC sci. and Jackson ML .Soil phosphorus fractions in some representative[J]. 1958(9): 109-119.
    [37] 隋少峰,罗启芳.武汉东湖底泥释磷特点[J].环境科学,2001,22(1):102~105.
    [38] James B. comerJr etal, Uptake of dissolved inorganic and organic phosphorus compounds by phytoplankton and bacteria plankton[J], Linmol. Oceanography, 1992.37(2):298~304.
    [39] 刘玉生,郑丙辉,戴树桂等.滇池富营养化及其综合治理技术研究[M].北京:海洋出版社.2004.8.
    [40] 韩沙沙,温琰茂.富营养化水体底泥中磷的释放及其影响因素[J].生态学杂志,2004,23(2):98~100.
    [41] 李勇,王超.城市浅水型湖泊底泥磷释放的环境因子影响实验研究[J].江苏环境科技,2002,15(4):4~6.
    [42] 王晓蓉,华兆哲,徐菱.环境条件变化对太湖底泥磷释放的影响[J].环境化学,1995,15(1):15~19.
    [43] 唐孟成,贾之慎,朱荫湄.西湖底泥磷释放影响因子的研究[J].浙江农业大学学报,1997,23(3):289~292.
    [44] 徐轶群,熊慧欣,赵秀兰.底泥磷的吸附与释放研究进展[J].重庆环境科学.2003,25(11):147~149
    [45] Berkheiser, V E., Street, J.J., Rao, P.S.C. and Yuan, T.L. Partitioning of inorganic orthophosphate in soil-water systems[M].Agricultural Experiment station, University of Florida, Gainesville. 1980:23~96.
    [46] 王庭健.城市富营养化湖泊底泥中磷负荷及其释放对水质的影响[J].环境科学研究,1994,7(4):12~20.
    [47] Holdren Jr G.C. and Armstrong D.E.. Factors affecting phosphorus release from intact sediment cores [J].Environ. Sci. Technol. 1980,14:79~87.
    [48] J Andersen J.M. Influence ofpH on release of phosphorus from lake sediments[J]. Arch. Hydrobiol. 1975, 76(4),411~419.
    [49] 刘娜,阳河水库氮磷释放规律实验研究[D].太原理工大学,2005.5.
    [50] 徐轶群.重庆龙水湖底泥磷的吸附与释放特征研究[D].西南农业大学.2004.
    [51] 吴根福,吴雪昌,金承涛等.杭州西湖底泥释磷的初步研究[J].中国环境科学,1998,18(2):102~110.
    [52] 李一平,逄勇,向军.太湖水质时空分布特征及内源释放规律研究[J].环境科学学报.2005,25(3):300~306.
    [53] 联合国环境规划署国际环境技术中心.刘健康译.富营养化防治的理论与实践[M].北京: 湖泊与水库科学出版社.2000.
    [54] 徐俊,陈永红,王娟等.淮河(淮南段)底泥内源磷释放特性的实验研究[J].淮南师范学院学报.2005.3(7):24~28.
    [55] 范成新,张路,杨龙元,等.湖泊底泥氮磷内源负荷模拟[J].海洋与湖沼,2002(4):370~378.
    [56] 黄绍基.质量衡算模型计算太湖底泥磷的交换[J].环境科学,1992,13(1):83~84.
    [57] Mc Duff RE,Ellis RA.Determining diffusion coefficient in marine sediments:Alaboratory study of the validity of resistivity techniques[J].Am J Sci,1979(279):666~675.
    [58] 范成新,秦伯强,孙越,1998.梅梁湖和五里湖底泥—水界面物质交换研究[J].湖泊科学,10(1):53~58.
    [59] BoersPCM, OVanHese. Phosphorus release from the peaty sediments of the Loosdrecht Lakes (The Netherlands)[J].Water Research, 1988(22):355-363.
    [60] 范成新,相崎守弘,福岛武彦等,霞浦湖底泥需氧速率的研究[J].海洋与湖沼,1998.29(5):508~513.
    [61] Tohru S, HirofumiI, Etsuji D. Benthic nutrient tremineralization and oxygen consumtion in the coastal area of Hiroshima Bay[J],Water Research, 1989.23(2):219~228.
    [62] Roboert P. Lambertus L. Estimation of sediment-warter exchange of solutes in lake veluwe [J]. Wat Res 1999, 33(1): 279~285.
    [63] Hong W, Adhityan A, John SG. Modeling of phosphorus dynamic sinaquatic sediments: I) model development [J].Water Research, 2003,37:3928~3938.
    [64] Smits JGC, vander Molen DT. Application of SWITCH, model for sediment-water exchange of nutrients, to LaVeluwein The Netherlands [J].Hydrobiologia, 1993,253(2):281~300.
    [65] Di Toro DM.Sediment flux modeling [M].NewYork: Wiley 2001.
    [66] 郭震远,铅山河金属污染物(Cu,Fe)迁移规律及污染预测研究[J].环境科学学报,1983(3):298-308.
    [67] Yi Yuan, Ken H, Carolyn O. A preliminary model for predicting heavy metal contaminant loading from an urban catchment [J]. The Science of the Total Environment, 2001,266: 299~307.
    [68] 李炜.环境水力学进展[M].武汉:武汉水利电力大学出版社.1995.
    [69] 黄岁樑,万兆惠.河流重金属迁移转化数学模型研究综述[J].泥沙研究,1995(4):42~49.
    [70] Parmeshwa LS. An integrated model suit for sediment and pollutants transport in shallow lake[J].Advances in Engineering Software, 1996,27:201~212.
    [71] 全为民,严力蛟,虞左明,等.湖泊富营养化模型研究进展[J].生物多样性,2001,9(2):168~175.
    [72] 褚君达,徐惠慈.河流底泥冲刷沉降对水质影响的研究[J].水利学报,1999(11):42~47.
    [73] 国家环保总局.水和废水监测分析方法[M].中国环境科学出版社.2002.
    [73] Mohamed A, John F, et al. Analysis procedure for and application of a device for simulating sediment entrainment[J].Marine Geology,1996(129):337~350.
    [74] Ambrose RB, Wool TA, Martin JL, et al. WASP5, A hydrodynamic and water quality modelmodel theory, User's Manual and Programmer's Guide [C]. Draft GA: Environmental Reasearch Laboratory, US Environmental Protection Agency,1993.
    [75] 汪德灌,计算水力学理论与应用[M],河海大学出版社,1989.
    [76] 王船海等,实用河网水流计算[M],河海大学,2002.6.
    [77] L.谢利曼,一般任意网格有限差分法[J],华水科技情报,1985.4.
    [78] 白玉川等,河网非恒定流数值模拟的研究进展[J],水利学报,2000(12),43-47.
    [79] 李岳生等,河网非恒定流隐式方程组的系数矩阵解法[J],中山大学学报,1977,3 27-37.
    [80] 韩龙喜等,复杂河网非恒定流计算模型一单元划分法[J],水利学报,1994.2(2),52-56.
    [81] 金忠青等,一种新的平原河网水质模型一组合单元水质模型[J],水科学进展,1998.9(1),35-40.
    [82] 郑孝宇等,河网非稳态水环境容量研究[J],水科学进展,1997.1(8):24-31.
    [83] 韩龙喜等,三角联解法水力水质模型的糙率反演及面污染源计算[J],水利学报,1998[7],30-35.
    [85] Lopes A.M.G, Cruz M.G, Viegas D.X, et. al. FireStation - an integrated software system for the numerical simulation of fire spread on complex topography[J]. Environmental Modelling and Software, 2002, 17(3): 269-285.
    [86] Stephenson D Kinematic. Hydrology and modeling[J]. Development in Water Science, 1986:56-59.
    [87] Di Toro DM, Sifitzpartic JJ. Documentation for water quality program (WASP) and model verification program (MVP)[C]. Duluth, MN:US Environmental Protection Agency,1983.
    [88] Ambrose RB, Wool TA, Connolly JR WASP4, A hydrodynamic and water quality modelmodel theory, User's Manual and Programmer's Guide [C].Athens, GA: US Environmental Protection Agency, 1988.
    [89] Tim A.Wool, Robert B. Ambrose, JamesL. Martin, et al. Water quality analysis simulation program (WASP) Version 6.0 DRAFT: User's Manual [C]. Atlanta: US Environmental Protection Agency, MS Tetre Tech.2001.
    [90] 孙学成,邓晓龙,张彩香等.WASP6系统在三峡库区水质仿真中的应用[J].三峡大学学报.2003(2):185~188.
    [91] 杨家宽,肖波,刘年丰等.WASP6水质模型应用于汉江襄樊段水质模拟研究[J].水资源保护.2005(4):8~10.
    [92] 廖振良,林卫青,徐祖信等.WASP-5系统及其述评[J].上海环境科学.2001(1):3~6.
    [93] 何孟常,杨居荣等.水质模型、生态模型及计算机模型软件[J].环境科学进展.1999(3):62~68
    [94] Tohru S, HirofumiI, Etsuji D. Benthic nutrient tremineralization and oxygen consumtion in the coastal area of Hiroshima Bay, Water Research, 1989.23(2):219~228.
    [95] 徐祖信.河流污染治理技术与实践[M].中国环境科学出版社,2003.2.
    [96] 唐迎洲.WASP5水质模型在平原河网区水环境模拟中的开发与应用[D].2004.
    [97] Carlson DH, Thruow TL.1996. Comprehensive evaluation of improved SPUR mode (SPUR~91). Eco lModel,85:229~240.
    [98] 徐崇刚,胡远满,常禹等.生态模型的灵敏度分析[J].应用生态学报,2004.15(6):1056~1062.
    [99] Morris M D. Factorial-sampling plans for preliminary computationa lexperiments [J]. Technometrics, 1991,.33:161~174.
    [100] Cukier RI, Levine HB, Shuler KE. Nonlinear sensitivity analysis of multiparamete rmodel systems[J].Compute Phys. 1978,1: 26~42.
    [101] Saltelli A. Probability and statistic sseries [M]. In: ChanK, Scott EM, editors. NewYork: Wiley, 2000.
    [102] Helton JC. Uncertainty and sensitivity analysis techniques for use in performance assessment for radio active waste disposal[J].Reliab Engng Syst Safety, 1993,42:327-67.
    [103] 窦明,谢平,李重荣,王陶.综合水质模型参数识别研究[J].重庆环境科学研究,2002,24(6):70-73.
    [104] T.Lenhart, K.Eckhardt, N.Fohrer, H.-G.Frede, Comparison of two different approaches of sensitivity analysis[J].Physics and Chemistry of the Earth,2002,17:645-654.
    [105] 王鹏,基于数字流域系统的平原河网区非点源污染模型研究与应用[D],河海大学,2006.
    [106] 丁训静,姚琪,阮晓红.太湖流域污染负荷模型研究[J].水科学进展,2003.14(2):189-192.
    [107] 梅新敏,平原河网区水环境容量模型研究[D],河海大学,2006.