反应堆冷却剂泵多相流及流固耦合振动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反应堆冷却剂泵(以下简称主泵)被喻为反应堆的心脏,属于核Ⅰ级安全泵,它直接关系着整个反应堆的运行状况和安全性能。在进行主泵的设计时,必须全面考虑各种工况,并选择适当的模型进行水力、振动及多相流特性分析,保证其具有很高的安全性和较好的经济性。因此,利用先进的研究手段对主泵内部流场和结构应力场进行分析,对准确揭示其相关规律、保障其安全运行都具有重要的意义。
     本文从第三代反应堆主要堆型——压水堆的发展现状和特点出发,针对主泵的安全性和经济性问题,运用计算流体力学技术,并结合流固耦合技术对其振动和多相流特性展开了较为广泛的研究。本文的主要工作及研究成果包括:
     1.总结了主泵的发展过程和研究现状,并进行简要分析,确定了基本研究路线。阐述了轴流式主泵的基本设计理论,分别应用升力法和流线法设计了主泵的叶轮和导叶;
     2.分别应用Pro/E和ANASYS Workbench软件,对主泵实体和流道进行了三维实体建模及网格划分,并对流场、结构应力场耦合(流固耦合)计算的控制方程、离散求解方法、多相流模拟理论和网格划分技术等进行了简要阐述;
     3.从主泵的安全和经济性能出发,利用Navier-Stokes方程和标准κ-ε湍流模型对其内部流场进行了数值模拟,根据模拟结果对整体效率和压力脉动进行了深入分析,并通过对比分析提出了优化设计方案,保证了水力部件对整个泵段压力脉动的影响较弱,对主泵机组振动的贡献较小,且具有较好的经济性;
     4.对高温高压工作环境下的主泵叶片所承受的各种应力进行了理论分析,并利用流固耦合技术,通过求解耦合方程,对稳定工况下的叶片应力进行计算和分析。强度校核结果表明:本文主泵满足美国机械工程师协会的强度要求。为改进叶片翼型设计、保障主泵水力性能和强度要求提供了有效依据;
     5.根据流场压力脉动特性,对叶片的振动问题进行了深入的理论分析,通过反复利用流固耦合技术,仿真了主泵的模态特性,得到其自振频率和振型,用以保证主泵避免共振;
     6.针对反应堆冷却剂泄露事故,利用Navier-Stokes方程、两相κ-ε湍流模型和欧拉-欧拉非均相流模型,对主泵内部流场气液两相流流动进行了数值模拟,详细分析了两相流工况下扬程与空泡平均直径、进口处的空泡体积分数和冷却剂温度之间的内在联系,并对主泵的瞬态性能进行了有效预测,其结果可为电机、惰转飞轮等部件的安全设计提供理论依据。
Reactor coolant pump (hereinafter referred to as the main pump) that is specified Class I pump is compared to the heart of the reactor, and it has a direct influence on the operation situation and safety performance of reactor. In order to ensure a very high safety and a good economy performance, a variety of working conditions must be taken into account and a proper model has to be chosen for analysis of the hydraulic performance, vibration and multiphase flow characteristics. Therefore, it has important significance to make use of advanced research tools which are used to analyse the internal flow and structure stress field of main pump for revealling its relevant laws and ensuring its safe operation.
     The current situation and characteristics of the Pressurized Water Reactor (PWR) which is the main type of generation III reactor were reviewed. Aiming the safety and economy performance, this paper deeply discussed the vibration and multiphase flow problem of main pump that the CFD and fluid-solid coupling technology were utilized. The main work and research results of the paper as follows:
     1. The development and research situation of main pump were introduced briefly, and the specific research program was identified by analysis. Fundamental theory of hydraulic design of axial-flow main pump was elaborated and was applied to design the impeller and guide vane.
     2. Solid models of body and fluid channel of main pump were generated and meshed by using Pro/E and ANASYS Workbench software. And the control equations of fluid and structure coupling fields, discrete solving methods, simulation theory of multiphase flow and mesh technology were discussed.
     3. From the safety and economy performance of main pump, the numerical investigation of internal flow that was based on calculation Navier-Stokes equation and standard k-εturbulence model was carried out. The whole efficiency and pressure fluctuation were deeply analyzed based on the simulation results and the optimum design method was advanced. The comprehensive analysis shows that the hydraulic parts could reduce the effects of pressure fluctuation and increase only a few vibrations to whole unit and these are in favor of improving economy performance.
     4. Theoretical analysis of various stresses of main pump blades that are exposed to working environment of high temperature and high pressure was conducted. And in order to compute and analyze the blade stress, the fluid-solid coupling technique was adopted to solve the coupling equation. The intensity examination proved the intensity of the reactor coolant pump meet the requirement of ASME. This could be used for improving aerofoil design and ensuring performance and intensity.
     5. According to the pressure fluctuation characteristics, theoretical analysis of blade vibration was proceded deeply. The modal attributions were simulated and the natural frequency and mode shapes were obtained by using fluid-solid coupling technology repeatedly.
     6. From the leakage condition of reactor coolant pump, numerical simulation of two-phase liquid-gas flow were conducted by calculation Eulerian-Eulerian inhomogeneous model and Navier-Stokes equation with standard k-εturbulence model. The relationships between the head and average diameter of bubble, gas volume fraction and temperature of inlet were opened out respectively. Then the unsteady performance was well predicted and this could provide a theoretical basis for the safety design of flywheel and electromotor.
引文
[1]A.K.Nayak,R.K.Sinha.Role of passive systems in advanced reactors[J].Progress in Nuclear Energy,2007,(49):486-498.
    [2]Marty Parece,Sandra Sloan.Introduction to the U.S.EPR[J].Presented to U.S.Department of Energy,2006,(10):1-48.
    [3]陈鉴墅.反应堆冷却剂泵[J].华东电力,1979,(S1):46-54.
    [4]安朋.核反应堆简介[J].现代物理知识,2005,(02):12-17.
    [5]蔡龙,张丽平.浅谈压水堆核电站主泵[J].水泵技术,2007,(04):1-5.
    [6]E.Baumann,I.R.Terry.The EPR:A clear step forward in dose reduction and radiation protection[J].Nuclear Engineering and Design,2006,(236):1720-1727.
    [7]Regis A.Matzie.lnvesting in the Future-A Nuclear Imperative[M].Westinghouse Electric Company,2006.
    [8]T.L.Schulz.Westinghouse AP1000 advanced passive plant[J].Nuclear Engineering and Design,2006,(236):1547-1557.
    [9]Westinghouse Electric Company.Design Control Document[M].Westinghouse Electric Company LLC Nuclear Plant Projects,2004.
    [10]Kazem Farhadi,Anis Bousbia-salah,Franscesco D'Auria.A model for the analysis of pump start-up transients in Tehran Research Reaetor[J].Progress in Nuclear Energy,2007,(49):499-510.
    [11]Anis Boousbia Salah,Juswald Vedovi,Franscesco D'Auria,et al.Analysis of the VVER1000coolant trip benchmark using the coupled RELAP5/PARCS code[J].Progress in Nuclear Energy,2006,(48):806-819.
    [12]马辉,周文建,闻邦椿.核电站反应堆冷却剂泵的模态分析[J].机械制造,2006,(10):14-17.
    [13]吕群贤.反应堆主泵现场动平衡[J].核动力工程,2002,(3):63-68.
    [14]石屹峰.秦山三期主冷却剂泵轴振动问题诊断与处理[D].上海交通大学,2007.
    [15]Bimal Patel,Carolyn D.Heising.Statistical analysis of the Fr.CALHOUN reactor coolant pump system[J].Ann Nucl.Energy,1996,(03):167-175.
    [16]Igor J.Karassik,Joseph P.Messina,Paul Cooper,et al.Pump Handbook[M].McGraw-Hill Company,2001.
    [17]Leonardo Tunon-Sanjur,Richard S.Orr,Sener Tmic,et al.Finite clement modeling of the AP1000 nuclear island for seismic analyses at generic soil and rock sites[J].Nuclear Engineering and Design,2007,(237):1474-1485.
    [18]高璞珍,庞风阁.核动力装置用泵.哈尔滨工程大学出版社,2004.
    [19]黄成铭.秦山核电二期工程主泵与大亚湾核电站主泵的差异及其影响[J].核动力工 程,2003,(2):177-179.
    [20]邓绍文.秦山核电二期工程土泵瞬态计算[J].核动力工程,2001,(6):494-496.
    [21]谢春丽,夏虹.BP神经网络改进算法在核电设备故障诊断中的应用[J].核动力T 程,2007,(4):85-90.
    [22]孙启国.核泵推力轴承弹性支承的强度和刚度分析[J].兰州铁道学院学报(自然科学版),2000,(1):49-52.
    [23]陈捷.巴基斯坦恰希玛核电站主泵轴密封[J].水泵技术,2003,(1):40-44.
    [24]沈火明,邓礼平.屏蔽式冷却剂泵的减振降噪测试分析[J].核动力工程,2003,(6):577-581.
    [25]周刚,张大发.人工神经网络理论在核动力领域的应用与展望[J].核技术,2004,(3):237-240.
    [26]Bimal Patel,Carolyn D.Heising.Statistical Analysis of the FT.Calhoun Reactor Coolant Pump System[J].1997,(3):167-175.
    [27]Pavlin Groudev,Antoaneta Stefanova.Validation of RELAPS/MOD3.2 model on trip off one main coolant pump for VVER 440N230[J].Nuclear Engineering and Design,2006,(236):1275-1281.
    [28]J.Runkel,D.Stegemann.Operating experience with an on-line vibration control system for PWR main coolant pumps[J].Nuclear Engineering and Design,1998,(183):157-167.
    [29]In Soo Koo,Whan Woo Kim.The development of reactor coolant pump vibration monitoring and a diagnostic system in the nuclear power plant[J].ISATransactions,2000,(39):309-316.
    [30]Jae Cheon Jung,Poong Hyun Seong.Animprovedmethod for reactor coolant pump abnormality monitoring using powerline signal analysis[J].Nuclear Engineering and Design,2006,(236):57-62.
    [31]Andreas Poullikkas.Effects of two-phase liquid-gas flow on the performance of nuclear reactor cooling pumps[J].Progress in Nuclear Energy,2003,42(1):3-10.
    [32]Martin W.Trethewey,Joshua C.Friel.A spectral simulation approach to evaluate probabilistic measurement precision of a reactor coolant pump torsional vibration shaft crack monitoring system[J].Journal of Sound and Vibration,2008,(310):1036-1056.
    [33]Sylvie Aniel-Buchheit.Simulation of the VVER-1000 pump start-up Experiment in the OECD/DOE/CEAV1000CT benchmark by the FLICA4/CRONOS2 coupled code system[J].Progress in Nuclear Energy,2006,(48):773-789.
    [34]N.Kolev,N.Petrov.Simulation of the VVER-1000 pump start-up experiment of the OECD V1000CT benchmark with CATHARE[J].Progress in Nuclear Energy,2006,(48):922-936.
    [35]国务院.中国核电中长期发展规划.2006.
    [36]王昌彦.核电用泵浅谈[J].水泵技术,1994,(2):1-4.
    [37]龚曙光.ANSYS工程应用实例解析[M].机械工业出版社,2003,4.
    [38]ANSYS Europe,Ltd..ANSYS CFX Release for 11.0.2006.
    [39]邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27:19-38.
    [40]娄涛.基于ANSYS的流固耦合问题数值研究[D].兰州人学,2008.
    [41]Volker Carstens,Ralf Kemme,Stefan Schmitt.Coupled simulation of flow-structure interaction in turbomachinery[J].Aerospace Science and Technology,2003,(7):298-306.
    [42]R.K.Jaiman,X.Jiao,P.H.Geubelle,et all.Conservative load transfer along curved fluid-solid interface with non-matching meshcs[J].Joumal of Computational Physics,2006,(218):372-397.
    [43]Sheng Xu,Jane Wang.A 3D immersed interface method for fluid-solid interaction[J].Comput.Methods Appl.Mech.Engrg,2008,(197):2068-2086.
    [44]Djema Belgrounc,Jcan Francois dc Bellcval,Hakim Djelouah.A theoretical study of ultrasonic wave transmission through a fluid-solid intcrface[J].Ultrasonics,2008,2231(23):1147-1159.
    [45]党小建.水轮机导叶流固耦合振动特性计算[D].西安理工大学,2004.
    [46]刘德民.基于流同耦合的水轮机振动的数值研究[D].两华大学,2006.
    [47]曹良.混流式水轮机流固耦合振动分析[D].昆明理工大学,2007.
    [48]唐立新.600MW汽轮机组主油泵叶轮的“流一固”耦合结构分析[D].西华大学,2006.
    [49]李迎.内燃机流固耦合传热问题数值仿真与应用研究[D].浙江大学,2006.
    [50]罗惕乾,程兆雪,谢永耀.流体力学(第二版)[M].北京:工业出版社,2003,7.
    [51]刘国庆,杨庆东.ANSYS工程应用教程--机械篇[M].中国铁道出版社,2003,1.
    [52]梁权伟,王止伟,方源.考虑流固耦合的混流式水轮机转轮模态分析[J].水力发电学报,2004,6:116-120.
    [53]张礼达,陈维森.轴流式转轮叶片奇点分布法CAD软件设计与研究[J].水动力学研究与进展,1998,12(4):397-405.
    [54]王海松,王福军,严海军,等.轴流泵3D实体造型的自动实现[J].农业工程学报,2004,20(2):122-125.
    [55]关醒凡.现代泵技术手册[M].宇航出版社,1995.
    [56]王福军.计算流体动力学分析CFD软件原理与应用[M].清华大学出版社,2004.
    [57]Mark Filipiak.Mesh Generation(Version 1.0 )[M].Edinburgh Parallel Computing Centre of the University of Edinburgh,1996,11.
    [58]Winslow A M.Numerical solution of the quasiliear Poisson equation in a nonuniform triangle mesh[J].J Comput Phys,1967,2:49-172.
    [59]李春,程新广.偏微分方程网格生成技术中非线性系数的研究[J].上海理工大学学报,1998,20(4):305-309.
    [60]修荣荣,徐明海,黄善波,等.一种改进的二维平面区域三角形化的前沿推进法[J].石油大学学报(自然科学版),2003,27(5):73-75.
    [61]胡国辉.基丁数字化仪的有限元网格自动生成系统和可视化研究[D].重庆人学,2004.
    [62]Ajit Thakker,Fergal Hourigan.A comparison of two meshing schemes for CFD analysis of the impulse turbine for wave energy applications[J].Renewable Energy,2005,(256):1404-1410.
    [63]赵玉新.Fluent教程[M].国防科技大学,2005,6.
    [64]G.Rzentkowski,S.Zbroja.Acoustic characterization of a CANDU primary heat transport pump at the blade-passing frequency[J].Nuclear Engineering Design,2000,(459):63-68.
    [65]J.Runkel,D.Stegemann,A.Vortriede.Operating experience with an on-line vibration control system for PWR main coolant pumps[J].Nuclear Engineering Design,1998,(473):157-167.
    [66]Sulzer Pumpen AG,Philippe DuPont.Numerical prediction of cavitation-Improving pump design[J].Wofld Pumps,2001,(11):26-28.
    [67]ANSYS CFX.Computer simulation helps design more efficient water pumps[J].Wofld Pumps,2004,(5):32-34.
    [68]White J.D.,Holloway A.G.L.,Gerber A.G..Predicting turbine performance of high specific speed pumps using CFD[J].Proeeedings of 2005 ASME Fluids Engineering Division Summer Meeting,2005.
    [69]杨昌明,陈次昌,王金诺.轴流泵间隙流动数值模拟与试验研究[D].西南交通大学,2003.
    [70]张克危.流体机械原理[M].机械工业出版社,2000,05.
    [71]李龙,王泽.粗糙度对轴流泵性能影响的数值模拟研究[J].农业工程学报,2001,01:132-135.
    [72]Durmus Kaya.Experimental study on regaining the tangential velocity energy of axial flow pump[J].Energy Conversion and Management,2003,44:1817-1829.
    [73]O.Uzol,D.Brzozowski,Y.CHOW,et al.A database of PIV measurements within a turbomachinery stage and sample comparisons with unsteady RANS[J].Journal of Turbulence,2007,08:156-172.
    [74]Shao-Yi Hsia,Shih-Ming Chiu,Jyin-Wen Cheng.Sound field analysis and simulation for fluid machines[J].Advances in Engineering Software,2008,241:l158-1169.
    [75]Wenqi Zhong,Mingyao Zhang.Pressure fluctuation frequency characteristics in a spout-fluid bed by modem ARM power spectrum analysis[J].Powder Technology,2005,(2131):52-61.
    [76]王正伟,罗永要等.负荷调节过程中的混流式转轮流同耦合计算[J].水力发电学报,2005,8:58-61.
    [77]李维特,黄保海.热应力理论分析及应用IM].北京:中国电力出版社,2004,6.
    [78]魏培茹,陈红勋,路为.全调节轴流泵叶片的受力特性[J].上海人学学报(自然科学版),2007,13(3):314-319.
    [79]陈红勋,朱兵,魏培茹.轴流泵叶片调节力的分析与研究[J].水泵技术,2005,5:5-9.
    [80]黄保海,白玉,牛卫东.汽轮机原理与构造[M].北京:中国电力出版社,2002,3.
    [81]黄树红.汽轮机原理[M].北京:中国电力出版社,2008,8.
    [82]沈士一,庄贺庆,康松,等.汽轮机原理[M].北京:中国电力出版社,2008,6.
    [83]徐纪方,王曾璇,齐学义.水力机械强度计算[M].北京:机械工业出版社,1990,10.
    [84]M.Schafer,I.Teschauer,LKadinski,et al.A numerical approach for the solution of coupled fluid-solid and thermal stress problems in crystal growth proeesses[J].Computational Materials Science,2002,24:409-419.
    [85]陶文铨.数值传热学(第二版)[M].西安交通大学出版社,2001,5.
    [86]李迎,俞小莉,陈红岩,等.发动机冷却系统流固耦合稳态传热三维数值仿真[J].内燃机学报,2007,3:252-257.
    [87]杨世铭,陶文铨.传热学(第三版)[M].高等教育出版社,1998,12.
    [88]Yue-Tzu Yang,Shiang-Yi Tsai.Numefical study of transient conjugate heat transfer of a turbulent impinging jet[J].lntemational Journal of Heat and Mass Transfer,2007,50:799-807.
    [89]G.Hetsroni,C.-ELi,A.Mosyak,et al.Heat transfer and thermal pattern around a sphere in a turbulent boundary layer[J].International Journal of Multiphase Flow,2001,27:l127-1150.
    [90]盛选禹,雒晓卫,傅激扬.反应堆主泵抗震强度的三维实体模型计算[J].核动力工程,2005,26(5)471-474.
    [91]ASME锅炉及压力容器委员会材料分委员会.ASME锅炉及压力容器规范,国际性规范Ⅱ'材料A篇铁基材料『M1.北京:中国石化出版社,2001.
    [92]ASME锅炉及压力容器委员会材料分委员会.ASME锅炉及压力容器规范,国际性规范皿材料D篇性能[M].北京中国石化出版社,2001.
    [93]Langthjem M A,Olhoff N.A numerical study of flow-induced noise in a two-dimensional centrifugal pump.Part Ⅰ.Hydrodynamics[J].Joumal of Fluids and Structures,2004,19:349-368.
    [94]Li Y J,Wang F J.Numerical investigation of performance of an axial-flow pump with inducer[J].Joumal of Hydrodynamics,2007,19(6):705-711.
    [95]杨敏官,李辉,刘栋,等.液下泵三维湍流流动的数值模拟[J].机械工程学报,2008,44(3):160-165.
    [96]Jaiman R K,Jiao X,Geubelle P H,et al.Conservative load transfer along curved fluid-solid interface with non-matching meshes[J].Joumal of Computational Physics,2006,218:372-397.
    [97]Yang C,Yi M L.Numerieal solution of fluid-structure interaction in liquid-filled pipes by method of characteristics[J].Chinese Journal of Mechanical Engineering,2007,20(3):44-49.
    [98]Liu D M,Liu X B.Vibration analysis of turbine based on fluid-structure coupling[J].Chinese Journal of Mechanical Engineering,2008,21(4):40-43.
    [99]肖若富,韦彩新,韩风琴等.混流式水轮机转轮的动力学研究[J].大电机技术,2001,7:41-43.
    [100]A.N.Kumar.Corrosion Fatigue of a Pump Bearing Journal after Exposure to Two-Phase Flow[J].J Fail.Anal.and Preven.,2007,7:66-76.
    [101]Andreas Poullikkas.Surface roughness effects on induced flow and frictional resistance of enclosed rotating discs[J].ASME Journal of Fluids Engineering,1995,(117):526-528.
    [102]Andreas Poullikkas.Compressibility and condensation effects when pumping gas-liquid mixtures[J].Fluid Dynamics Research,1999,(25):57-62.
    [103]Andreas Poullikkas.Two phase flow performance of nuclear reactor cooling pumps[J].Progress in Nuclear Energy,2000,36(2):123-130.
    [104]A.M.C.Chan,M.Kawaji,H.Nakamura,et al.Experimental study of two-phase pump performance using a full size nuclear reactor pump[J].Nuclear Engineering and Design,1999,193:159-172.
    [105]K.Rabiger,T.M.A.Maksoud,J.Ward,et al.Theoretical and experimental analysis of a multiphase screw pump,handling gas-liquid mixtures with very high gas volume fractions[J].Experimental Thermal and Fluid Science,2008,32:1694-1701.
    [106]S.A.Shefif,W.E.Lear,J.M.Steadham,et al.Analysis and modeling of a two-phase jet pump of a thermal management system for aerospace applications[J].Intemational Journal of Mechanical Sciences,2000(42):185-198.
    [107]H.M.Prasser,D.Baldauf,J.Fietz,et al.Time resolving gamma-tomography for periodically changing gas fraction fields and its application to an axial pump[J].Flow Measurement and Instrumentation,2003,(14):119-125.
    [108]S.B.Hazra,K.Steiner.Computation of dilute two-phase flow in a pump[J].Journal of Computational and Applied Mathematics,2007,203:444-460.
    [109]V.C.Samaras,D.P.Margaris.Two-phase flow regime maps for air-lift pump vertical upward gas-liquid flow[J].International Journal of Multiphase Flow,2005,31:757-766.
    [110]Hitoshi Fujimoto,Takuya Nagatani,Hirohiko Takuda.Performance characteristics of a gas-liquid--solid airlift pump[J].Intemational Journal of Multiphase Flow,2005,31:1116-1133.
    [111]S.Z.Kassab,H.A.Kandil,H.A.Warda,et al.Experimental and analytical investigations of airlift pumps operating in three-phase flow[J].Chemical Engineering Journal,2007,131:273-281.
    [112]Jose Caridad,Miguel Asuaje,Frank Kenyery,et al.Characterization of a centrifugal pump impeller under two-phase flow conditions[J].Joumal of Petroleum Science and Engineering,2008,63:18-22.